SAM SMALL, JOSHUA MASON, RYAN
MACARTHUR, AND FABIAN MONROSE

Masquerade:
simulating a

thousand victims

Sam Small is a PhD candidate in the Computer
Science Department at Johns Hopkins University.
His research interests include network security
and information security for resource-constrained
devices.

sam@cs.jhu.edu

Joshua Mason is a PhD candidate at Johns Hopkins
University. His primary research interest is apply-
ing natural-language processing and data-mining
techniques to information security.

josh@cs.jhu.edu

Ryan MacArthur has a Master of Science in Security
Informatics from Johns Hopkins University. His cur-
rent research deals with discovering new malware
and finding ways to prevent it.

rpm@jhu.edu

Fabian Monrose is an associate professor in the
Computer Science Department at the University of
North Carolina at Chapel Hill. Prior to joining UNC,
he was an associate professor at Johns Hopkins
University and a member of the technical staff at
Bell Labs, Lucent Technologies.

fabian@cs.unc.edu

ATTACKS AGAINST WEB-SERVER APPLI-
cations and their clients’ Web browsers have
recently increased in popularity. These auto-
mated attacks rely not only on weaknesses
in a wide variety of applications but also on
identifying potential victims with popular
search engines. We have built a system

that attracts these attacks by representing
many different victims in Web searches and
simulating their behavior when attacked.

Its deployment has succeeded in attracting
hundreds of thousands of attacks in a two-
month period.

As time passes and system security improves, fa-
miliar attack vectors become less common and
new, more successful techniques emerge. For in-
stance, the increased presence of end-user fire-
walls, NAT (network address translation), and
better operating systems security have reduced the
presence and potency of malware worms, despite
their broad notoriety just five years ago. Also, the
monetization of vulnerabilities and stolen personal
data motivates more clandestine attacks. Conse-
quently, it is no longer common for attackers to
write worms that randomly scan the Internet for
potential victims, and attackers are forced to shift
their strategy to promote wide-scale malware in-
fection accordingly. Increasingly, attackers now co-
vertly compromise servers, lying dormant except to
covertly infect their visitors as well. This method
of infection is commonly referred to as a drive-by
download and its victims are typically Web servers
running vulnerable software and personal com-
puters with browser vulnerabilities [1]. Left unde-
tected, this method of infection affords attackers
the opportunity to control large networks of com-
promised machines.

Crawling for Victims

The recent increase in this underhanded tactic, in-
fecting visitors to compromised Web sites and au-
tomatically installing executables on the victims’
machines unbeknownst to them, was well docu-
mented by Provos et al. [2]. Their investigation
showed that during a 10-month period, more than
1% of all queries to the Google search engine yield
at least one recommended URL that resolves to a
Web server suspected of hosting malicious content.
After categorizing a subset of the malicious URLs
with the Open Directory Project [3], the research-
ers discovered that, although user browsing be-

;LOGIN: VOL. 33, NO. 6

;LOGIN: DECEMBER 2008

havior can affect the likelihood of encountering such URLs, Web servers in all major content
categories are affected. Among other causes, Web servers are often compromised via unre-
ported vulnerabilities in insecure third-party Web applications (e.g., popular online discus-
sion forum software, administrative interfaces, and content management systems).

"Powered by Photo Gallery 1.0")

Powered by Photo Gallery 1.0

Powered by Photo Gallery! 0

FIGURE 1: SEARCH WORMS AUTOMATICALLY IDENTIFY HOSTS RUNNING VULNERABLE
WEB APPLICATIONS BY (A) USING DIRECTED SEARCH-ENGINE QUERIES THAT (B)
REVEAL VISIBLE INSTALLATIONS. SOMETIMES THESE QUERIES ARE AS SIMPLE AS
DEPICTED IN THE FIGURE, ALTHOUGH AT OTHER TIMES THEY ARE MORE ADVANCED,
TAKING ADVANTAGE OF OBSCURE SEARCH-ENGINE FEATURES.

Attackers find Web applications an attractive target for many reasons. A unique combination
of insecure or amateur development, far-reaching network visibility, and the opportunity to
further infect Web site visitors provides attackers with strong motive to target Web applica-
tions. Moreover, Web applications are notoriously insecure. The SANS Institute has reported
that, from November 2006 to October 2007, Web application vulnerabilities were responsible
for just under half of all reported vulnerabilities and that hundreds of new vulnerabilities and
exploits in both commercial and open-source Web applications are reported each week [4].

Worse yet, under some circumstances, by abusing popular search engines attackers can eas-
ily identify Web servers hosting vulnerable Web applications. As depicted in Figure 1, if an
attacker has discovered a vulnerability in version 1.0 of a Web application named Photo Gal-
lery, the attacker can identify Web servers running the application (i.e., potential victims) by
simply submitting the query “Powered by Photo Gallery 1.0” to a search engine. If we assume
that the software always displays the phrase in question, the search engine will likely identify
URLSs to these Web servers, which the attacker then attempts to compromise. As demonstrated
in Figure 2, these attacks are typically constructed the same way.

When automated, this attack strategy can be quite virile. These attacks enable fast propagation

script name
present in vulnerable location of malicious PHP script included
web application and executed by vulnerable.php

argument vulnerable to malicious script
manipulation by attacker with argument
FIGURE 2: AN EXAMPLE OF A PHP REMOTE INCLUSION ATTACK, A VERY COMMON
ATTACK OWING TO THE POPULARITY OF PHP AS A DEVELOPMENT LANGUAGE AND
THE FREQUENTLY DEMONSTRATED INSECURITY OF WEB APPLICATIONS

owing to their ability to quickly and accurately identify potential victims (i.e., generate a hit
list). The automated variant of this attack is referred to as a search worm [5].

Although it is well known that this category of attacks has recently become more popular,
little is known about the scope of this growing trend. In response, researchers have begun to
develop low-interaction, Web-based honeypots to monitor automated attacks directed at vul-
nerable Web applications by extending the scope of more traditional, daemon-centric honey-
pots [6]. Historically, honeypot systems have significantly helped researchers to identify the

MASQUERADE 7

extent to which automated network attacks take place, to identify new patterns in malware, and
to generate signatures for security appliances and applications [7].

However, merely adopting the tools and techniques typically used to monitor traditional auto-
mated attacks (i.e., random-scanning worms) would be ineffective. Herein lies a significant chal-
lenge: To effectively monitor meaningful attacks, a Web-based honeypot must be indexed under
the queries used by attackers; however, attacks for which queries (or signatures) are already
known have diminished utility to researchers, since they are often abandoned by attackers once
disclosed and patched.

For instance, one might consider instrumenting the most common Web applications to create a

Web-based honeypot. This approach illustrates a number of problems. First, many applications

are neither free nor open source. Second, the sheer diversity and availability of Web applications
across the Internet render this approach insufficient, inefficient, and intractable as a general ap-

proach. Simply put, it is too difficult to predict which of the thousands of widely installed Web

applications attackers will target next.

The Great Pretender

To address these limitations and quantify the scope of this threat, we developed a method that,
when disguised as a Web server, simultaneously and efficiently represents a wide range of Web
applications [8]. Its implementation elicited over 368,000 attacks from more than 29,000 unique
hosts, which targeted hundreds of distinct Web applications in under two months. The observed
attacks include several exploits detected the same day the related vulnerabilities were disclosed
publicly. Furthermore, an analysis of the captured payloads highlights some interesting insights
into current malware trends and the post-infection process.

To provide some grasp of its function, consider the automated voice-driven systems commonly
used to handle customer-service phone calls. These systems prompt customers to state the pur-
pose of their call so that each is directed to either an appropriate service department or a rel-
evant recorded response. The best of these systems are remarkably effective despite the unique
speaking characteristics of each user and the diversity of spoken words and phrases with similar
meanings. Behind the scenes, such systems employ an amalgam of technologies built on concepts
developed by the natural-language processing and machine-learning research communities.

Scientists train such systems to automatically evaluate and estimate the meaning of requests in
real time, using large sample sets of requests and responses. For our example, the requests in
these sets likely represent diverse diction and speech patterns. The content and meaning of the
sample data are known a priori and treated as catalysts; therefore, each system’s response can be
conditioned on known responses to a known catalyst. Once this training process is complete, re-
sponses to unobserved requests (such as those posed by a new customer) are often estimated by,
for instance, identifying a request’s most similar counterpart from the sample set and selecting
its response. This entire process is referred to traditionally as supervised learning, and it is in this
manner that many systems are often able to satisfy online requests accurately [9].

Our method is similarly built using a statistical response-estimation engine. Unlike the previous
example, however, our approach produces responses to protocol requests rather than vocal re-
quests. Rather than determine whether the demands of two customers are similar using only in-
formation from sample requests, we instead consider whether two network requests are similar.
In this case, requests come from the search-engine spiders that index Web pages and the auto-
mated attacks launched by search worms. The produced responses are aimed at ultimately entic-
ing search worms to contact our “honeypot,” allowing us to observe the scope and nature of such
attacks.

UNDER THE HOOD

For new and unfamiliar requests, simulating a response requires identifying which sample re-
quests are most similar. During initialization, similar sample requests are partitioned using a
variant of the k-means clustering algorithm so that, generally, each cluster loosely represents a

;LOGIN: VOL. 33, NO. 6

specific type of application request [10]. New requests are then paired with the most repre-
sentative cluster. The metric used to quantify the difference between each pair of requests is
called term-frequency/inverse document frequency cosine-similarity, or simply TF/IDF dis-
tance [11]. This metric is an attractive choice because its construction is purely statistical and
does not rely on any protocol-specific knowledge. TF/IDF distance is also commonly used to
match queries with relevant documents in information retrieval and data-mining applications.

Assigned to each cluster is a smoothed n-gram language model [12]. Each cluster’s language
model is trained with the set of responses that correspond to each request in the cluster.
Then, when handling an unobserved request, the language model paired with the cluster it
best fits generates a dynamic (and statistical) response. Many messages contain session-spe-
cific fields that match between requests and response pairs (e.g., sequence numbers or session
identifiers). When this behavior can be inferred, we post-process responses to satisfy such de-
pendencies by using byte-sequence alignment algorithms [13].

VALIDATION

The success of this approach is predicated on a simple assumption in analogy with the exam-
ple provided earlier: To elicit protocol interaction, the protocol responses artificially produced
for online network requests must be acceptable to network agents much the way the responses
produced by automated telephone systems must be accepted by its callers to guarantee their
participation. To frame this assumption differently, consider that such a system is built and
no one attacks. Some form of validation is necessary to determine whether our assumptions
simply do not hold or the method is flawed, whether the data sets used to train the system are
unrepresentative or (less likely) whether the attackers have given up.

To assess whether these techniques (typically used with natural languages) could synthesize
network traffic and elicit Web-based attacks is a challenging problem in its own right. After
all, there is hardly a rigid or universal definition governing the acceptability of HTML. Al-
though standards do exist, HTML is overwhelmingly parsed by best-effort means. However,
since these techniques represent knowledge derived only from the inferences and estimation
encapsulated in sample data, we reason that the method can be validated under the strict
guidelines of a less-forgiving protocol such as DNS. Again, since none of the methods used
to simulate responses is protocol-specific and relies only on inferences from sample data, the
method is fundamentally protocol-agnostic.

Unlike HTTP, the DNS protocol has a fixed binary format and its correctness is well defined
for all messages, providing us with a quantitative benchmark for validation. First, we used
DNS traffic produced by our colleagues over the course of three months as the training data
set. We then generated and submitted 20,000 random queries to what is essentially an impos-
tor DNS server and evaluated the correctness of its responses. The experiment confirmed our
assumption: Valid responses are produced with a success rate that correlates positively to the
size and diversity of its training set.

In-the-Wild Evaluation

;LOGIN: DECEMBER 2008

Earlier, we asserted that the automated exploitation of Web applications poses a serious threat
to the Internet. To support this hypothesis we built a system to catch and detect search worms
using the techniques previously described. Since building a useful supervised learning system
requires representative sample data, we obtained a list of over 3000 of the most searched queries
to Google by known search worms and queried Google for the top 20 results associated with
each query. Our corpus is comprised of the protocol interaction captured when requesting these
URLs.

As mentioned previously, search worms only target Web servers that are indexed by search
engines. To artificially boost the popularity of our system, we first placed hyperlinks on sev-
eral popular pages. Additionally, we were able to expedite the indexing process by disclosing
the existence of a minor bug in a common UNIX application to the Full-Disclosure security

MASQUERADE 9

10

mailing list. Bulletins from this list are mirrored on several high-ranking Web sites and are
crawled extensively by search-engine spiders.

Shortly after being indexed, search worms began to attack at an alarming rate, with attacks rap-
idly increasing over a two-month deployment period. The results are shown in Figure 3. The
sheer volume of attacks is shocking: In total, we observed well over 368,000 attacks targeting
just under 45,000 unique scripts. During this time, we also recorded the number of times Google
indexed our system (in total, just shy of 12,000). As expected, our results indicate a positive cor-
relation between the index rate and the attack rate. The attacks we captured also reveal that many
search worms target multiple vulnerabilities and distinct Web applications in tandem. In many
cases, different worms attempt to inject malware hosted on the same remote servers.

3000

Unique PHP Script Names - - X

Unique PHP Attacks —+— |
2500 [Unique IPs -—-%-- | 1
Unique Injected Scripts —&— }j

2000

1500 J
" X //

L 1,710 Indices X

1000 N,\

109 Indices X L R
RN R =

Number of Attacks

500

Day of Deployment

FIGURE 3: DAILY PHP ATTACKS ANNOTATED WITH SEARCH-ENGINE INDEX RATE. IN
TOTAL, WE OBSERVED OVER 368,000 ATTACKS IN JUST OVER 2 MONTHS. THE VALLEY
ON DAY 44 1S DUE TO AN 8-HOUR POWER OUTAGE. THE PEAK ON DAY 56 IS BECAUSE
TWO BOTS LAUNCHED OVER 2,000 SCRIPT ATTACKS.

In general, classifying the number of unique Web applications targeted by search worms is dif-
ficult, because many of the targeted script names are ubiquitous (e.g., index.php). In these cases,
search worms are either targeting a vulnerability in one specific Web application or arbitrarily
attempting to inject malicious scripts. Despite this difficulty, we were able to map the content

in our sample data to over 500 unique Web applications. We then linked the attacks themselves
back to 295 distinct Web applications, which is indicative of the overall diversity of targets being
attacked.

EMERGENT THREATS

Although the original intent of our deployment was to elicit attacks from search worms exploit-
ing known vulnerabilities, we became indexed under broader conditions owing to the variability
of our sample data. As a result, we sometimes attracted attacks targeting undisclosed vulner-
abilities. For instance, according to milwOrm, over 65 PHP remote-inclusion vulnerabilities were
released during the time span of our deployment. Since our deployment used the same training
data for its entire duration, we know that captured attacks against these vulnerabilities were not
explicitly represented by data in the training set.

Nonetheless, we witnessed several emergent threats, because many of the original queries used
to bootstrap the supervised learning process were generic, representing a wide number of ap-
plications. During the deployment, we identified more than 10 attacks against vulnerabilities
disclosed after its launch (see Table 1); thus, these attacks were not explicitly represented by the
training data. It is unlikely that we witnessed these attacks simply because of arbitrary attempts
to exploit random Web sites; indeed, we never witnessed many of the other disclosed vulnerabil-
ities being attacked.

;LOGIN: VOL. 33, NO. 6

Disclosure Attack Signature
/starnet/themes/c-sky/main.inc

Day 9 6 days later php2emsdir=

Day 26 2 days later /Comments—dwplay—tpl.php
?language_file=
/admin/kfm/initialise.php

Day 27 Same day ?kfm_base_path=
/Commence/includes/db_connect

Day 30 Same day .php?phproot_path=
/decoder/gallery.php?ccms

Day 33 Same day library_path=

TABLE 1: SOME OF THE ATTACKS TARGETING VULNERABILITIES THAT WERE UNKNOWN
AT THE TIME OF DEPLOYMENT. IN AT LEAST 3 CASES, WE OBSERVED ATTACKS ON THE
SAME DAY THAT THEIR VULNERABILITIES WERE DISCLOSED.

Given the frequency with which these types of vulnerabilities are released, we argue that a
honeypot without dynamic response generation will likely miss an overwhelming amount of
attack traffic. In the attacks we witnessed, several search worms began attacking vulnerabili-
ties on the same day as their disclosure! An even more compelling case for our architecture is
embodied by the attacks against the vulnerabilities that have not yet been disclosed. We be-
lieve that the potential to identify these attacks exemplifies the real promise of this approach.

PAYLOAD ANALYSIS

;LOGIN: DECEMBER 2008

To better understand what the post-infection process entails, we conducted a rudimentary
analysis of the remotely injected malicious scripts and its malware. We analyzed malware
using a basic sand-boxed environment that hooks system calls and libraries to discover mal-
ware functionality. Table 2 provides an abbreviated summary. Overwhelmingly, the attacks
attempt to install PHP Web-based shells. These provide attackers with a direct and easy way
to arbitrarily control infected systems. As is now typical, many of the scripts are obfuscated,
erase evidence of infection, and perform automated self-updates. In some cases, the malware
profiled the systems (e.g., by copying /etc/passwd and performing local scans). To our sur-
prise, only eight scripts contained functionality to automatically obtain root access.

Script Classification Representation (%)
PHP Web-based shells 32
Echo notification 22
PHP bots 14
Spammers 13
Downloaders 7
Perl bots

Email notification

Text injection 1
Information farming <l
Uploaders <l
Image injection <1
UDP flooders <l

TABLE 2: CLASSIFICATION OF OBSERVED MALWARE. WE ANALYZED MORE THAN
2,600 MALICIOUS SCRIPTS AND INSTANCES OF MALWARE ORIGINATING FROM
AUTOMATED ATTACKS.

MASQUERADE 1

As can be expected, we also observed several instances of spamming malware using email
addresses pulled from the databases on infected machines. For Web servers hosting applications
such as phpBB, this can be highly effective, because most users enter an email address during
registration. Cross-checking the IP addresses of these worms with the Spamhaus project
revealed that roughly 36% of them currently appear in its spam blacklist [14]. Lastly, we note
that although we observed what appeared to be over 5,648 unique injection scripts from distinct
worms, nearly half of them belonged to orphan botnets. These networks no longer have a
centralized control mechanism and the remotely included scripts are no longer accessible. They
are, however, still responsible for an overwhelming amount of our observed HTTP traffic.

Conclusions

Our work uses a number of multidisciplinary techniques to generate dynamic responses to pro-
tocol interactions. We demonstrate the utility of our approach through the deployment of a dy-
namic content generation system targeted at eliciting attacks against Web-based exploits. During
a two-month period we witnessed an unrelenting barrage of attacks from attackers that scour
search-engine results to find victims (in this case, vulnerable Web applications). The attacks were
targeted at a diverse set of Web applications and employed a myriad of injection techniques. We
believe that the results herein provide valuable insight into the nature and scope of this increas-
ing Internet threat.

For real-world honeypot deployments, detection and exploitation of the honeypot itself can be a
concern. Clearly, our system is not a true Web server and, like other honeypots, it can be trivi-
ally detected using various fingerprinting techniques. The fact that our Web honeypot can be
detected is a clear limitation of our approach, but in practice it has not hindered our efforts to
characterize current attack trends. The search worms we witnessed all appear to use search en-
gines to find the identifying information of a Web application and attack the vulnerability upon
the first visit to the site without verifying its presence, presumably because explicit verification
reduces the rate of infection. Nonetheless, dealing with multi-stage attacks is an area of future
work. For information, see our publication from USENIX Security '08 [8].

REFERENCES

[1] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu, “The Ghost in the
Browser: Analysis of Web-based Malware,” USENIX Workshop on Hot Topics in Botnets (HotBots)
(2007).

[2] N. Provos, P. Mavrommatis, M.A. Rajab, and F. Monrose, “All Your iFRAMEs Point to Us,”
Proceedings of the 17th USENIX Security Symposium (July 2008), pp. 1-15.

[3] Open Directory Project: http://www.dmoz.org/.

[4] SANS Institute Top-20 2007 Security Risks (2007 Annual Update), November 2007: http://
www.sans.org/top20/.

[5] N. Provos, J. McClain, and K. Wang, “Search Worms,” Proceedings of the 4th ACM Workshop on
Recurring Malcode (2006), pp. 1-8.

[6] The Google Hack Honeypot, 2005: http:/sourceforge net/projects/ghh/.

[7] N. Provos, “A Virtual Honeypot Framework,” Proceedings of the 12th USENIX Security Sympo-
sium (August 2004), pp. 1-14.

[8] S. Small, J. Mason, F. Monrose, N. Provos, and A. Stubblefield, “To Catch a Predator: A Natu-
ral Language Approach for Eliciting Malicious Payloads,” Proceedings of the 17th USENIX Security
Symposium (2008), pp. 171-183.

[9] Machine learning: http:/en.wikipedia.org/wiki/
Machine_learning,

;LOGIN: VOL. 33, NO. 6

[10] J.B. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observa-
tions,” Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (Berkeley, CA:
University of California Press, 1967), pp. 281-297.

[11] G. Salton and C. Buckley, “Term-weighting Approaches in Automatic Text Retrieval,” In-
formation Processing & Management 5(24):513-523 (1988).

[12] L.H. Witten and T.C. Bell, “The Zero-frequency Problem: Estimating the Probabili-

ties of Novel Events in Adaptive Text Compression,” IEEE Transactions on Information Theory
37(4):1085-1094 (1991).

[13] S.B. Needleman and C.D. Wunsch, “A General Method Applicable to the Search for Simi-
larities in the Amino Acid Sequence of Two Proteins,” Journal of Molecular Biology, 48:443—453
(1970).

[14] The Spamhaus Project: http://www.spamhaus.org/.

Thanks to USENIX and SAGE Corporate Supporters

USENIX Patrons USENIX & SAGE Partners USENIX Partners SAGE Partner
Google Ajava Systems, Inc. Cambridge Computer MSB Associates
Microsoft Research DigiCert® SSL Services, Inc.
NetApp Certification GroundWork Open Source
FOTO SEARCH Stock Solutions
USENIX Benefactors Footage and Stock Hyperic
Hewlett-Packard Photography Infosys
IBM Splunk Intel
Linux Pro Magazine 7en05S Oracle
VMware Sendmail, Inc.
Sun Microsystems, Inc.
Xirrus
;LOGIN: DECEMBER 2008 MASQUERADE 13

