
w e n j i n H u , T o d d d e s H a n e , a n d
j e a n n a M aT T H e w s

Solaris virtualization
options
Wenjin Hu is a PhD student in Computer Science
at Clarkson University. He focuses on applying
virtualization and file system techniques to provide
security and reliability on the desktop.

huwj@clarkson.edu

Todd Deshane is a PhD student in Engineering
Science at Clarkson University. His current research
deals with using virtualization to provide security
on the desktop.

deshantm@clarkson.edu

Jeanna Neefe Matthews is an associate profes-
sor of Computer Science at Clarkson University in
Potsdam, NY, where she leads an incredible team of
students. She is currently on sabbatical and work-
ing with VMware in Cambridge, MA.

jnm@clarkson.edu

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 7

t h e V i r t u a l i z at i o n o p t i o n s f o r
Solaris have been expanding rapidly. In this
article we discuss three types of virtualiza-
tion systems available in OpenSolaris for
x86: Solaris Containers, Solaris xVM, and
Sun xVM VirtualBox. We include instruc-
tions on how to deploy each solution and
a detailed comparison of the three to help
system administrators and virtualization
fans alike choose the appropriate virtualiza-
tion technology for their needs. Even if you
don’t use Solaris, we do explain the differ-
ences among OS-level virtualization, para-
virtualization, and full-virtualization clearly.

Solaris has included Containers (also called Zones)
since Solaris 10 was released in 2005. Containers
are an operating-system-level virtualization facility,
meaning that the OS itself provides the illusion of
multiple independent systems, each with its own
IP address and file system, all based on the same
base kernel. More recently, support for paravirtu-
alization in the form of Xen (called Sun xVM on
Solaris) has been added and now, with the acquisi-
tion of VirtualBox, full virtualization on Solaris is
also an option. Unlike OS-level virtualization, par-
avirtualization and full virtualization both offer the
ability to run guest operating systems that are dif-
ferent from the underlying OS. Full virtualization
can run unmodified operating systems, whereas
paravirtualization requires targeted changes to
the hardware interface and therefore correspond-
ing changes in the OS source code. As a result,
proprietary operating systems such as Microsoft
Windows can typically only be run on virtualiza-
tion systems that support full virtualization. Some
virtualization systems, such as Xen, require hard-
ware support for virtualization, such as Intel VT or
AMD-V, to support full virtualization.

getting started with solaris containers

In Solaris Containers/Zones, a virtual machine is
called a zone and a zone with resource limitations
is called a container. The basic command to operate
a zone’s configuration file is zonecfg –z newzone.
This will bring up a shell in which you can issue a
variety of commands to manipulate the specified
zone. As shown in Listing 1, you create a zone,
add the attached devices such as add net, set zone
options such as set autoboot=true, display the
configuration, verify the configuration, and finally
commit a zone’s resources, which writes out a

8 ; LO G I N : vO L . 33, N O. 5

final configuration file for the zone. You can also use zonecfg to browse the
characteristics of an existing zone and modify it as desired.

zonecfg -z newzone
newzone: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:newzone> create
zonecfg:newzone> set zonepath=/export/home/newzone
zonecfg:newzone> set autoboot=true
zonecfg:newzone> add net
zonecfg:newzone:net> set address=192.168.16.109
zonecfg:newzone:net> set physical=pcn0
zonecfg:newzone:net> end
zonecfg:newzone> verify
zonecfg:newzone> commit
zonecfg:newzone> exit

L i s t i n g 1 : t h e s t e p s s h O w i n g t h e Z O n e c O n f i g u r a t i O n

Solaris provides a number of options to manage the resources that a zone
can own, including the CPU, the memory, and the number of the pro-
cesses. This is the heart of making a zone into a container with resource
limitations. In Listing 2, we illustrate how to add a variety of restrictions to
our new zone. (These commands are also issued at the zonecfg prompt.)
The capped-cpu command limits the CPU cycles assigned to the zone to
a fourth of one CPU. Similarly, our capped-memory command assigns
the zone 128 MB of memory and 512 MB of swap space. It also guarantees
that 64 MB of the zone’s memory will be resident in physical memory at all
times. Finally, the set max- lwps command illustrates how we can place
limits on things besides physical resources. It limits the number of light-
weight processes in a running zone and is useful for preventing problems
such as fork-bombs from taking down the whole machine.

add capped-cpu
 set ncpus=0.25
end

add capped-memory
 set physical=128M
 set swap=512M
 set locked=64M
end

set max-lwps=175

L i s t i n g 2 : t h e O p t i O n s L i m i t i n g t h e c O n t a i n e r ’ s r e s O u r c e s

Once our new zone is configured, we are ready to instantiate it with the
command zoneadm –z newzone install and then run it with the com-
mand zoneadm –z newzone boot. zoneadm can also be used for other
zone administration functions such as listing the configured zones, install-
ing or uninstalling the zones, and booting, pausing, and halting installed
zones. Listing 3 shows the output of running zoneadm list after installing
our new zone. The parameter –c will display all the configured zones’ infor-
mation; –v will display the detailed information of zones.

zoneadm list -vc
ID NAME STATUS PATH BRAND IP
0 global running / native shared
1 newzone running /export/home/newzone native shared

L i s t i n g 3 : a Z O n e a d m L i s t s h O w i n g a L L Z O n e s

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 9

Finally, we are ready to log in to our new zone with the command zlogin
newzone. It will be running the same version of OpenSolaris as the base
operating system, as is required with OS-level virtualization. However, the
zone will behave like a separate system, with its own IP address, its own file
system, and its own set of installed applications.

getting started with solaris xVM

A virtual machine in xVM is called a domain, just as it is in other Xen im-
plementations. Domains are divided into two major categories: paravirtual-
ized (PV) domains and Hardware-assisted Virtual Machine (HVM) domains.
In a PV domain, the hardware abstraction presented to the guest VM is not
identical to the underlying physical hardware; instead, strategic changes are
made to make the system easier to virtualize. To run properly on the para-
virtualized hardware, the guest operating system must be modified to be
aware of these changes. This requires source-code-level changes to the OS
and is therefore rarely available for proprietary operating systems such as
Windows. Two common choices for paravirtualized guest domains are So-
laris and Linux.

In an HVM domain, the hardware abstraction presented to the guest is iden-
tical to the underlying hardware, so any operating system that runs on x86
hardware architecture can be installed. To make this possible, an HVM do-
main relies on special hardware support for virtualization such as Intel V-T
or AMD-V. If your system does not have this hardware support for virtual-
ization, then paravirtualized domains are your only option.

Xen is a virtual machine monitor, called a hypervisor, which intercepts the
guest domain’s system calls. It is necessary to boot the Xen-enabled Solaris
kernel on the physical machine rather than a normal Solaris kernel. Since
Solaris Nevada Version build 75, Xen has been developed and well inte-
grated into Solaris Express Community Edition through a variety of boot
options in the GRUB menu. For example, the standard GRUB menu displays
three choices: Solaris Express Community Edition snv87 X86, Solaris xVM,
and Solaris Failsafe; the second grub option, Solaris xVM, should be chosen.

Xen also relies on a special, privileged domain, called Domain0, and the
Xen control daemon, Xend, for communication between the hypervisor and
the guests. Domain0 is granted the full privileges of managing the guest do-
mains and the physical devices by the Xen hypervisor, similar to a “normal”
Solaris OS instance.

Device drivers can also be fully virtualized or paravirtualized. Even a system
that does full virtualization of the CPU and memory can load paravirtual-
ized drivers to handle external devices such as a disk or network interface.
In a paravirtualized driver, the driver running in the guest operating system
is aware of the hypervisor and explicitly participates in communicating its
requests to domain0 where the real physical device drivers are running. In
a fully virtualized driver, the real device access still occurs on the Domain0
drivers, but the guest driver is unaware of this, so the hypervisor must trap
accesses to I/O space or DMA operations in order to forward them on to the
proper device driver in Domain0. PV drivers have much lower overhead, be-
cause they avoid this expensive process of trapping and forwarding.

Our first step in running Xen guests is to make sure that the hypervisor,
Domain0, and Xend are all running. After Solaris xVM boots up, you can
use the command virsh list as shown in Listing 4 to check whether Domain0
is running.

10 ; LO G I N : vO L . 33, N O. 5

virsh list
 Id Name State

 0 Domain-0 running
 110 newSolaris blocked

L i s t i n g 4 : V i r s h L i s t s h O w i n g d O m a i n 0

Next, we check that Xend is running and specify the default network in-
terface in Xend first so that our guest domains are able to set up the virtual
network based on that physical NIC. Xend is wrapped as an application ser-
vice in Solaris. Listing 5 illustrates the use of svccfg and svcadm facilities
to configure and restart Xend. The –s parameter specifies the Xend service;
setprop specifies the Xend configuration options. After making this (or any
change) to the Xend configuration, you can apply the change by refreshing
and restarting Xend as shown. The svcadm facility can be used to enable,
disable, refresh, or restart the Xend service at any time.

svccfg –s xvm/xend setprop config/default-nic=”bge0”
svcadm refresh xvm/xend
svcadm restart xvm/xend

L i s t i n g 5 : t h e s t e p s f O r c O n f i g u r i n g a n d r e s t a r t i n g X e n d

With that, we are ready to create a new guest domain. In this section we
will show three primary examples: a PV Solaris guest domain, a PV Linux
domain, and an HVM Solaris domain. In Solaris, virt-install is a tool used to
create the guest domain images regardless of whether it is PV or HVM. For
example, a paravirtualized Solaris image can be created with the following
command:

virt-install --nographics -n newSolaris --paravirt -f /export/home/newSolaris.\
img -r 1024 -s 30 -l /export/home/sol-nv-b87.iso

where -n is for specifying a domain name to be newSolaris, - -paravirt is
for selecting the mode to be paravirtualized, -f is for specifying the domain
image name newSolaris.img in the path /export/home, - r is for assigning the
domain memory size to be 1024 MB, -s is for creating the domain image
size in gigabytes, and - l is for choosing the installation location. Note that in
Solaris xVM, for paravirtual guests (both Solaris and Linux), the video card
and CD-ROM drivers are not yet fully ported, will not have a graphical win-
dow, and cannot use fully use the CD-ROM. However, we were able to use
an ISO file as the guest CD-ROM during the install of the paravirtual Solaris
guest by using the –l option to specify the ISO location. But for the HVM
guest, the guest can fully use a standard CD-ROM driver within it and then
have a CD-ROM device.

We can also install the guest via a Solaris NFS share on Solaris xVM. If we
use ZFS volumes for the guest disk storage, it should have better perfor-
mance and more reliability than using a file-based image in the Domain0
file system.

After running this command and finishing the normal Solaris Installation
process, you can use virsh list again to see the newSolaris guest domain
running, as illustrated in Listing 4. To access the running domain newSo-
laris, we can use the command virsh console newSolaris. To get out of
the guest domain, the combination key Ctrl+] is needed.

If we wish to save the guest domain’s configuration file for later use, we can
use the virsh tool to write an XML format configuration file when the guest
domain is running, with virsh dumpxml newSolaris > newSolaris.xml.
With the guest domain’s xml configuration file, we can directly boot the

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 11

image with the command virsh create newSolaris.xml. Furthermore, we
can use the command virsh shutdown newSolaris to turn off the guest.

Next, we will walk through an example of installing an HVM guest domain.
Before creating the Solaris HVM image, we may need to enable VNC in
Xend, as Listing 6 shows. In the svccfg command shown, 0.0.0.0 indicates
that the VNC server is listening to any IP and passwd should be replaced
with the actual password. If you don’t explicitly set the password, it will de-
fault to the empty string, which is, of course, not secure. If you don’t want
to use VNC for remote access to the guest at all, you can use the command
svccfg -s xvm/xend delprop config /vnc- listen to remove that option and
then refresh and restart Xend as we did earlier.

svccfg -s xvm/xend setprop config/vnc-listen = astring: \”0.0.0.0\”
svccfg -s xvm/xend setprop config/vncpasswd = astring: \”passwd\”

L i s t i n g 6 : V n c s e t u p i n X e n d

Next, we can use virt- install with the - -hvm argument to start an HVM So-
laris guest as, for example:

virt-install -n SolarisHVM --hvm -r 1024 --vnc -f /export/home/SolarisHVM.\
img -s 30 -c /export/home/newbie/sol-nv-b87.iso

Notice that we use almost the same options as we did when creating the
paravirtual Solaris guest; the only differences are - -hvm, which specifies
the guest works in HVM mode, and - -vnc, which specifies that the guest
will have a VNC connection. Also, the argument –c is used for specifying
the virtual CD-ROM rather than –l when installing the paravirtual guest. In
this case, it indicates that the installation is from the ISO file /export/home/
sol-nv-b87.iso and, from the guest’s perspective, the installation is from the
guest CD-ROM. We could install guests based on any other operating sys-
tem, including Windows, in this same manner.

When you run the virt- install command, it will first display a window ask-
ing for a VNC password, which is passwd as we have set up in Xend at the
beginning of the HVM guest setup procedure. The rest of the installation
process will look exactly like installing Solaris on a real machine. As with
the PV guest, we can use the virsh facility to create and shut down the guest
domain.

We used virt- install to create Solaris guests and it’s also possible to use it
to create Linux guests in a similar way. However, for Linux guests there are
some additional options. In this section, we will illustrate the use of one of
these, virt-manager, to install a Linux guest. Refer to our Web site [1] for
additional information on options for Linux guests such as netinstall, isoin-
stall, and cdrom-install.

Virt-manager is a GUI installation and management tool for guest domains.
It provides a GUI tool for the creation of new domains, an integrated VNC
viewer for accessing domains, and other useful tools for the management
of domains and their resources. Virt-manager is available on newer releases
of CentOS and Red Hat Enterprise. It is also available in the latest version
of Solaris now. You can find its icon from menu->All Applications->System
Tools->Virtual Machine Manager. You can also run it as root with the com-
mand virt-manager. It will first display a window asking you to connect to
Xen hypervisor. Single-clicking the “Connect” button will show you the Vir-
tual Machine Manager GUI interface displaying the Domain0 and guest do-
main’s running status and resource usage. Click the “New” button and it will
guide you step by step through the guest creation wizard. It only supports
network installation for paravirtual guests, but both ISO and network instal-

12 ; LO G I N : vO L . 33, N O. 5

lations for HVM guests. Here we give an example for creating a paravirtual
CentOS guest.

Virt-manager first asks for the guest domain’s name, which later becomes the
guest domain id and the type of the guest domain (paravirtualized or fully
virtualized). Then, it will request a network path address to the CentOS re-
pository such as http://mirror.clarkson.edu/pub/centos/5/os/i386/. Later, you
will be asked to choose a disk partition or a file to be the guest file system.
If you have not set up a special disk partition for your new guest, a file is
the safest choice. After allocating the memory size and the number of virtual
CPUs, it will go through the normal CentOS network installation process.
Our Web site [1] includes detailed screenshots of the entire process.

getting started with sun xVM VirtualBox

Since VirtualBox was acquired by Solaris only recently, it is not yet automat-
ically installed in Solaris. So the first step is to download VirtualBox from
http://virtualbox.org/wiki/Downloads. To determine which Solaris package
to download (32-bit x86 or 64-bit AMD64), you can use the isainfo com-
mand on your base Solaris system.

The VirtualBox installation package includes two packages: the kernel pack-
age, used to install the Virtual Disk Image (VDI) kernel module, and the
VirtualBox package, which will install the VirtualBox application and GUI
library. Once the proper package is downloaded, use the command pkgadd
to first install the VirtualBox kernel package and then the VirtualBox pack-
age, as illustrated in Listing 7.

pkgadd -G -d VirtualBoxKern-VERSION-OS-BIT.pkg
pkgadd -G –d VirtualBox-VERSION-OS-BIT.pkg
……(package installing message are partly omitted)……
VirtualBox kernel module unloaded
VirtualBox kernel module loaded.
Creating links...
Done.
Installation of <SUNWvbox> was successful.

L i s t i n g 7 : t h e s t e p s f O r i n s t a L L i n g V i r t u a L b O X

Once the packages are installed, simply issue the command VirtualBox so
that the VirtualBox management window will pop up.

One important note for trying all the virtualization systems available on
Solaris is that VirtualBox and Solaris xVM cannot currently operate at the
same time. If you have been running in Solaris xVM, it is necessary to re-
boot the machine and switch to the first option, Solaris, in the GRUB menu.
Otherwise, you will see the error VirtualBox Kernel Driver not Loaded
when you do run the VirtualBox command, because the VirtualBox kernel
has not yet been ported to the Xen kernel.

To create a virtual machine, when you choose the “NEW” button, it will lead
you to the VM installation wizard. VirtualBox can run any guest operating
system including Windows, Linux, and Solaris, or any x86 OS running on it
without any modifications to your guest OS. All of their device drivers will
work normally, with no need to port to the guest OS.

First, you need to choose your VM name and its OS type, then assign the
memory size to the VM (which for normal Solaris installation requires at
least 768 MB). Next, you need to specify the VM disk image. If it is your first
time to create a VirtualBox File image, you have to click the “NEW” but-
ton. You must also specify a file for the disk image. You can either specify

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 13

the size of the disk file or set it to grow dynamically over time. A standard
Solaris SXCE requires 12 GB for the image file. If you want to further con-
figure the VM’s devices, you can click the “Settings” button. One important
note is that so far VirtualBox only supports NAT network topology. If you
want to install from the CD, choose the CD-ROM option; there you can click
to mount the CD drive from the host CD-ROM or from a specific ISO image.

Once done, you can simply click the “Start” button to start the VM. The
VM will boot from CD-ROM and the rest of the installation process is the
same as normal Solaris installation. When the virtual machine is created
and booting, VirtualBox will prompt you with a VNC window to display the
screen of the guest VM; you can either click the mouse or press the Enter
key to get into the guest VM. If you want to get out of the VM box, you can
press the right Ctrl key to release yourself from the VM.

In VirtualBox, if you want to run a previously installed VM, you can operate
on the existing vdi files. By default, the VM virtual disk images are stored
in the /root/.VirtualBox/VDI directory. There is a virtual disk manager to
manage them. You can press the combination key Ctrl+D to pop up the disk
manager window. If you already have a system-installed vdi file, you can
press the “Add” button to add the existing VM image into the VirtualBox.
Then you can go through the previous process of creating a new VM proce-
dure to run a VM. But if you want to remove a VM image from VirtualBox,
you need to first Release the image and then Remove it from the virtual
disk manager, because when a disk image is assigned to a VM, VirtualBox
automatically registers it and grants a unique uuid to that VM and image.

comparing containers, xVM, and VirtualBox

Now that we have shown you the basics of getting started with three differ-
ent virtualization options on Solaris, in this section we will present some
comparisons among them.

One important point of comparison is ease of use. In our opinion, the easi-
est to use is VirtualBox. It is fully GUI-guided, straightforward, and simple.
Solaris Containers are also relatively easy to use, especially because they are
so well integrated into Solaris and have such a complete tool chain for con-
figuration and management. However, since they have no GUI interface,
they are better suited to server applications than desktop virtualization. So-
laris xVM is the most complicated, but as more management tools, such as
virt-manager, are extended and integrated into Solaris, the ease of use will
improve.

Of course, ease of use is just one part of the story. It is also important to
consider the features of each system. Containers can only run Solaris guests,
so some common applications of virtualization (e.g., running alternate op-
erating systems) simply won’t work in Containers. Solaris xVM requires the
running guest to be a modified OS and generic virtual device drivers need
to be ported. If the unmodified OS is to run on Solaris xVM, VT or AMD-V
hardware support will be needed on the CPU chip. VirtualBox, however, can
run any type of unmodified guest even without hardware support for virtu-
alization.

In terms of storage, Solaris Zones can either share files with the global zone
or have their own version of files from the global zone. In other words,
zones can use the same library files as the global zone or have older or
newer versions of libraries than the global zone. You should also be aware
that when you change the files in the global zone, you may also affect other
zones that are sharing them. For VirtualBox, the system files in a VM of Vir-

14 ; LO G I N : vO L . 33, N O. 5

tualBox are only used by that VM and will not affect other VMs. Each VM is
encapsulated in a separate vdi or vdmk files. However, if sharing is desired,
VirtualBox does have a shared folder option that can mount a base OS di-
rectory to share with the guest. Similar to VirtualBox, in Solaris xVM each
guest’s file system is independently separated either by files or partitions or
disks. Theoretically, we can dynamically add Domain0’s disk or partitions
to the guest domain, sharing with the guest domain. But we do not recom-
mend attempting that, because there is no way to maintain the consistency
of shared files or file systems. The preferred method of sharing files with
xVM guests would be to use a network file server.

For the network topology, in Solaris Zones all zones share the network in-
terface with the global zone’s network interface in a bridged mode. There are
no other network topology choices. Bridging is also currently the only op-
tion available for Solaris xVM guest domains. The routing and NAT topolo-
gies that are available to Xen on Linux are still in development for Solaris.
VirtualBox supports only the NAT topology. This means that there is no way
for an outsider to directly access the VirtualBox VM through the network.
This is a crucial difference for running server VMs.

It is worth noting that, with the Crossbow project, changes in networking
support should be coming for all virtualization systems. Crossbow is a So-
laris network virtualization and flow control solution. It provides universal
network architecture to the virtualization systems described here (Contain-
ers, xVM, and VirtualBox) to manage the flow control of those virtual NICs,
such as bandwidth and packet types. Crossbow is not yet stable but is being
tested as part of SNV build 91.

Finally, a critical aspect of the comparison is performance overhead from
virtualization. A full performance comparison on various types of hardware
and running a wide variety of tests is beyond the scope of this article. Here
we present the results of some simple compilation tests on baseline Solaris
and on each of the virtualization systems. Specifically, we report the time to
compile the Apache Web server.

All our tests are run on Open Solaris Community Express Nevada build 87
(SNV b87) running on a Dell Optiplex (Intel-VT dual-core 2.4-GHz 6600
CPU, with 4 GB memory, a 250-GB disk, and 1-Gb NIC). The guest resource
allocation can be seen in Table 1. Zone is a virtual machine in Solaris, Xen
domU is the virtual machine in Solaris xVM, and VBox VM is the virtual
machine running in VirtualBox.

Container is a zone with resource controls. Here the container is assigned
the limited CPU to be 1 ncpus. If we use zonecfg –z newzone info, we
can see the information in Listing 8. For more complicated resource configu-
ration, you can look at the usage of project and task facilities.

 CPU (dual) Memory Image size Network

Zone - - - Bridged

Container 1 1024M - Bridged

Xen domU 1 1024M 30G Bridged

Vbox VM 1 1024M 30G NAT

t a b L e 1 : V m r e s O u r c e a L L O c a t i O n s f O r e a c h V i r t u a L i Z a t i O n
s y s t e m

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 15

zonecfg –z newzone info

capped-cpu:
 [ncpus: 1]
capped-memory:
 physical: 1G
 [swap: 1G]
 [locked: 768M]
rctl:
 name: zone.cpu-cap
 value: (priv=privileged,limit=50,action=deny)
rctl:
 name: zone.max-swap
 value: (priv=privileged,limit=1073741824,action=deny)
rctl:
 name: zone.max-locked-memory
 value: (priv=privileged,limit=805306368,action=deny)
rctl:
 name: zone.max-lwps
 value: (priv=privileged,limit=200,action=deny)

L i s t i n g 8 : t h e r e s O u r c e L i m i t a t i O n f O r t h e b e n c h m a r k e d
c O n t a i n e r

Figure 1 shows the relative overhead of the four virtual machines by a per-
centage of the baseline time to compile httpd. Overall, the zone has the least
overhead compared to the baseline, because it has full access to the whole
global zone’s resources. Its performance is almost as good as the baseline.
The container experiences delay because it is limited to half of the overall
CPU cycles. The Xen guest domain is close to the overhead of the container,
but it consumes substantially more system time. VirtualBox clearly has the
highest overhead (250%). Note that, in our experiment on the same hard-
ware, the overhead of Xen on Linux is less. In general, the overhead of Xen
on Solaris is not necessarily the same as Xen on Linux.

f i g u r e 1 : p e r f O r m a n c e c O m p a r i s O n b y p e r c e n t a g e a g a i n s t
b a s e s O L a r i s s y s t e m c O m p i L e O f a p a c h e

In Figure 2, we find that the container’s sys and user time are almost the
same as the zone’s. But, overall, the container’s total consumed time is al-
most doubled, which indicates that Solaris resource management is ef-
fectively giving the container a limited share of system resources. We
recommend that system administrators use resource management facilities
to avoid some zones’ malicious or greedy resource usage and effect on the

16 ; LO G I N : vO L . 33, N O. 5

overall performance of other zones. Although the configurations may be a
little complicated, it is worth taking the time to get it right. One successful
experiment involves running a memory bomb (a loop constantly allocating
and touching additional memory) in the zone and container: The zone leaves
the global zone dead, but although the container suffers from running out of
memory, the global zone is still alive and works well. For more details, refer
to our previous paper [2].

f i g u r e 2 : c O m p a r i n g a r e s O u r c e - L i m i t e d c O n t a i n e r t O a Z O n e

conclusion

Overall, Solaris has offered us a variety of virtualization systems to use: So-
laris Containers, Solaris xVM, and Sun xVM VirtualBox. Each of these has
its own unique advantages. Sun xVM VirtualBox offers full virtualization,
is straightforward to use, and has nice GUI windows, but its performance
overhead is also high and, with an NAT-only network, running servers is
difficult. Still, for easy-to-use desktop virtualization on Solaris, VirtualBox
is probably the best choice. In contrast, Solaris Containers/Zones OS-level
virtualization is targeted at server-level usage. It achieves good performance,
but to make it work properly you need to master the resource management
control tools, which can be somewhat complicated. Containers/Zones also
do not give you a choice of guest operating systems. For fast Solaris servers,
they are likely the best choice. However, if you want a choice of guest op-
erating systems and good performance, then Solaris xVM is likely to be the
best choice. Its performance is comparable with OS-level virtualization, and
it is suitable for both desktop usage and server usage. Solaris xVM can be a
bit complicated to configure, but there are a variety of configuration options,
from GUI to command line, and the available tools continue to improve.

rEfErEncEs

[1] Clarkson Web site for screenshots and documents:
http://www.clarkson.edu/projects/virtualization/solaris/login08.

[2] Quantifying the Performance Isolation Properties of Virtualization
 Systems: http://people.clarkson.edu/~jnm/publications/isolation_ExpCS
_FINALSUBMISSION.pdf.

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 17

prAcTicAL rEsourcEs

[1] Wenjin’s blog on Solaris Virtualization Tutorials: http://deepenintocs
.blogspot.com/.

[2] Xen introduction and tutorial: http://runningxen.com/.

[3] Solaris Containers online documentation: http://www.sun.com/
bigadmin/content/zones/.

[4] Solaris xVM: http://opensolaris.org/os/community/xen/.

[5] VirtualBox user manual: http://www.virtualbox.org/wiki/End-user
_documentation.

[6] Crossbow project: http://opensolaris.org/os/project/crossbow/.

