12

ALVA COUCH

From x=1to (setf x 1):
what does configuration
management mean?

A SYSTEM ADMINISTRATION
RESEARCHER CONSIDERS LES-
SONS LEARNED FROM LISA o7,
INCLUDING THE RELATIONSHIP
BETWEEN CONFIGURATION
MANAGEMENT AND AUTO-

NOMIC COMPUTING

Alva Couch is an Associate Professor of Computer Sci-

ence at Tufts University, where he and his students
study the theory and practice of network and system
administration. He served as Program Chair of
LISA’02 and was a recipient of the 2003 SAGE Out-
standing Achievement Award for contributions to
the theory of system administration. He currently
serves as Secretary of the USENIX Board of Directors.

couch@cs.tufts.edu

;LOGIN: VOL. 33, NO. 1

THE CONFIGURATION MANAGEMENT
workshop this year at LISA brushed against
autonomic configuration management, but
as usual “there were no takers.” The lessons
of autonomic control in network manage-
ment (also called “self-managing systems”)
seemed far removed from practice, “some-
thing to think about 10 years from now.”
Meanwhile, many talks throughout the con-
ference (including the keynote, a guru ses-
sion, and several technical papers) dis-
cussed automatic management mecha-
nisms, although some speakers stopped
short of calling these “self-managing” or
“autonomic.” Autonomics were almost a
theme. But, in my opinion, these speakers
made few converts. | stopped to think about
why this is true,and I think | have a simple
explanation. It’s all about meaning.

The meaning crisis that system administrators face
is very similar to the crisis of meaning that plagued
the programming languages community in the
past: There is a difference in semantics between do-
ing things autonomically and doing things via tra-
ditional configuration management. “Semantics”
refers to “what things mean.” The difference is so
small, and yet so profound, that the community is
not fully aware of it. But it places so crippling a
wall between autonomics and traditional configu-
ration management that it is worthy of comment in
itself.

Operational and Axiomatic Semantics

In programming languages, there is a “semantic
wall” between statically typed languages such as C
and dynamically typed languages such as LISP. The
difference between these languages seems small
but is actually profound. The meaning of a C pro-
gram is easily defined in terms of the operations of
the base machine. This is called operational seman-
tics. By contrast, the interactions between a LISP
interpreter and the base machine are not useful to
understand. Instead, one expresses the meaning of
statements via axiomatic semantics: a mathemati-
cal description of the observable behavior resulting
from executing statements, without reference to
the underlying way in which statements are actual-
ly implemented.

To understand this subtlety, consider the difference between the semantics
of the C statement x=1 and the LISP statement (setf x 1). For x=1 there is an
empowering operational (also called “bottom-up”) semantic model that
“there is a cell named X into which the value 0x00000001 is written.” The
operational semantics of (setf x 1), however, are not particularly empower-
ing. There is a symbol named x that is created in a symbol table (indexed by
name), and there is a numeric atom containing the value 1, and those are as-
sociated via the property “symbol-value” of the symbol x. At a deeper level,
index trees become involved. But those facts about the LISP version of x are
not important and not empowering except to people developing LISP. The
axiomatic (“top-down”) equivalent for the meaning of this statement is that
“after (setf x 1), the symbol x refers to the atom 1.” The details of implemen-
tation are stripped, and only the valuable functional behavior is left.

The Semantic Wall of Configuration Management

We now face a similar semantic wall between systems that exhibit “auto-
nomic” behaviors and systems that “automate” configuration management.
The latter utilize operational semantics (like x=1), whereas the former uti-
lize axiomatic semantics (like (setf x 1)). This difference may seem unimpor-
tant, but it is central enough to cripple the discipline.

Current configuration management tools such as BCFG2, Puppet, and
Cfengine utilize an operational semantic model similar to that of x=1 in C.
The “meaning” of each tool’s input is “what it does to the configurations of
machines.” Regardless of how data is specified, its final destination in a spe-
cific configuration file or files is what it “means.” For example, regardless of
the way in which one specifies an Internet service, one knows that it must
end up as an entry in /etc/xinetd.conf or a file in /etc/xinetd.d; its “meaning”
is defined in terms of that final positioning within the configuration of the
machine.

By contrast, autonomic systems are configured via axiomatic semantics; the
parameters specified have no direct relationship to the actual contents of
files on a machine, nor is the understanding of that correspondence impor-
tant or empowering, because the relationship between the parameter and
the realization of that parameter (in terms of the behavior that it engenders
or encourages) is too complex to be useful. For example, a specification that
“the Web server must have a response time less than 2 seconds for each re-
quest” has little to do with the actual identity of the Web server or how that
result might be achieved. In a very deep sense, that information is not useful
in understanding the objective.

To utilize autonomics effectively, we need to progress from a semantic model
in which x=1 is defined operationally to a semantic model in which (setf x 1)
is defined axiomatically. This was a big step in programming languages and
is an equally daunting step in configuration management. But, as I will ex-
plain, not only do current tools not contribute to that progress, they actually
work actively against it, by reinforcing practices that entrench us needlessly
in operational semantics and distance us from the potential for axiomatic
meaning.

Abstraction and Meaning

Current approaches to configuration management, such as Cfengine,
BCFG2, and Puppet, attempt to close the gap via what some authors call
“raising the level of abstraction” at which one specifies configuration. How-

;LOGIN: FEBRUARY 2008 FROM X=1TO (SETF X 1) 13

14

;LOGIN: VOL. 33, NO. 1

ever, simply raising the level of abstraction cannot scale the semantic wall
between operation and behavior. One hard lesson of programming language
semantics is that it is not just necessary to “abstract” upward from the ma-
chine; one must also create a model of behavior (in an axiomatic sense) with
which one can reason at a high level, and with simpler semantic properties
than the full operational model. Simply raising the level of abstraction does
not automatically create any model other than the existing operational mod-
el of “bits on disk.” Without an empowering semantic model, it is no easier
to reason about a high-level description based upon operational semantics
than it is to reason about a low-level description of the same thing.

Authors of configuration management tools frequently wonder why the lev-
el of adoption of their tools is so low. The answer, I think, lies in this issue of
semantics. The tools do not “make things easier to understand”; they make
things that remain difficult to understand easier to construct. No matter
how skillfully one learns to use the tool, one is committed to an operational
semantic model, in which one must still understand what “bits on disk”
mean in order to understand what a tool does. The tool thus represents
“something extra to learn” rather than managing “something that one can
afford to forget.”

There is no doubt that current tools save much work and raise the maturity
level of a site but, alas, they fail to make the result easier to understand. It
is thus not surprising that less experienced administrators with much left
to learn about “bits on disk” shy away from having to learn even more than
before. If configuration management represents “something else to learn”
rather than “something easier to master,” it is no surprise that use of config-
uration management tools finishes dead last in priority among inexperi-
enced system administrators. If tools are to become attractive, they must
represent “less to learn” rather than “more to learn.”

Modeling Behavior

A successful model of configuration semantics would allow one to avoid ir-
relevant detail and concentrate on important details. The gulf between “au-
tomated” and “autonomic” configuration management is so great, however
(like the gulf between C and the logic-programming language Prolog), that
some intermediate semantics (e.g., those in LISP) might help. If, as well,
this intermediate semantics is straightforward enough to be empowering,
then we have a semantic layer we can use to bridge between “automatic”
and “autonomic” models. The current semantics has the character of C’s
x=1, whereas this intermediate semantics might have the character of LISP’s
(setf x 1).

Consider, for example, the intermediate semantics of file service. The “bot-
tom-up” semantic model of this is that what one writes into configuration
files leads to some fixed binding between each client (embodied as a ma-
chine) and some file server. The “top-down” model of file service can be ex-
pressed in a much simpler way. There is some “service” (that potentially can
move from server to server) and some “pool of clients” (that must share the
same service), but there is no binding between that service and a particular
server, because that would be irrelevant to specifying the goal of providing
that service. Instead, there is an expectation of service behavior that is miss-
ing from the bottom-up semantic model. That behavioral objective is that
whatever file a user writes to the service is persistent across any kind of net-
work event or contingency, and it can be recovered later by reading it back
from the service via the same pathname. The way that this behavioral objec-
tive is met is not central to reasoning about the requirement. The objective

;LOGIN: FEBRUARY 2008

is not a property of a specific machine, but of the management process itself;
if the server changes, the file still (hopefully) persists, as much by the ac-
tions of human administrators (in recovering it from backups) as by the ac-
tions of software.

By contrast, the bottom-up model of file service is limiting in simple but
profound ways. Saying “server X should provide Network File System (NFS)
service to client Y” (or even “some server in a pool P should provide NFES to
client Y”) is similar to saying X=1. There are implicit limiting assumptions
about how this might be done. In particular, we have implicitly decided in
the former statement that NFS is the objective rather than a means toward
an objective. A file service is semantically very much like (setf x 1), in which,
by some unspecified method, two operations to which we refer as “write”
(such as executing (setf x 1) in LISP) and “read” (analogous to referencing x
after the setf) have consistent behaviors. This model is simple, but NFS is
relatively complex, and there are many ways of assuring this kind of behav-
ior other than by using NFS.

An axiomatic model of file service thus differs drastically from the opera-
tional model. The entities are not machines, but users, and the axiomatic
formulation is that, for each user, writing content to a path results in that
content being available henceforth via that path. For simplicity, we might
notate this “behavioral axiom” as:

User —(Path:Content)-> filesystem

to mean that for an entity that is a “User,” interactions with the entity
“filesystem” comprise associating a “Path” with “Content” and being able to
retrieve that content via that path. “User,” “Path,” and “Content” are types
that refer to sets of potential entities, whereas “filesystem” is an entity. The
arrow represents a dominance relationship, in which any entity of type
“User” is dominant in creating content; “filesystem” is subservient in
recording and preserving that relationship.

Modeling Services

One advantage of such a model is that many details that are purely imple-
mentation drop out of the model. The most important facet of a DHCP rela-
tionship between server and client is that the server specifies the address of
the client:

DHCP —(MAC:IPaddress)-> Client

whereas the client is accessible through that address. There are many ways
of assuring the latter, but one of the more common is “dynamic DNS,” in
which:

DHCP —(Name:|Paddress,|Paddress:Name)->DNS

This means that DHCP specifies the name-IP mapping to DNS in accordance
with its data on active clients. DNS returns this to the clients via:

DNS —(Name:|Paddress,|Paddress:Name)->Client

This means that a client asking for an “IPaddress” for a “Name” or a “Name”
for an “IPaddress” gets the one that DHCP specified originally. The “Name”
to “MAC” mapping is specified by an administrator, e.g.:

Administrator->(MAC:Name)->DHCP

These are all dominance relationships very much like the one that describes
file service.

FROM X=1TO (SETF X 1) 15

This level of detail is independent of irrelevant detail, such as how this map-
ping is accomplished. Caching, timeouts, and formats of mappings are (at
this level) irrelevant details. The important details include dominance rela-
tionships and behavioral predictions, including that the address assigned by
DHCEP is indeed the address by which the host can be located via DNS.

The beauty of this scheme is that we describe “how things should work” but
not “how this behavior is assured.” The former is empowering; the latter is
more or less irrelevant if our tools understand the former. But current tools
do not understand the former; neither can they assure this behavior without
a lot of help from human beings.

Promises, Promises...

The astute reader will realize that this notation is very similar to that of
promise theory, and the even more astute reader will realize that promise
theory does not include a globally valid semantic model. Promises are a con-
cept introduced by Mark Burgess to provide a simple framework for model-
ing interactions between agents during configuration management. A prom-
ise is a declaration of behavioral intent, whose semantic interpretation is up
to the individual agent receiving each promise. A promise between agents
assumes as little as possible about behavior, while at the same time being as
clear as possible about the intention of the promise. The “type” of a promise
is a starting point for the agent’s determination of the promise’s “meaning,”
which is an emergent property of the promise, tempered by local observa-
tion by the receiver of its validity or lack thereof.

My notation, by contrast, globally defines expected interactions and their re-
sults. Promises enable local interactions, whereas the notation here attempts
to describe overarching intent. Thus my semantics may look as though it
describes promises but, because it describes intent as a global invariant, it

is not like promises at all. Promise theory is one level up from my model in
complexity, in not assuming that agents can be trusted to cooperate.

Coming to Closure...

In like manner, anything that implements the semantics of my notation is a
closure, in the sense that it exhibits semantic predictability based upon an
exterior description of behavior. This is how “closure” is defined.

It is well documented that building a closure is difficult and requires chang-
es in the way we think about and notate a problem, but so is building a LISP
interpreter in C, and we managed to do that. Most of the difficulties inher-
ent in both tasks (building a closure or building a LISP interpreter) lies in
letting go of lower-level details and scaling the semantic wall without look-
ing back or down.

This is what we currently cannot bring ourselves to do.

And, because this is exactly what autonomic tools do, we are setting our-
selves up for a rude awakening in which our tools and practices lag far be-
hind the state of the art.

Science, Engineering, or Sociology?

We, our tools, and our practices are faced with a semantic wall. On one side
of the wall lie operational semantics. On the other side lie axiomatic seman-
tics. We have two choices: Scale that wall ourselves or let someone else scale

16 ;LOGIN: VOL. 33, NO. 1

;LOGIN: FEBRUARY 2008

it for us. If we sit still and let others do the climbing, that climbing will be
done by systems engineers who understand little of the human part of sys-
tem administration. If we instead take an active role, higher-level semantics
can evolve in accordance with our human needs as system administrators, in
addition to the needs of our organizations.

And the way I think we can take an active role may be somewhat surprising.
One can take a role in this revolution even if one uses no tools and does
everything by hand!

The Power of Commonality

It is easy to forget that the widely accepted Common LISP standard was pre-
ceded by a plethora of relatively uncommon LISPs. There are a million dif-
ferent ways to create a LISP language that conforms to the LISP axioms for
behavior. But there aren’t currently a million LISP implementations to match
these interpretations, because high-level semantics become more useful if
there is one unique way to describe their meanings in operational terms.
Even though the operational semantics of LISP are not particularly easy for
the novice to grasp, these same semantics give the expert a strong and uni-
versally shared semantic model that aids in performance tuning and in de-
bugging of the interpreter itself. If one person fixes a bug in this common
model, everyone using the model benefits from the fix.

This is a hard fact for the typical system administrator to swallow. We pride
ourselves in molding systems in our own images. We locate files where we
can find them, and we structure documentation according to personal taste.
This all comes with “being the gods of the machine,” as one system adminis-
trator put it. Our tools, molded in our images, support and enforce the view
that customization and molding systems to our own understandings is a
necessary part of management.

It is not.

There are, in my mind, roughly three levels of maturity for a system admin-
istrator:

= Managing a host
= Managing a network
= Managing business process and lifecycle

As one matures, one gradually understands and adopts practices with in-
creasingly long-term benefits of a broader view. But even at the highest level
of maturity in this model, one is not done. There remains another level of
understanding and achievement:

= Managing the profession

Managing the profession entails doing things as part of one’s practice that
benefit all system administrators, and not just the administrators at one’s
own site.

It would have been easy to allow LISP to “fragment” into many languages, at
no cost to the individual programmer. There would have been, though, a
cost to the profession if there were 100 LISPs. It would have limited sharing
and would have stifled development.

But this is exactly the juncture where we sit with configuration management
now. There are a million ways to assure behavior, and everyone has a differ-
ent way. Our tools support and encourage this divergence. It is like having a
million different LISPs with the same axiomatic semantics and different im-
plementations, for no particularly good reason!

FROM X=1TO (SETF X 1) 17

18

;LOGIN: VOL. 33, NO. 1

In other words, a semantic model is not enough to take system administra-
tion to the next level. That model must also be shared and common, and it
must refer to and be implemented via shared base semantics.

To raise the level of modeling, it is necessary to do the following:

= Avoid incidental complexity and incidental variation.
= Seek shared standards.

= Evolve a common semantic base from those standards.
= Incorporate best practices in that base.

The end product of this process is a set of shared standards that form a com-
mon semantic base that tools can implement and support.

What does this mean to you? It is really simple: If something hurts the pro-
fession, stop doing it. One example of a hurtful practice is our arbitrarily
differing ways for assuring behavior. We place our personal need to remem-
ber details over the professional need for standards and consistency.

= There are millions of ideas for where packages and files should be lo-
cated in a running system. Let’s all choose one and stick with it!

= There are millions of ways to configure services, all of which accom-
plish the same thing. Let’s choose one of these.

= Life is much simpler if, for example, we choose as a profession to run
each service on an independent virtual server.

= Let us endeavor to leave every system in a state any other professional
can understand.

Let us utilize our tools not for divergence, but for convergence to a common
standard for providing and maintaining services that is so strong in seman-
tics that we can forget the underlying details and “close the boxes.” Let us
support each other in protecting those standards against deviations that fos-
ter personal rather than professional objectives. If there is exactly one “best
way” to provide a service, then we can all use that way, and the “institutional
memory” of the profession as a whole becomes smaller and more manage-

able.

Will this ever happen? That is not a question of science, but one of sociolo-
gy. Tool builders build their careers (and livelihoods) by encouraging adop-
tion of “their personal views” on semantic intent. Meanwhile, the tools we
have available for configuration management are still at the x=1 stage. One
can throw abstraction at a problem—without semantics—and the intrinsic
difficulty of the problem does not change. Only when we can define func-
tion based upon the abstraction, rather than upon its realization, can we
move beyond abstraction to a workable semantics for configuration in
which the internals of the configuration process become unimportant, as
they rightly deserve to be.

This will be hard work, socially and technically, but the end product will be
a profession whose common mission is to make all networks sing.

