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I N T E R N E T AT TAC K TOO L S HAV E
evolved, similarly to the way that operating
systems and applications themselves have
evolved.Wewill focus on one particular as-
pect, themechanisms to allow control of
the increasing number of hosts being ex-
ploited. The result is an increase in efficien-
cy that allows attackers today to rapidly
marshal the computing resources ofmil-
lions of personal computers across the
globe in order to use them for a wide range
of criminal activities. In particular,we con-
sider the impact of P2P command and con-
trol mechanisms and other features of dis-
tributed attack tools that result in a distrib-
uted attack network resilient to current
methods of detection,monitoring, and take-
down by any individual defender or rival.

We look at the impact these structures have on in-
cident response and muse about the trends for the
years to come.

Structure of Distributed Intruder Tool Networks

One of the central problems of a distributed in-
truder tool network is the topology of the network
and the implications for traffic monitoring, enu-
meration of the entire network, and traceback to
the attacker. The latter problem, traceback, is often
made more difficult through the use of stepping
stones (hosts used to redirect connections and
“bounce” off a third-party system or network),
which leave attackers many “hops” away from
their victims.

SPEC I F IC DISTR IBUTED SYSTEM NETWORK STRUCTURES

Since the advent of distributed intruder tools [1,
9], there have been three principal structures em-
ployed by distributed system intruder tools: han-
dler/agent relationships, central command and con-
trol mechanisms (e.g., IRC channels and botnets),
and P2P networks.

To compare and contrast the various structures of
the three principal attack network topologies, we
depict each using the same circular layout for high-
lighting the command and control relationship
with attack agents in Figures 1, 2, and 3. The num-
ber of nodes (30) in these diagrams was chosen



simply to be manageable in visualizing these attack network structures. In
each diagram, nodes depict computer hosts and edges depict the direction of
establishing connections, along with two stepping stones and the attacker’s
primary host (the three nodes that line up on the left of the diagrams). Fig-
ures 1 and 2 each has controlling hosts (handlers or IRC servers), whereas
Figure 3 does not involve central handlers of either type. To illustrate how
traceback is performed from a single known attack agent, one agent or peer
(e.g., node A1 or P1) has been selected and all incoming/outgoing connec-
tions associated with that host are shown by bold black arrows; all other ar-
rows are in grey.

Typical real-world distributed networks can range from several hundred up
to several hundred thousand at a time, with a medium to large botnet in
2006 being on the order of 10,000 hosts. The controversy on how to accu-
rately enumerate botnets remains [12].

HANDLER/AGENT NETWORKS

The UNIX-based Stacheldraht DDoS tool employed the handler/agent model
of command and control. In the handler/agent model, the attacker uses a
computer with a special malware command/control program (the handler)
that coordinates a set of hosts running a different malware attack compo-
nent (the agents). The attacker connects to the handler, optionally through
stepping stones, and controls the attack network. (There are typically no
connections between the handlers themselves.) This topology is depicted in
Figure 1.

F I G U R E 1 : H A N D L E R / A G E N T AT TA C K N E T W O R K

In most handler/agent DDoS networks, the agents had a predefined list of
handlers compiled into the executable program image to which the agent
would initially connect on startup. The list would often include at least
three handlers, in case one or two had been found and disabled. If all of the
handlers had been disabled, the agent would become “lost” and cease to be
of use to the attacker, unless or until it was updated with a new copy of the
agent that included new handlers. For this reason, a backdoor was some-
times also set up on the compromised host. Some tools allowed for dynamic
updating of the handler hosts, but that information would get lost upon
restart of the tool. The update affected the memory copy but not the binary
stored on disk. For malware only existing in memory and spreading copies
of itself, this would of course propagate the correct copy.

; LOGIN: DECEMBER 2007 COMMAND AND CONTROL STRUCTURES IN MALWARE 9

Attacker

A1

Handler

Handler

Handler

Stepping
stones



If a defender or rival group were to identify an agent (e.g., by noticing the
initial attack through which the agent was installed or when local network
bandwidth was exhausted during a DDoS attack), it would be easy to trace
connections directly back to the handler(s). Figure 1 shows these command
and control connections as bold lines from node A1 to the three handler
nodes. In the same figure, all three handler connections are shown; however,
in practice only one of them may be active at a time. One could then get in
touch with someone responsible for security operations at the site that host-
ed the handler and then monitor network traffic to identify the agents being
controlled by that handler. Alternatively, one could seize the host, copy the
file system, and recover the list of agents being maintained by the handler.
Later versions of handler/agent malware used encryption or obfuscation of
the list of agents to make it harder to identify them through file system
analysis. Monitoring of network traffic at the site hosting a handler would
also allow identification of incoming command and control connections
from the stepping stones, allowing traceback to begin toward the attacker.

Even with encryption being used, it was easy to identify the role of handler,
agent, and stepping stone in this structure and to act accordingly. (In 1999
and 2000, handler/agent networks of several hundred hosts could be identi-
fied from the point of one attacking agent, and the entire network could be
identified and taken down in several hours, in the best case.)

One of the primary limiting factors in handler/agent networks resulted from
the use of TCP sockets connecting each agent to its handler. Normal UNIX
systems intended for desktop use would have their default kernels config-
ured to support a very limited number of concurrently open file handles.
Rarely if ever did an attacker stumble upon a highly tuned host that could
handle more than the typical default of 1024 file handles, which meant these
type of attack networks could not exceed just over 1000 agents total.

Another drawback to handler/agent DDoS tools was that each had its own
specialized command and control protocol, which the author would have to
maintain in addition to adding code to perform the new functions. This pre-
vents interoperability of handlers and agents from different attack tools. For
example, a Stacheldraht handler could not be used to control trinoo agents,
or vice versa.

INTERNET RELAY CHAT NETWORKS

Internet Relay Chat (IRC) networks can scale much larger than the han-
dler/agent model will allow, owing to the use of peering servers that can be
spread around the globe, each capable of handling a much larger number of
concurrent connections (as described in the previous section), in turn relay-
ing chat messages from server to server. This is depicted in Figure 2.

IRC not only serves as a client/server communication network but also pro-
vides a defined protocol that can be used by special programs designed to
identify specific individuals and commands that appear in IRC channels.
The programs that identify these commands and act on them are called bots,
which is short for robot. A set of bots acting together as a group in a single
IRC channel is referred to as a botnet. (The “topic” of the channel, a string
that usually advertises to humans the central chat subject focused on in the
channel, sometimes serves as a default command for the bots to act upon
when initially joining the channel.) Bots can be implemented in one of two
ways: (a) by loading new modules to an existing IRC client (e.g., TCL com-
mand scripts executed by the mIRC client [7]) or general-purpose bot (e.g.,
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F I G U R E 2 : I R C A T TA C K N E T W O R K

eggdrop [16]) or (b) by programming a new bot that “speaks” the IRC proto-
col and allows direct connection to an IRC server (e.g., knight and Agobot.)

IRC operators (IRC ops) are well aware of botnets and the disruption they
cause, so they are constantly on the lookout for thousands of “users” show-
ing up in a short period of time in a given channel or moving from channel
to channel en masse. More advanced bot herders are skilled at moving bots
around, sheltering or combining bots as needed to perform the acts the at-
tacker wishes (such as sending spam, spreading malware, retrieving product
keys, or performing distributed denial of service attacks). Bot herders may
employ one or more tactics: use of dynamic DNS entries, or short TTLs in
DNS records, to point to specific servers for short periods of time (one vari-
ation of this is known as fast flux [5]); having all or some bots switch IRC
channels (channel hopping); having all or some bots switch IRC servers
(server hopping); being redirected to an IRC server or port by downloading a
file with HTTP protocol; use of proxies that use port numbers other than the
standard IRC server ports (e.g., 6667/tcp); and avoiding the standard IRC
networks altogether by setting up customized botnet-tuned IRC server pro-
grams on compromised third-party hosts (often called “rogue IRC servers”).

The principal difference from a response perspective between the
handler/agent and the IRC command and control structure is the fact that
the three IRC server nodes in Figure 2 themselves act similar to stepping
stones, so that any node (such as A1 in Figure 2) is only connected to one,
while the last stepping stone used by the attacker can be connected to an-
other node, preventing direct traceback from agent to handler to stepping
stone. If, for example, the IRC bots were all using encryption for the traffic
going over the IRC channel, it would be nearly impossible to trace a connec-
tion from our known bot back to the final stepping stone, because there may
be hundreds of thousands of connections in total across all three IRC servers
and no information that ties any one flow to other flows. Even when encryp-
tion is not being used, many bots obfuscate their identity in the chat chan-
nel, preventing a direct association between a bot’s name and its actual IP
address.
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F I G U R E 3 : S A M P L E O F I R C B O T C O MM A N D T R A F F I C

Feb 19 13:36:40 <~foobar> FRA|XXXXXX .login toldo
Feb 19 13:36:40 < FRA|XXXXXX> [r[X]-Sh0[x]]: .:( Password Accettata ):. .
Feb 19 13:36:41 <~foobar> .opencmd
Feb 19 13:36:42 < FRA|XXXXXX> [CMD]: Remote shell already running.
Feb 19 13:36:54 <~foobar> .cmd mkdir c:\windows\system32\kernel
Feb 19 13:36:55 < FRA|XXXXXX> mkdir c:\windows\system32\kernel
Feb 19 13:36:56 < FRA|XXXXXX> C:\Documents and Settings\KiM>
Feb 19 13:37:00 <~foobar> .cmd cd c:\windows\system32\kernel
Feb 19 13:37:01 < FRA|XXXXXX> cd c:\windows\system32\kernel
Feb 19 13:37:02 <~foobar> .cmd dir
Feb 19 13:37:03 < FRA|XXXXXX> C:\WINDOWS\system32\kernel>dir
Feb 19 13:37:04 < FRA|XXXXXX> Le volume dans le lecteur C n’a pas de nom
Feb 19 13:37:05 < FRA|XXXXXX> Le numero de serie du volume est A443-2CAF
Feb 19 13:37:07 < FRA|XXXXXX> Repertoire de C:\WINDOWS\system32\kernel
Feb 19 13:37:09 < FRA|XXXXXX> 19/02/2005 13:37 .
Feb 19 13:37:10 < FRA|XXXXXX> 19/02/2005 13:37 ..
Feb 19 13:37:11 < FRA|XXXXXX> 0 fichier(s) 0 octets
Feb 19 13:37:13 < FRA|XXXXXX> 2 Rep(s) 8’990’302’208 octets libres

F I G U R E 4 : P E E R - T O - P E E R A T TA C K N E T W O R K

PEER TO PEER NETWORKS

Visually, there is a clear difference between the P2P model and the first two
topologies. Figures 1 and 2 show a distinct symmetry, whereas Figure 4
shows a randomness between the number and the direction of connections
between peers. In the P2P model, all attack agents form a randomly con-
nected network, where no single host or network of hosts is responsible for
central communication. Unlike either of the two previous models, the P2P
model does not need any central host or hosts responsible for command and
control, or even for joining the P2P network. The SpamThru Trojan [14],
which also uses a P2P model for some command and control, also employs a
central server for its spam templates. This is a hybrid of the IRC and P2P
models. (See the analysis of the Storm and Nugache trojans in this issue, pp.
18–27.)

Commands are retransmitted through the P2P network a limited number of
times, enough for all peers to see and act on the command. The attacker is
able to connect to any of the peers using a special client program and initiate
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commands, which are then relayed throughout the P2P network. Although
we have included the two stepping stones in each diagram for consistency,
the stepping stones become unnecessary in the case of P2P networks. In
fact, the P2P network becomes both the stepping stones and the command
and control channel at the same time, very effectively hiding the IP address
of the originator of the commands as well as the complete set of peers. Re-
sponses are similarly routed through the network until they reach the in-
tended recipient (or are dropped because they have exceeded a “time-to-
live” threshold).

Use of P2P command and control in malware has been attempted before and
thought of as early as 2000 [17], but with limited success until 2006. The
2002 Linux Slapper worm source code [3] claimed to use a P2P algorithm
that could support 16 million peers; however. the propagation itself was so
noisy that the P2P mechanism was never really tested. In 2003 Agobot be-
gan to see widespread use. Agobot included a rudimentary P2P mechanism
that does not appear to have been popular. This assumption is based on the
fact that over 20 versions of Agobot/Phatbot source code analyzed by the au-
thors had no difference at all in any of the P2P related source files, whereas
other sections of the code underwent regular and extensive enhancement
and bug fixing. In 2004, a version of Phatbot used the WASTE protocol [10]
to communicate among the bots. According to Stewart’s Phatbot analysis
[6], the encryption capabilities of WASTE were removed to avoid either the
problem of key distribution or the weakness of use of a commonly shared
key and so that the largest usable P2P network could not exceed much more
than 50 peers. In practice, Agobot/Phatbot is almost always controlled using
clear-text IRC. When this occurs, all command and control traffic is visible,
as is seen in Figure 3. In all these instances, the goal of assembling very large
P2P botnets was not realized; however, use of P2P as a means of spreading
has been successful. A 2006 report indicated that 35% of successful malware
infections involved spreading through email, P2P networks, and instant
messaging [8].

In the arena of file sharing, specifically anonymous file sharing, P2P mecha-
nisms have also been pursued [11]. Looking at just those P2P networks that
use some form of public key exchange and strong cryptography, we see that
there are at least five such P2P networks in development.

F I G U R E 5 : P O S S I B L E C O N N E C T I V I T Y G R A P H F O R
T W O P 2 P N O D E S
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F I G U R E 6 : P O S S I B L E S T R U C T U R E O F A S U R V I V A B L E
P 2 P N E T W O R K

Impact of Structure on Traceback and Response

T A B L E 1 : C O M P A R I S O N B E T W E E N A T T A C K N E T W O R K S T R U C T U R E S

When the three structures just described are compared as far as traceback
and mitigation are concerned, we can see a progression of hardening and in-

direction that tends toward more resilience as each new structure is em-
ployed. This comparison is illustrated by Table 1.

The advent of peer-to-peer command and control of botnets has many im-
plications for incident response and mitigation. In the early days of DDoS,
the handler/agent model of command and control was prevalent. To com-
pletely mitigate an entire DDoS network, it was necessary to perform manu-
al traceback from one or more DDoS agents to a handler, where an incident
responder would then do one of two things:

� Do further manual traceback through traffic analysis to identify all
agents in communication with that handler.

� Do host forensics and retrieve the list of agents from a file within the
handler’s file system, possibly also having to decrypt that file first.

Once all of the agents were identified, the responder would need to send a
series of reports and cleanup requests to the owners (as identified by
WHOIS records) of all of these IP addresses.

Those steps alone are very time-consuming and complicated, take relatively
advanced skills and understanding of DDoS attack tools, methods, operating
systems involved, and host- and network-based analysis, and are complicat-
ed by differences in time zone, language, legal structures, available re-
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Structure C2 Links C2 Links C2 Method Impact of Crypto
per Agent per Handler on Traceback

Handler/Agent 1 per handler 1 (from attacker) Direct Low

IRC 1 1 per IRC server Indirect Moderate

P2P Random NA Indirect High



sources, available tools, and available skills. For this reason, DDoS-related
incidents can last for many months [15].

In case of IRC-based command and control, one could try to detect activity
on the IRC port 6667/tcp, assuming the attackers are using a standard IRC
server port. Even if they chose not to do so, one could look with ngrep for
IRC commands, such as joining a channel (JOIN). Mitigation would then
follow.

The current detection and mitigation approaches, such as DNS-based or
text-based signature detection, will be impeded by the features described in
this article. There are, however, still actions the user can take, such as using
a variety of antivirus programs, rootkit detection programs, or the Microsoft
Malicious Software Removal Tool (MSRT). On the network, one would have
to look for anomalous behavior on the local networks (e.g., spreading of the
malware, spamming, or denial of service). These methods are not foolproof,
as the cat-and-mouse game between rootkit authors and defenders contin-
ues.

Trends

More recently, botnets have become the principal subject of research and in-
vestigation in academic, commercial, and legal circles. The principal means
of fighting botnets is to focus on identifying and removing command and
control channels on IRC servers [2, 13]. These efforts have proven effective
against the typical botnet in use on standard IRC networks, but they are less
effective against “rogue” IRC servers (such as those in [4, 15]) that are ei-
ther established at sites under control of the person(s) using the botnet, are
friendly to them, or are on hosts where little assistance is available to take
the system off-line.

Command and control traffic that does not utilize a single IRC channel and
is heavily encrypted significantly increases the difficulty and time it takes for
the entire attack network to be identified and mitigated.

Attackers are realizing the value of sophisticated botnets, if it means that
their network can evade detection and perform longer, sometimes for many
months. The increased use of various topologies for the botnet (as illustrat-
ed in Figures 5 and 6), encryption to evade direct detection, and P2P com-
mand and control to avoid a central point of command and control that
could be taken down are all characteristics of this development. For exam-
ples of two P2P bots, we suggest reading the article by Sam Stover et al. be-
ginning on p. 18 in this issue.

Conclusion

We have seen the implications of the use of a P2P command and control
mechanism, as opposed to either the classic handler/agent or the more con-
temporary IRC-based central server mechanism, on detection and reaction
aspects of investigating and mitigating malicious botnets.

We have also seen the increase in sophistication and breadth of features in
malicious software, so it should be expected that more powerful command
and control mechanisms will increase the flexibility and dynamism of dis-
tributed intruder tool networks in the future. The motivation for this comes
from the economic interest in maintaining and retaining control of these at-
tack networks in the face of response or competitors. Two types appear to be
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emerging: one that is easy to use by the attacker, characterized by a simplis-
tic or throwaway network, and another, more sophisticated and economical-
ly lucrative, characterized by resiliency and survivability of the botnet.

Coming soon to a networked computer near you. Perhaps it’s already there?
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