
58 ; LOG I N : VO L . 3 2 , NO . 5

N I C H O L A S M . S T O U G H T O N

whither C++?
USENIX Standards Liaison

nick@usenix.org

A S I WROT E I N AN EA R L I E R A RT I C L E ,
revision fever seems to be present in the
various standards committees I work with.
Along with the revision of POSIX and C (not
to mention the possible revision of the Lin-
ux Standard Base), the C++ language stan-
dard is currently being revised.

To state that this is a big project would be a huge
understatement. The working group itself is 3–4
times the size of any other comparable committee,
and the scope of the work it has undertaken is on
the order of 2n. It appears a miracle will be needed
if the end result is to obtain a clean, complete, and
implementable specification in the timeframe they
have set themselves.

Among the major things promised for the new ver-
sion of the language (dubbed “C++0x,” since it is
hoped that the work will be complete in 2009) are:

� Concurrency support, including:
� Concurrency memory model
� Thread-local storage
� Atomic operations
� Thread support library

� Programmer Controlled Garbage Collection
� Concepts

The timetable for this project is also extremely ag-
gressive. Officially, the registration ballot, which
governs the outline of the document, started earlier
this year and has only just completed as I submit
this report. The working group members are busier
than they have ever been, having held two plenary
meetings so far this year, and with another to come
in October. At the October meeting, the committee
members must decide whether they are done writ-
ing the new standard yet or should take another
year to complete it. Given the volume of work, it
would be amazing if the document was ready to be
voted out for final ballot in October, but that is the
plan of record.

Concurrency Support

Concurrency support is a topic I’ve covered in this
column in the past. With the advent of multicore
chips in even cheap desktop systems, the need to
correctly support multiple threads has never been
more apparent. What isn’t so clear is what should
be in the standard once you say “support for con-
currency” is to be included. There are plenty of ex-
isting threading libraries around, of which, in the
C++ space at least, the Boost thread library is prob-
ably the most widely used. There are also many ap-

plications that use these libraries. What the language standard desperately
needs to describe is how the memory model, the low-level atomic data
types, and thread local storage work. It is not a major requirement, at least
in my mind, to have yet another thread library per se. Such a library is pro-
posed to include a new thread-launching API, thread cancellation, mutexes,
condition variables, spin-locks, and the rest.

That would mean that all those existing applications would need to be port-
ed to the new standard library. Multithreaded programming is hard enough
at the best of times; once you have your program working, you are unlikely
to want to rewrite it simply to use the new standardized threads, unless you
are forced to (e.g., because you are using a third-party library that does).

One particular area where the current, nonstandard, threading libraries have
problems is in handling thread cancellation. If a thread is blocked in an I/O
system call (or any blocking system call, for that matter), it is sometimes
convenient to signal that thread to tell it to abandon its wait and give up.
POSIX has a pthread_cancel interface to do exactly that. Once the canceled
thread acts on the cancellation request, it runs its cleanup handlers and dies.
The thread cleanup handlers were designed with C++ exception handling in
mind.

In the Rationale part of POSIX, thread cancellation is explained well:

Many existing threads packages have facilities for canceling an opera-
tion or canceling a thread. These facilities are used for implementing
user requests (such as the CANCEL button in a window-based appli-
cation), for implementing OR parallelism (for example, telling the
other threads to stop working once one thread has found a forced mate
in a parallel chess program), or for implementing the ABORT mecha-
nism in Ada.

POSIX programs traditionally have used the signal mechanism com-
bined with either longjmp() or polling to cancel operations. Many
POSIX programmers have trouble using these facilities to solve their
problems efficiently in a single-threaded process. With the introduc-
tion of threads, these solutions become even more difficult to use.

The main issues with implementing a cancellation facility are specify-
ing the operation to be canceled, cleanly releasing any resources allo-
cated to that operation, controlling when the target notices that it has
been canceled, and defining the interaction between asynchronous
signals and cancellation. . . .

Cancellation Points

Cancellation points are points inside of certain functions where a
thread has to act on any pending cancellation request when cancelabil-
ity is enabled, if the function would block. As with checking for sig-
nals, operations need only check for pending cancellation requests
when the operation is about to block indefinitely.

The idea was considered of allowing implementations to define
whether blocking calls such as read() should be cancellation points. It
was decided that it would adversely affect the design of conforming
applications if blocking calls were not cancellation points because
threads could be left blocked in an uncancellable state.

[from The Institute of Electrical & Electronics Engineers, Inc., and The
Open Group, Draft Standard for Information Technology—Portable Operat-
ing System Interface (POSIX®), 2007]

; LOGIN: OCTOBER 2007 WHITHER C++? 59

The current GCC model is to throw a special sort of exception when a
thread is canceled. The exception is similar to typical C++ exceptions,
except that it cannot be identified or ignored. The thread unwinds the stack,
entering any catch(...) block and destroying objects as needed, until it exits,
where it can be joined by another thread that is waiting. The exception is al-
ways automatically rethrown as necessary after any catch.

The C++ thread proposal wants to add its own thread-cancellation interface.
The proposal at present, however, has nothing to do with thread cancella-
tion as I have just described it (and as everyone is asking for). The proposed
mechanism simply requests that the targeted thread throw an exception at
the next point it notices the request to do so, and blocking system calls are
not mentioned in the list of cancellation points. By calling this thread excep-
tion handling mechanism “cancellation,” everyone is unhappy. It doesn’t in-
terrupt blocked system calls, and it doesn’t terminate the thread. Any excep-
tion handler can “cancel the cancel” by simply catching and not rethrowing
the exception. So it can’t be implemented on top of pthread_cancel, and it
does not serve any useful purpose beyond some sort of interthread commu-
nication mechanism.

But there is so much confusion caused by the terminology that it is proving
very hard to come to consensus. There are those who believe that the C++
committee will be a laughing-stock in the community if it publishes a new
revision of the standard and it does not have a thread API. I believe that it
will be a laughing stock if it does, especially if the revision is anything like
the one currently on the table.

There is also the question of mixed C and C++ applications to deal with in
this case. Many applications use C language libraries, and there is no guar-
antee that C++ exceptions will correctly propagate up the stack through C
stack frames. Exception-based thread cancellation may run into undefined
behavior (e.g., core dumps) in a mixed-language environment. Most mod-
ern C compilers do have a mode to enable exception handling (for instance,
gcc -fexceptions), but there is no guarantee that third-party libraries have
been built this way.

This issue threatens to become a major stumbling block for the entire stan-
dard. It is possible that the standard may end up including a weaker than
necessary thread library that is poorly designed, unimplementable on
POSIX, and of little use to anyone. In fact, with this library included, the ti-
tle of this article might be “Wither C++” instead of “Whither C++.”

Garbage Collection

We’ve all used debugging aids such as Purify or Valgrind to track down
memory leaks. In a well-formed C++ program, it is generally easier to avoid
some of the more obvious memory leaks because of the way objects are de-
stroyed as they go out of scope, and by use of the exception mechanism.

One thing that C++0x promises to bring to the table is the concept of Smart
Pointers. Smart, or Shared, Pointers allow multiple pointers to the same ob-
ject to exist, reference counting the object referred to via the smart pointer.
This prevents the object from being prematurely destroyed, while ensuring
that it does get destroyed once the last shared pointer goes out of scope.

However, this in itself doesn’t cure all the problems of memory manage-
ment. One group is trying to add explicit, programmer-controlled garbage
collection to the language. There is a partially complete, experimental im-
plementation of this, but little or no real programmer experience in using it.

60 ; LOG I N : VO L . 3 2 , NO . 5

It does look as if it might be a good debugging aid, to go with those we al-
ready have, but it is certainly unclear to many that this highly intrusive fea-
ture is worthwhile.

Every single object has a Garbage Collection (GC) attribute: it is either
gc_required or gc_forbidden. Most objects shouldn’t, in the end, care, in
which case they should be gc_safe, which means that it doesn’t matter if GC
runs on this object or not.

A well-written program will gain nothing from GC (and in fact has to pay a
small penalty for it). The real problems come with third-party libraries,
which really should be entirely gc_safe. However, it isn’t possible to have a
program that has a mix of gc_required and gc_forbidden objects. So if a li-
brary chooses one of the required/forbidden attributes, the rest of the pro-
gram (and any other library that is used) must go along with that.

Given the status of the implementation, and the fact that the “standardeze”
has only just been written as I write this, it seems unlikely to me that GC
will make it in. There remain a host of unanswered issues: Should we have
finalizers as well as destructors? (A finalizer is run by the GC to release any
nonmemory resources owned by the object.) Does this feature actually pro-
vide benefit? Will it lead to better or worse programs? One anecdote used
recently related programming experience with GC leading to programs that
“flushed the toilet when they noticed the ice-maker in the freezer was emp-
ty”; both are devices connected to the plumbing, but with no other obvious
connection. Or, in programming terms, “I’m out of file descriptors; let’s try
garbage collection.” GC is entirely about memory resources, and nothing else.

Good Stuff

OK, some of the new features in the language are definitely worth waiting
for. The revision promises to give us variadic templates, r-value references,
constant expressions, better support for generic programming (the “con-
cept” idea currently implemented in ConceptGCC), better operator over-
loading, improved POD types (leading to better integration with C library
functions), explicit virtual functions, strongly typed enums, and most of the
library extensions from TR-1 (except the “Special Math” functions, which
will move to a new, stand-alone International Standard of their own). If you
want to see the details of any of these, go to http://www.open-std.org/jtc1/
sc22/wg21/ and look at the individual papers.

POSIX and C++

On a somewhat separate note, several members of the Austin Group (re-
sponsible for the development and maintenance of POSIX), together with a
good number of the C++ committee members, met independently and
looked at the subject of providing a C++ language binding to POSIX. Other
languages have done this in the past (notably Ada and Fortran), and it has
been helpful. Until now, the answer to how to integrate POSIX facilities into
a C++ program has been simply to use the C language libraries that POSIX
specifies. However, there are numerous issues with this approach, and sever-
al places where POSIX meets C++ in ways that could be (and have been) im-
plemented in a C++ library with C++ type semantics. Thread cancellation is
an obvious candidate here, but the idea reaches across the entire POSIX
range of functions, including such things as networking, file system access,
dynamic libraries, and process control. Until this point, the Austin Group
and C++ committee members have been operating as a Study Group under

; LOGIN: OCTOBER 2007 WHITHER C++? 61

the auspices of IEEE-PASC (the Portable Applications Standards Commit-
tee, the original authors of POSIX). This group has agreed to apply for a new
IEEE project to develop such a language binding. The official name of the
new project is the “POSIX/C++ Language Binding,” but I’ll refer to it as the
“POSIX++” project.

Part of the scope of POSIX++ will be to define the interaction of the C lan-
guage APIs and any C++ instantiation. For example, what is the interaction
between iostreams and file descriptors? What happens if a C library does a
pthread_cancel on a thread that was created in a C++ module?

It is also within the scope of POSIX++ to define new C APIs to allow for
such mixed-language programs and to help C++ library developers imple-
ment the new C++0x library on a POSIX platform.

The POSIX++ project is just starting. If you are interested and want to be in-
volved, please feel free to contact me.

62 ; LOG I N : VO L . 3 2 , NO . 5

