
8 ; LOG I N : VO L . 3 2 , NO . 4

M I C H A E L P I A T E K , T O M A S I S D A L , T O M
A N D E R S O N , A R V I N D K R I S H N A M U R T H Y ,
A N D A R U N V E N K ATA R A M A N I

building BitTyrant,
a (more) strategic
BitTorrent client
Michael Piatek is a graduate student at the University
ofWashington. After spending his undergraduate
years working on differential geometry, his research
interests now include incentive design in distributed
systems,networkmeasurements, and large-scale sys-
tems building.

piatek@cs.washington.edu

Tomas Isdal graduatedwith aMSc in Computer Sci-
ence and Engineering from the Royal Institute of
Technology, Stockholm, Sweden, and is currently a
graduate student in the Department of Computer
Science and Engineering at the University ofWash-
ington. His interests include peer-to-peer and distrib-
uted systems, Internet measurements, and network
security.

isdal@cs.washington.edu

TomAnderson is a Professor in the Department of
Computer Science and Engineering at the University
ofWashington.He is an ACM Fellow and awinner of
the ACM SIGOPSMarkWeiser Award, but he is per-
haps best known as the author of the Nachos operat-
ing system.

tom@cs.washington.edu

Arvind Krishnamurthy is an Assistant Research Pro-
fessor at the University ofWashington.His research
interests are primarily at the boundary between the
theory and practice of distributed systems.He has
worked on automatedmechanisms formanaging
overlay networks and distributed hash tables, net-
workmeasurements, parallel computing, techniques
tomake low-latency RAID devices, and distributed
storage systems that integrate the numerous ad hoc
devices around the home.

arvind@cs.washington.edu

ArunVenkataramani has been an Assistant Professor
at the University of Massachusetts Amherst since
2005, after receiving his Ph.D. from the University of
Texas at Austin by way of the University ofWashing-
ton. His research interests are in the practice and the-
ory of networking and distributed systems.

arun@cs.umass.edu

P E E R -TO - P E E R SY ST EMS O F T EN A P P EA L
to scalability as amotivating feature. As
more users request data,more users con-
tribute resources. Scaling a service by rely-
ing on user contributions—the P2P ap-
proach—depends on providing incentives
for users tomake those contributions. Re-
cently, the popular BitTorrent file distribu-
tion tool has emerged as the canonical ex-
ample of an incentive-aware P2P design. Al-
though BitTorrent has been in widespread
use for years and has been studied exten-
sively, we find that its incentive strategy is
not foolproof.This article describes Bit-
Tyrant, a new, strategic BitTorrent client. For
users interested in faster downloads, Bit-
Tyrant provides amedian 70% performance
improvement on live Internet swarms.How-
ever, BitTyrant also demonstrates that self-
ish users can improve performance even
while reducing upload contribution, cir-
cumventing intended incentives.

Bandwidth demands on Internet data providers are
increasing. Google Video, Amazon’s Unbox, and
Apple’s iTunes music store are just a few well-
known examples of bandwidth-hungry services
now delivering entertainment content. In addition,
application vendors regularly distribute large
patches to thousands of customers. As demand for
these services and applications grows, bandwidth
costs increase in turn.

Peer-to-peer (P2P) systems offer a promising ap-
proach to deferring these costs while increasing
scalability. They avoid the bottlenecks associated
with typical one-sided data distribution, where
servers send data to clients. P2P designs exploit the
fact that once a client begins receiving data, it can
function as an additional server by redistributing
that data, shifting load from the server to clients.

Shifting load from servers to clients means relying
on clients to contribute capacity. Early P2P systems
builders quickly realized that when given a choice,
most users wouldn’t contribute their resources. In-
stead, they would “free-ride,” a modern-day
tragedy of the commons where users consume sys-
tem resources without providing any in return [1].

To combat the free-riding problem, subsequent
P2P designs included explicit contribution incen-



tives. In these systems, increasing contribution improves performance and,
as a result, free-riders receive poor service. Today, BitTorrent has become one
of the most popular incentive-aware P2P systems and is used daily by mil-
lions of people worldwide. BitTorrent’s policy is “tit-for-tat”; each individual
user gives data to other peers that reciprocate, that is, send data in return.

Intuitively, BitTorrent’s tit-for-tat policy makes sense. Each client acts in its
local self-interest by rewarding peers that provide it with data. Further, this
strategy can be carried out without the need for centralized enforcement,
maintaining the decentralized nature of P2P networks. Our question is this:
Did BitTorrent get it right?

In spite of its success, we find that BitTorrent’s incentive strategy can be
cheated. We’ve built a new BitTorrent client, BitTyrant, that circumvents in-
tended incentives. Instead of improving performance by increasing contri-
bution, BitTyrant improves performance by operating strategically, enabling
its users to improve performance even while reducing their contribution.

How BitTorrentWorks

Before describing BitTyrant, we’ll first explore how BitTorrent works today.
There are three pieces of relevant context: (1) how peers are organized, (2)
how data is distributed, and (3) how peers prioritize requests. We examine
these in the context of an example file distribution.

A BitTorrent user obtains a file by first joining a swarm, a set of peers already
downloading the file. To join a swarm, clients contact a centralized coordi-
nator, which returns a random subset of the existing peers to the new client.
These peers form the new client’s local neighborhood—the set of directly
connected peers from which the client will send and receive file data. A sam-
ple swarm topology is shown in Figure 1a. In this example, three peers (A,
B, and C) have just joined the swarm.

BitTorrent distributes a file by splitting it up into several fixed-size blocks. In
Figure 1a, the content provider has a complete copy of the file, which it has
split into four blocks. In practice, BitTorrent blocks are small, and a large file
might be split into thousands of blocks, but we limit ourselves to four for
simplicity. Content providers distribute data by sending randomly chosen
blocks to directly connected peers. In Figure 1b, the content provider is di-
rectly connected to A and B, which receive blocks 1 and 3, respectively. After
receiving these blocks, A and B can begin redistributing data to their directly
connected peers—in this case, C. Figure 1c shows the next round in this
process: the content provider continues to send new blocks to A and B while
they concurrently redistribute previously received blocks 1 and 3 to C. This
process continues until peers obtain all blocks and have a complete copy of
the file.

In our example, each client receives only a few blocks from a few peers. In
practice, clients are connected to dozens of peers that compete for scarce up-
load bandwidth. BitTorrent clients are faced with a decision: Given many
competing requests and limited resources, which should be serviced? Bit-
Torrent adopts a tit-for-tat strategy. First, a client ranks peers according to
the rate at which they have been sending data in the recent past. Then the
client provides the top k of these peers with an equal split of its upload ca-
pacity. The value of k is fixed and determined by a peer’s upload capacity. In
our example, suppose peer C has total upload capacity 20 with k = 1 and re-
ceives data from A and B at rates 15 and 10, respectively. In this case, C
would reciprocate with A, providing it with data at rate 20.

; LOGIN: AUGUST 2007 BUI LDING BITTYRANT 9

F I G U R E 1 A : A S A M P L E SWA R M

T O P O L O G Y

F I G U R E 1 B : T H E P R O V I D E R S E N D S
R A N D OM B L O C K S T O D I R E C T LY
C O N N E C T E D P E E R S A A N D B .

F I G U R E 1 C : A S T H E P R O V I D E R
S E N D S M O R E N E W B L O C K S , A A N D
B R E D I S T R I B U T E P R E V I O U S LY R E -
C E I V E D D ATA T O C , R E D U C I N G
L O A D O N T H E P R O V I D E R .



10 ; LOG I N : VO L . 3 2 , NO . 4

Decisions about which peers receive data are reevaluated every 10 seconds, a
tit-for-tat round. Each round, clients send data to a few random peers that
have not “earned” it in a tit-for-tat sense, to explore their local neighbors for
better pairings and to bootstrap new users into the tit-for-tat process. Once a
new peer has received a few blocks, it can begin trading to induce reciproca-
tion.

Building BitTyrant

Although BitTorrent’s tit-for-tat strategy rewards contribution, the reward is
not exact. A client that contributes quickly tends to receive quickly—with
some variability. For instance, a DSL user might be directly connected to a
peer behind a university’s high-capacity link. Although the DSL user might
send at rate 10, the university peer might reciprocate at rate 100. Mismatch-
es like this arise because peers make decisions with limited information.

Ideally, tit-for-tat would match high-capacity peers with mostly high-capaci-
ty peers and low-capacity peers with mostly low-capacity peers, avoiding
unfair mismatches. In practice, achieving this grouping is slow. Recall that
BitTorrent clients search for better matches randomly. Because the bulk of
BitTorrent users are low-capacity, high-capacity peers encounter one another
comparatively infrequently, through random exploration. Furthermore, Bit-
Torrent swarms are highly dynamic, with users arriving and departing rapid-
ly. Even if a stable pairing arises, it may be short-lived.

Capacity mismatches among peers suggest a potential strategy for improv-
ing performance. If a client could quickly identify high-capacity peers, it
might induce reciprocation even with small contributions, relying on the
slow convergence of tit-for-tat to inhibit competition. Predicting the effec-
tiveness of this strategy depends on how often mismatched pairings occur
and on the extent of the imbalance in mismatches.

F I G U R E 2 : P E R C E N TA G E O F A L T R U I S T I C U P L O A D
C O N T R I B U T I O N A S A F U N C T I O N O F C A PA C I T Y

We examine the impact of mismatches through the lens of altruism, the con-
tributions of a user that, if withdrawn, would not impact performance. For
instance, if a high-capacity user sends data to a peer at rate 100 when rate 10
would suffice to induce reciprocation, we say that 90% of that contribution
is altruistic. The altruistic proportion of a random BitTorrent connection can
be computed statistically, and Figure 2 shows percent altruism across all
connections as a function of upload capacity. Altruism is highest at the ends
of the capacity spectrum. The lowest-capacity peers rarely induce reciproca-



tion, because their contribution rates are not competitive. These peers rely
on the random exploration of others for all the data they receive. As a result,
virtually all of their contributions could be withdrawn. At the high end, mis-
matches are frequent, with altruistic contributions increasing with capacity.
For those peers in the middle, altruism varies, but it never reaches zero.

All peers make altruistic contributions, suggesting that a strategic client
could improve performance by identifying those contributions and reallo-
cating them intelligently. This is the approach taken by BitTyrant, a more
strategic BitTorrent client that exploits altruism. BitTyrant deviates from the
behavior of most existing BitTorrent clients in two ways. First, rather than
exploring peer pairings randomly, BitTyrant infers which peers have high ca-
pacity and preferentially explores them. Second, BitTyrant does not split its
upload capacity equally; instead, it dynamically varies the send rate to each
peer to maximize return on investment.

To infer which peers have high upload capacity, BitTyrant relies on control
traffic broadcast by all BitTorrent peers about which data blocks they have
received so far. Measuring the rate of these block announcements provides
an estimate of the download rate of a peer. Recall that tit-for-tat, although
inexact, tends to reward higher contribution with a higher download rate,
allowing a BitTyrant peer to infer that a peer downloading quickly may also
upload quickly.

Although the download rate heuristic provides a good first approximation, it
might not be accurate, and network conditions change over time. Further,
simply picking which peers will receive data is only half the problem; Bit-
Tyrant also needs to choose how quickly to send to each of those peers. Bit-
Tyrant copes with both of these issues by dynamically selecting peers and
rates at the same time. For each peer, BitTyrant maintains a benefit/cost ra-
tio, where cost is the upload rate required to induce reciprocation, and bene-
fit is the download rate resulting from that reciprocation.

BitTyrant sorts peers by their benefit/cost ratios, sending data to each in de-
scending order until upload capacity is exhausted. After every tit-for-tat
round, BitTyrant updates its estimates of cost and benefit according to peer
behavior. A peer that reciprocates has its download rate (benefit) updated
with the directly observed download rate. If after receiving data a peer does
not reciprocate, BitTyrant increases the cost estimate (required upload rate).
Finally, BitTyrant interprets continued reciprocation over many tit-for-tat
rounds as a signal that its cost estimate is too generous and scales down the
upload rate provided to the continually reciprocating peer.

These rules reflect the strategic nature of BitTyrant’s approach. Motivated by
the heavy skew of bandwidth capacity, BitTyrant actively seeks out the mi-
nority of high-capacity peers that provide the bulk of download throughput.
To ensure continued reciprocation with these peers and maximize overall re-
turn on bandwidth investment, BitTyrant dynamically adjusts which peers
receive data and sends rates to those peers.

Performance in theWild

To evaluate BitTyrant, we measure its download performance in live Internet
swarms. To provide an apples-to-apples comparison, we compare BitTyrant
to Azureus, currently the most popular BitTorrent client implementation
and the distribution on which BitTyrant is based. We crawled popular Bit-
Torrent swarm aggregation Web sites, obtaining a set of 114 swarms, which
we then downloaded concurrently with both BitTyrant and Azureus from
two machines at the University of Washington. Both clients were given an

; LOGIN: AUGUST 2007 BUI LDING BITTYRANT 11



12 ; LOG I N : VO L . 3 2 , NO . 4

upload capacity limit of 128 kilobytes per second, to avoid interference from
network cross-talk and to provide an evaluation of BitTyrant’s effectiveness
for modestly provisioned hosts.

F I G U R E 3 : D OW N L O A D P E R F O R M A N C E F O R 1 1 4 R E A L - W O R L D
SWA R M S , S H OW I N G T H E R AT I O S B E T W E E N D OW N L O A D T I M E S
F O R A N E X I S T I N G A Z U R E U S C L I E N T A N D B I T T Y R A N T

For each swarm, we compute the ratio of Azureus’s download time and Bit-
Tyrant’s download time. For example, if Azureus downloads a file in 30 min-
utes and BitTyrant completes in 15, this ratio is 30/15 = 2. These completion
time ratios are summarized in Figure 3, which gives the fraction of swarms
(y axis) with a ratio of a particular value (x axis) or less. For example, at ra-
tio 2, the function takes the value 0.75, meaning that 25% of BitTyrant
downloads finish in half the time of Azureus or less. Depicted this way,
every point to the right of ratio 1.0 represents a performance improvement.
For the vast majority of live Internet swarms, BitTyrant’s strategic behavior
improves performance.

Although these results demonstrate the significant performance benefits Bit-
Tyrant can realize today, the long-term outcome of strategic behavior on ag-
gregate BitTorrent performance is unclear. Our paper [2] provides further
experiments comparing BitTyrant and BitTorrent behavior, in particular ex-
amining the performance outcome if all users adopt BitTyrant. The perfor-
mance for all BitTorrent users today depends on the altruistic contributions
that all peers make. BitTyrant improves performance by identifying these al-
truistic contributions and reallocating them if possible. Because the band-
width capacity of Internet end hosts is so skewed, high-capacity and even
moderate-capacity peers tend to have such a disproportionate share of total
resources that even after BitTyrant allocates all available bandwidth strategi-
cally, excess capacity remains. BitTyrant presents these users with a choice.
If they continue to contribute all available capacity even after identifying the
altruistic portion, overall performance improves. Alternatively, overall per-
formance degrades if altruistic contributions are withheld. Ultimately,
whether or not incentives stronger than BitTorrent’s tit-for-tat are needed in
future P2P systems will be determined by user behavior.

The BitTyrant client implementation we developed during the course of our
work is publicly available for Windows, Mac OS X, and Linux at http://Bit-
Tyrant.cs.washington.edu and has received hundreds of thousands of down-
loads to date. Full source code for all platforms is also available.



FUNDING ACKNOWLEDGMENT

This work was supported by NSF CNS-0519696 and the ARCS Foundation.

REFERENCES

[1] Eytan Adar and Bernardo A. Huberman, “Free Riding on Gnutella,” First
Monday (October 2000).

[2] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy,
and Arun Venkataramani, “Do Incentives Build Robustness in BitTorrent?”
Proceedings of the 3rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’07), 2007.

; LOGIN: AUGUST 2007 BUI LDING BITTYRANT 13

RENEW ONLINE TODAY!
Renewing or updating your USENIX
membership has never been easier!

You will receive your renewal notice via email and one click
will take you to an auto-filled renewal form.

Or see
http://www.usenix.org/membership/

and click on the appropriate links.
Your renewal will be processed instantly.

Your active membership allows the Association to fulfill its mission.
Thank you for your continued support!




