JunelO7login_press.gxd:login June 06 Volume 31

MARSHALL KIRK MCKUSICK

5/27/07

10:22@ Page 9

a brief history of
the BSD Fast File

System

Dr. Marshall Kirk McKusick writes books and articles,
teaches classes on UNIX- and BSD-related subjects,
and provides expert-witness testimony on software
patent, trade secret, and copyright issues, particu-
larly those related to operating systems and file sys-
tems. While at the University of California at Berke-
ley, he implemented the 4.2BSD Fast File System and
was the Research Computer Scientist at the Berkeley

| FIRST STARTED WORKING ON THE
UNIX file system with Bill Joy in the late
1970s. | wrote the Fast File System, now
called UFS, in the early 1980s. In this
article, | have written a survey of the
work that | and others have done to
improve the BSD file systems. Much of
this research has been incorporated into
other file systems.

1979

Early Filesystem Work

Computer Systems Research Group (CSRG) oversee-
ing the development and release of 4.3BSD and

4.4BSD.

mckusick@mckusick.com

;LOGIN: JUNE 2007

The first work on the UNIX file system at Berke-
ley attempted to improve both the reliability and
the throughput of the file system. The developers
improved reliability by staging modifications to
critical filesystem information so that the modifi-
cations could be either completed or repaired
cleanly by a program after a crash [14]. Doubling
the block size of the file system improved the per-
formance of the 4.0BSD file system by a factor of
more than 2 when compared with the 3BSD file
system. This doubling caused each disk transfer to
access twice as many data blocks and eliminated
the need for indirect blocks for many files.

The performance improvement in the 3BSD file
system gave a strong indication that increasing the
block size was a good method for improving
throughput. Although the throughput had dou-
bled, the 3BSD file system was still using only
about 4% of the maximum disk throughput. The
main problem was that the order of blocks on the
free list quickly became scrambled as files were
created and removed. Eventually, the free-list
order became entirely random, causing files to
have their blocks allocated randomly over the
disk. This randomness forced a seek before every
block access. Although the 3BSD file system pro-
vided transfer rates of up to 175 kbytes per sec-
ond when it was first created, the scrambling of
the free list caused this rate to deteriorate to an
average of 30 kbytes per second after a few weeks
of moderate use. There was no way of restoring
the performance of a 3BSD file system except to
recreate the system.

1982

: Birth of the Fast File System

The first version of the current BSD file system
was written in 1982 and became widely distrib-
uted in 4.2BSD [13]. This version is still in use
today on systems such as Solaris and Darwin. For

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 10

10

;LOGIN: VOL. 32, NO. 3

large blocks to be used without significant waste, small files must be stored
more efficiently. To increase space efficiency, the file system allows the divi-
sion of a single filesystem block into fragments. The fragment size is speci-
fied at the time that the file system is created; each filesystem block option-
ally can be broken into two, four, or eight fragments, each of which is
addressable. The lower bound on the fragment size is constrained by the
disk-sector size, which is typically 512 bytes. As disk space in the early
1980s was expensive and limited in size, the file system was initially
deployed with a default blocksize of 4 kbytes so that small files could be
stored in a single 512-byte sector.

1986: Dropping Disk-Geometry Calculations

The BSD filesystem organization divides a disk partition into one or more
areas, each of which is called a cylinder group. Historically, a cylinder
group comprised one or more consecutive cylinders on a disk. Although
the file system still uses the same data structure to describe cylinder
groups, the practical definition of them has changed. When the file system
was first designed, it could get an accurate view of the disk geometry,
including the cylinder and track boundaries, and could accurately compute
the rotational location of every sector. By 1986, disks were hiding this
information, providing fictitious numbers of blocks per track, tracks per
cylinder, and cylinders per disk. Indeed, in modern RAID arrays, the “disk”
that is presented to the file system may really be composed from a collec-
tion of disks in the RAID array.

Although some research has been done to figure out the true geometry of a
disk [5, 10, 23], the complexity of using such information effectively is
high. Modern disks have greater numbers of sectors per track on the outer
part of the disk than on the inner part, which makes calculation of the
rotational position of any given sector complex to calculate. So in 1986, all
the rotational layout code was deprecated in favor of laying out files using
numerically close block numbers (sequential being viewed as optimal),
with the expectation that this would give the best performance. Although
the cylinder group structure is retained, it is used only as a convenient way
to manage logically close groups of blocks.

1987: Filesystem Stacking

The early vnode interface was simply an object-oriented interface to an
underlying file system. By 1987, demand had grown for new filesystem fea-
tures. It became desirable to find ways of providing them without having
to modify the existing and stable filesystem code. One approach is to pro-
vide a mechanism for stacking several file systems on top of one another
[22B]. The stacking ideas were refined and implemented in the 4.4BSD
system [7]. The bottom of a vnode stack tends to be a disk-based file sys-
tem, whereas the layers used above it typically transform their arguments
and pass on those arguments to a lower layer.

Stacking uses the mount command to create new layers. The mount com-
mand pushes a new layer onto a vnode stack; a umount command removes
a layer. Like the mounting of a file system, a vnode stack is visible to all
processes running on the system. The mount command identifies the
underlying layer in the stack, creates the new layer, and attaches that layer
into the filesystem name space. The new layer can be attached to the same
place as the old layer (covering the old layer) or to a different place in the
tree (allowing both layers to be visible).

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 11

;LOGIN: JUNE 2007

When a file access (e.g., an open, read, stat, or close) occurs to a vnode in
the stack, that vnode has several options:

= Do the requested operations and return a result.

= Pass the operation without change to the next-lower vnode on the
stack. When the operation returns from the lower vnode, it may mod-
ify the results or simply return them.

= Modify the operands provided with the request and then pass it to the
next-lower vnode. When the operation returns from the lower vnode,
it may modify the results or simply return them.

If an operation is passed to the bottom of the stack without any layer tak-
ing action on it, then the interface will return the error “operation not sup-
ported.”

The simplest filesystem layer is nullfs. It makes no transformations on its
arguments, simply passing through all requests that it receives and return-
ing all results that it gets back. Although it provides no useful functionality
if it is simply stacked on top of an existing vnode, nullfs can provide a
loopback file system by mounting the file system rooted at its source vnode
at some other location in the filesystem tree. The code for nullfs is also an
excellent starting point for designers who want to build their own filesys-
tem layers. Examples that could be built include a compression layer or an
encryption layer.

The union file system is another example of a middle filesystem layer. Like
nullfs, it does not store data but just provides a name-space transformation.
It is loosely modeled on the work on the 3-D file system [9], on the Trans-
lucent file system [8], and on the Automounter [19]. The union file system
takes an existing file system and transparently overlays the latter on anoth-
er file system. Unlike most other file systems, a union mount does not
cover up the directory on which the file system is mounted. Instead, it
shows the logical merger of the two directories and allows both directory
trees to be accessible simultaneously [18].

1988: Raising the Blocksize

By 1988, disk capacity had risen enough that the default blocksize was
raised to 8-kbyte blocks with 1-kbyte fragments. Although this meant

that small files used a minimum of two disk sectors, the nearly doubled
throughput provided by doubling the blocksize seemed a reasonable trade-
off for the measured 1.4% of additional wasted space.

1990: Dynamic Block Reallocation

Through most of the 1980s, the optimal placement for files was to lay
them out using every other block on the disk. By leaving a gap around
each allocated block, the disk had time to schedule the next read or write
following the completion of the previous operation. With the advent of
disk-track caches and the ability to handle multiple outstanding requests
(tag queueing) in the late 1980s, it became desirable to begin laying files
out contiguously on the disk.

The operating system has no way of knowing how big a file will be when it
is first opened for writing. If it assumes that all files will be big and tries to
place them in its largest area of available space, it will soon have only small
areas of contiguous space available. Conversely, if it assumes that all files
will be small and tries to place them in its areas of fragmented space, then
the beginning of files that do grow large will be poorly laid out.

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 12

12

;LOGIN: VOL. 32, NO. 3

To avoid these problems the file system was changed in 1990 to do dynam-
ic block reallocation. The file system initially places the file’s blocks in
small areas of free space, but then moves them to larger areas of free space
as the file grows. With this technique, small files use the small chunks of
free space whereas the large ones get laid out contiguously in the large
areas of free space. The algorithm does not tend to increase I/O load, be-
cause the buffer cache generally holds the file contents long enough that
the final block allocation has been determined by the first time that the file
data is flushed to disk.

The effect of this algorithm is that the free space remains largely unfrag-
mented even after years of use. A Harvard study found only a 15% degra-
dation in throughput on a three-year-old file system versus a 40% degrada-
tion on an identical file system that had had the dynamic reallocation
disabled [25].

1996: Soft Updates

In file systems, metadata (e.g., directories, inodes, and free block maps)
gives structure to raw storage capacity. Metadata provides pointers and
descriptions for linking multiple disk sectors into files and identifying
those files. To be useful for persistent storage, a file system must maintain
the integrity of its metadata in the face of unpredictable system crashes,
such as power interruptions and operating system failures. Because such
crashes usually result in the loss of all information in volatile main mem-
ory, the information in nonvolatile storage (i.e., disk) must always be con-
sistent enough to deterministically reconstruct a coherent filesystem state.
Specifically, the on-disk image of the file system must have no dangling
pointers to uninitialized space, no ambiguous resource ownership caused
by multiple pointers, and no unreferenced live resources. Maintaining
these invariants generally requires sequencing (or atomic grouping) of
updates to small on-disk metadata objects.

Traditionally, the file system used synchronous writes to properly sequence
stable storage changes. For example, creating a file involves first allocating
and initializing a new inode and then filling in a new directory entry to
point to it. With the synchronous write approach, the file system forces an
application that creates a file to wait for the disk write that initializes the
on-disk inode. As a result, filesystem operations such as file creation and
deletion proceed at disk speeds rather than processor or memory speeds
[15, 17, 24]. Since disk access times are long compared to the speeds of
other computer components, synchronous writes reduce system perform-
ance.

The metadata update problem can also be addressed with other mecha-
nisms. For example, one can eliminate the need to keep the on-disk state
consistent by using NVRAM technologies, such as an uninterruptible
power supply or Flash RAM [16, 31]. Filesystem operations can proceed as
soon as the block to be written is copied into the stable store, and updates
can propagate to disk in any order and whenever it is convenient. If the
system fails, unfinished disk operations can be completed from the stable
store when the system is rebooted.

Another approach is to group each set of dependent updates as an atomic
operation with some form of write-ahead logging [3, 6] or shadow-paging
[2, 22A, 26]. These approaches augment the on-disk state with a log of
filesystem updates on a separate disk or in stable store. Filesystem opera-
tions can then proceed as soon as the operation to be done is written into

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 13

;LOGIN: JUNE 2007

the log. If the system fails, unfinished filesystem operations can be com-
pleted from the log when the system is rebooted. Many modern file sys-
tems successfully use write-ahead logging to improve performance com-
pared to the synchronous write approach.

In Ganger and Patt [4], an alternative approach called soft updates was
proposed and evaluated in the context of a research prototype. Following a
successful evaluation, a production version of soft updates was written for
BSD in 1996. With soft updates, the file system uses delayed writes (i.e.,
write-back caching) for metadata changes, tracks dependencies between
updates, and enforces these dependencies at write-back time. Because most
metadata blocks contain many pointers, cyclic dependencies occur fre-
quently when dependencies are recorded only at the block level. Therefore,
soft updates track dependencies on a per-pointer basis, which allows
blocks to be written in any order. Any still-dependent updates in a meta-
data block are rolled back before the block is written and rolled forward
afterward. Thus, dependency cycles are eliminated as an issue. With soft
updates, applications always see the most current copies of metadata
blocks, and the disk always sees copies that are consistent with its other
contents.

1999: Snapshots

In 1999, the file system added the ability to take snapshots. A filesystem
snapshot is a frozen image of a file system at a given instant in time. Snap-
shots support several important features, including the ability to provide
backups of the file system at several times during the day and the ability to
do reliable dumps of live file systems.

Snapshots may be taken at any time. When taken every few hours during
the day, they allow users to retrieve a file that they wrote several hours
earlier and later deleted or overwrote by mistake. Snapshots are much
more convenient to use than dump tapes and can be created much more
frequently.

To make a snapshot accessible to users through a traditional filesystem
interface, the system administrator uses the mount command to place the
replica of the frozen file system at whatever location in the namespace is
convenient.

Once filesystem snapshots are available, it becomes possible to safely dump
live file systems. When dump notices that it is being asked to dump a
mounted file system, it can simply take a snapshot of the file system and
run over the snapshot instead of on the live file system. When dump com-
pletes, it releases the snapshot.

2001: Raising the Blocksize, Again

By 2001 disk capacity had risen enough that the default blocksize was
raised to 16-kbyte blocks with 2-kbyte fragments. Although this meant
that small files used a minimum of four disk sectors, the nearly doubled
throughput provided by doubling the blocksize seemed a reasonable trade-
off for the measured 2.9% of additional wasted space.

2002: Background Fsck

Traditionally, after an unclean system shutdown, the filesystem check pro-
gram, fsck, has had to be run over all the inodes in a file system to ascer-

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM 13

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 14

14

;LOGIN: VOL. 32, NO. 3

tain which inodes and blocks are in use and to correct the bitmaps. This
check is a painfully slow process that can delay the restart of a big server
for an hour or more. Soft updates guarantee the consistency of all filesys-
tem resources, including the inode and block bitmaps. With soft updates,
the only inconsistency that can arise in the file system (barring software
bugs and media failures) is that some unreferenced blocks may not appear
in the bitmaps and some inodes may have to have overly high link counts
reduced. Thus, it is completely safe to begin using the file system after a
crash without first running fsck. However, some filesystem space may be
lost after each crash. Thus, there is value in having a version of fsck that
can run in the background on an active file system to find and recover any
lost blocks and adjust inodes with overly high link counts.

With the addition of snapshots, the task becomes simple, requiring only
minor modifications to the standard fsck. When run in background clean-
up mode, fsck starts by taking a snapshot of the file system to be checked.
Fsck then runs over the snapshot filesystem image doing its usual calcula-
tions, just as in its normal operation. The only other change comes at the
end of its run, when it wants to write out the updated versions of the bit-
maps. Here, the modified fsck takes the set of blocks that it finds were in
use at the time of the snapshot and removes this set from the set marked as
in use at the time of the snapshot—the difference is the set of lost blocks.
It also constructs the list of inodes whose counts need to be adjusted, then
uses a new system call to notify the file system of the identified lost blocks
so that it can replace them in its bitmaps. It also gives the set of inodes
whose link counts need to be adjusted; those inodes whose link count is
reduced to zero are truncated to zero length and freed. When fsck com-
pletes, it releases its snapshot. The complete details of how background
fsck is implemented can be found in McKusick [11, 12].

2003: Multi-Terabyte Support

The original BSD fast file system and its derivatives have used 32-bit point-
ers to reference the blocks used by a file on the disk. At the time of its
design in the early 1980s, the largest disks were 330 Mbytes. There was
debate at the time whether it was worth squandering 32 bits per block
pointer rather than using the 24-bit block pointers of the file system it
replaced. Luckily, the futurist view prevailed, and the design used 32-bit
block pointers.

Over the 20 years since it has been deployed, storage systems have grown
to hold over a terabyte of data. Depending on the blocksize configuration,
the 32-bit block pointers of the original file system run out of space in the
1-to-4-terabyte range. Although some stopgap measures can be used to
extend the maximum-size storage systems supported by the original file
system, by 2002 it became clear that the only long-term solution was to
use 64-bit block pointers. Thus, we decided to build a new file system, one
that would use 64-bit block pointers.

We considered the alternatives of trying to make incremental changes to
the existing file system versus importing another existing file system such
as XFS [27] or ReiserFS [20]. We also considered writing a new file system
from scratch so that we could take advantage of recent filesystem research
and experience. We chose to extend the original file system, because this
approach allowed us to reuse most of its existing code base. The benefits of
this decision were that the 64-bit-block—based file system was developed
and deployed quickly, it became stable and reliable rapidly, and the same
code base could be used to support both 32-bit-block and 64-bit-block

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 15

;LOGIN: JUNE 2007

filesystem formats. Over 90% of the code base is shared, so bug fixes and
feature or performance enhancements usually apply to both filesystem for-
mats.

At the same time that the file system was updated to use 64-bit block
pointers, an addition was made to support extended attributes. Extended
attributes are a piece of auxiliary data storage associated with an inode that
can be used to store auxiliary data that is separate from the contents of the
file. The idea is similar to the concept of data forks used in the Apple file
system [1]. By integrating the extended attributes into the inode itself, it is
possible to provide the same integrity guarantees as are made for the con-
tents of the file itself. Specifically, the successful completion of an fsync
system call ensures that the file data, the extended attributes, and all
names and paths leading to the names of the file are in stable store.

2004: Access-Control Lists

Extended attributes were first used to support an access control list, gener-
ally referred to as an ACL. An ACL replaces the group permissions for a
file with a more specific list of the users who are permitted to access the
files. The ACL also includes a list of the permissions each user is granted.
These permissions include the traditional read, write, and execute permis-
sions, along with other properties such as the right to rename or delete the
file [21].

Earlier implementations of ACLs were done with a single auxiliary file per
file system that was indexed by the inode number and had a small fixed-
sized area to store the ACL permissions. The small size kept the size of the
auxiliary file reasonable, since it had to have space for every possible inode
in the file system. There were two problems with this implementation. The
fixed size of the space per inode to store the ACL information meant that it
was not possible to give access to long lists of users. The second problem
was that it was difficult to atomically commit changes to the ACL list for a
file, since an update required that both the file inode and the ACL file be
written in order to have the update take effect [28].

Both problems with the auxiliary file implementation of ACLs are fixed by
storing the ACL information directly in the extended-attribute data area of
the inode. Because of the large size of the extended attribute data area (a
minimum of 8 kbytes and typically 32 kbytes), long lists of ACL informa-
tion can be stored easily. Space used to store extended attribute informa-
tion is proportional to the number of inodes with extended attributes and
the size of the ACL lists they use. Atomic updating of the information is
much easier, since writing the inode will update the inode attributes and
the set of data that it references, including the extended attributes in one
disk operation. Although it would be possible to update the old auxiliary
file on every fsync system call done on the file system, the cost of doing so
would be prohibitive. Here, the kernel knows whether the extended attrib-
ute data block for an inode is dirty and can write just that data block dur-
ing an fsync call on the inode.

2005: Mandatory Access Controls

The second use for extended attributes was for data labeling. Data labels
provide permissions for a mandatory access control (MAC) framework
enforced by the kernel. The kernel's MAC framework permits dynamically
introduced system-security modules to modify system security functional-

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM 15

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 16

ity. This framework can be used to support a variety of new security ser-
vices, including traditional labeled mandatory access control models. The
framework provides a series of entry points that are called by code sup-
porting various kernel services, especially with respect to access control
points and object creation. The framework then calls out to security mod-
ules to offer them the opportunity to modify security behavior at those
MAC entry points. Thus, the file system does not codify how the labels are
used or enforced. It simply stores the labels associated with the inode and
produces them when a security module needs to query them to do a per-
mission check [29, 30].

2006: Symmetric Multi-Processing

In the late 1990s, the FreeBSD Project began the long hard task of convert-
ing their kernel to support symmetric multi-processing. The initial step
was to add a giant lock around the entire kernel to ensure that only one
processor at a time could be running in the kernel. Each kernel subsystem
was brought out from under the giant lock by rewriting it to be able to be
executed by more than one processor at a time. The vnode interface was
brought out from under the giant lock in 2004. The disk subsystem
became multi-processor—safe in 2005. Finally, in 2006, the fast file system
was overhauled to support symmetric multi-processing, completing the
giant-free path from system call to hardware.

Further Information

For those interested in learning more about the history of BSD, additional
information is available from http:/www.mckusick.com/history/.

REFERENCES

[1] Apple, “Mac OS X Essentials, Chapter 9 Filesystem, Section 12
Resource Forks” (2003): http://developer.apple.com/techpubs/macosx/
Essentials/SystemOverview/FileSystem/chapter_9_section_12.html.

[2] D. Chamberlin and M. Astrahan, “A History and Evaluation of System
R,” Communications of the ACM (24, 10) (1981), pp. 632-646.

[3] S. Chutani, O. Anderson, M. Kazar, W. Mason, and R. Sidebotham,
“The Episode File System,” USENIX Winter 1992 Technical Conference
Proceedings (January 1992), pp. 43-59.

[4] G. Ganger and Y. Patt, “Metadata Update Performance in File Systems,”
First USENIX Symposium on Operating Systems Design and Implementation
(November 1994), pp. 49-60.

[5] J. L. Griffin, J. Schindler, S.W. Schlosser, J.S. Bucy, and G.R. Ganger,
“Timing-accurate Storage Emulation,” Proceedings of the USENIX Confer-
ence on File and Storage Technologies (January 2002), pp. 75-88.

[6] R. Hagmann, “Reimplementing the Cedar File System Using Logging
and Group Commit,” ACM Symposium on Operating Systems Principles
(November 1987), pp. 155-162.

[7]]. S. Heidemann and G.J. Popek, “File-System Development with Stack-
able Layers,” ACM Transactions on Computer Systems (12, 1) (February
1994), pp. 58-89.

16 ;LOGIN: VOL. 32, NO. 3

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 17

;LOGIN: JUNE 2007

[8] D. Hendricks, “A Filesystem for Software Development,” USENIX
Summer 1990 Technical Conference Proceedings (June 1990), pp. 333-340.

[9] D. Korn and E. Krell, “The 3-D File System,” USENIX Summer 1989
Technical Conference Proceedings (June 1989), pp. 147-156.

[10] C.R. Lumb, J. Schindler, and G.R. Ganger, “Freeblock Scheduling
Outside of Disk Firmware,” Proceedings of the USENIX Conference on File
and Storage Technologies (January 2002), pp. 275-288.

[11] M.K. McKusick, “Running Fsck in the Background,” Proceedings of the
BSDCon 2002 Conference (February 2002), pp. 55-64.

[12] M.K. McKusick, “Enhancements to the Fast Filesystem to Support
Multi-Terabyte Storage Systems,” Proceedings of the BSDCon 2003 Confer-
ence (September 2003), pp. 79-90.

[13] M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S. Fabry, “A Fast File
System for UNIX,” ACM Transactions on Computer Systems (2, 3) (August
1984), pp. 181-197.

[14] M.K. McKusick and TJ. Kowalski, “Fsck: The UNIX File System
Check Program,” in 4.4BSD System Managers Manual (Sebastopol, CA:
O'Reilly & Associates, 1994), vol. 3, pp. 1-21.

[15] L. McVoy and S. Kleiman, “Extent-like Performance from a UNIX File
System,” USENIX Winter 1991 Technical Conference Proceedings (January
1991), pp. 33-44.

[16] J. Moran, R. Sandberg, D. Coleman, J. Kepecs, and B. Lyon, “Breaking
Through the NFS Performance Barrier,” Proceedings of the Spring 1990
European UNIX Users Group Conference (April 1990), pp. 199-206.

[17] J. Ousterhout, “Why Aren’t Operating Systems Getting Faster as Fast
as Hardware?” USENIX Summer 1990 Technical Conference (June 1990), pp.
247-256.

[18] J. Pendry and M.K. McKusick, “Union Mounts in 4.4BSD-Lite,”
USENIX 1995 Technical Conference Proceedings (January 1995), pp. 25-33.

[19] J. Pendry and N. Williams, “AMD: The 4.4BSD Automounter Refer-
ence Manual,” in 4.4BSD System Managers Manual (Sebastopol, CA:
O'Reilly & Associates, 1994), vol. 13, pp. 1-57.

[20] H. Reiser, “The Reiser File System” (January 2001):
http://www.namesys.com/res_whol.shtml.

[21] T. Rhodes, “FreeBSD Handbook, Chapter 3, Section 3.3 File System
Access Control Lists” (2003): http://www.FreeBSD.org/doc/en_US
IS08859-1/books/handbook/fs-acl.html.

[22A] M. Rosenblum and J. Ousterhout, “The Design and Implementation
of a Log-Structured File System,” ACM Transactions on Computer System
(10, 1) (February 1992): 26-52.

[22B] D. Rosenthal, “Evolving the Vnode Interface,” USENIX Winter 1990
Technical Conference Proceedings (June 1990), pp. 107-118.

[23] J. Schindler, J.L. Griffin, C.R. Lumb, and G.R. Ganger, “Track-aligned
Extents: Matching Access Patterns to Disk Drive Characteristics,” Proceed-
ings of the USENIX Conference on File and Storage Technologies (January
2002), pp. 259-274.

[24] M. Seltzer, K. Bostic, M.K. McKusick, and C. Staelin, “An Implemen-
tation of a Log-Structured File System for UNIX,” Proceedings of the
USENIX Winter 1993 Conference (January 1993), pp. 307-326.

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM 17

o



Junel07login_press.gxd:login June 06 Volume 31 5/27/07 10:22@ Page 18

18

;LOGIN: VOL. 32, NO. 3

[25] K. Smith and M. Seltzer, “A Comparison of FFS Disk Allocation Algo-
rithms,” Proceedings of the USENIX 1996 Annual Technical Conference (Janu-
ary 1996), pp. 15-25.

[26] M. Stonebraker, “The Design of the POSTGRES Storage System,” Very
Large DataBase Conference (1987), pp. 289-300.

[27] A. Sweeney, D. Doucette, C. Anderson, W. Hu, M. Nishimoto, and
G. Peck, “Scalability in the XFS File System,” Proceedings of the 1996
USENIX Annual Technical Conference (January 1996), pp. 1-14.

[28] R. Watson, “Introducing Supporting Infrastructure for Trusted Oper-
ating System Support in FreeBSD,” Proceedings of the BSDCon 2000 Confer-
ence (September 2000).

[29] R. Watson, “TrustedBSD: Adding Trusted Operating System Features
to FreeBSD,” Proceedings of the FREENIX Track at the 2001 USENIX Annual
Technical Conference (June 2001), pp. 15-28.

[30] R. Watson, W. Morrison, C. Vance, and B. Feldman, “The TrustedBSD
MAC Framework: Extensible Kernel Access Control for FreeBSD 5.0,” Pro-
ceedings of the FREENIX Track at the 2003 USENIX Annual Technical Confer-
ence (June 2003), pp. 285-296.

[31] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory
Storage System,” International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (October 1994), pp.
86-97.



