14

JORRIT N. HERDER, HERBERT BOS,
BEN GRAS, PHILIP HOMBURG, AND
ANDREW S. TANENBAUM

roadmap to a

failure-resilient
operating system

Jorrit Herder holds an M.Sc. degree in Computer
Science (cum laude) from the Vrije Universiteit in
Amsterdam and is currently a Ph.D. student there.
His research focuses on operating system reliability
and security, and he is closely involved in the design
and implementation of MINIX 3.

jnherder@cs.vu.nl

Herbert Bos obtained his M.Sc. from the University of
Twente in the Netherlands and his Ph.D. from the
Cambridge University Computer Laboratory (UK). He
is currently an assistant professor at the Vrije
Universiteit in Amsterdam with a keen research
interest in operating systems, high-speed networks,
and security.

herbertb@cs.vu.nl

Ben Gras has an M.Sc. in computer science from the
Vrije Universiteit in Amsterdam and has previously
worked as sysadmin and programmer. He is now
employed by the VU in the Computer Systems
Section as a programmer working on the MINIX 3
project.

beng@cs.vu.nl

Philip Homburg received a Ph.D. from the Vrije
Universiteit in the field of wide-area distributed sys-
tems. Before joining this project, he experimented
with virtual memory, networking, and X Windows in
Minix-vmd and worked on advanced file systems in
the Logical Disk project.

philip@cs.vu.nl

Andrew S.Tanenbaum is a professor of computer sci-
ence at the Vrije Universiteit in Amsterdam. He has
written 16 books and 125 papers and is a Fellow of
both the ACM and the IEEE. He firmly believes that
we need to radically change the structure of operat-
ing systems to make them more reliable and secure
and that MINIX 3 is a small step in this direction.

ast@cs.vu.nl

;LOGIN: VOL. 32, NO. 1

IN RECENT YEARS, DEPENDABILITY AND
security have become prime concerns for
computer users. Nevertheless, commodity
operating systems, such as Windows and
Linux, fail to deliver a dependable and
secure computing platform. The lack of
proper fault isolation in the monolithic ker-
nel of commodity systems means that a
local failure can easily spread and corrupt
other components. A single bug, say, a
buffer overrun in a network driver, can over-
write crucial data structures, causing a sub-
sequent, but unrelated, action to trigger a
fatal exception. Recovery is usually not pos-
sible except by rebooting the computer.

While software is buggy by nature, device drivers
are known to be especially failure-prone [1, 2]. It
is irrelevant whether the failures are due to hard-
ware glitches, improper device documentation,
the arcane kernel programming environment, lack
of quality control, limited testing, or code imma-
turity. The crucial point is that pieces of untrust-
ed, third-party code, such as drivers and other
extensions, run inside the kernel and can poten-
tially take down the entire system. This property
is inherent to the monolithic design used in com-
modity operating systems, and it cannot be solved
through mere programming effort.

Our approach to dependability is to cope with
imperfection and counter the more fundamental
problem that driver failures threaten to take down
the entire operating system. In particular, we have
enhanced the MINIX 3 operating system with
fault-resilience techniques to improve operating
system dependability. We accept the fact that soft-
ware is not perfect and probably never will be,
and anticipate failures in device drivers and other
critical operating system components. Our system
is designed to withstand such failures and can
often repair itself in a manner that is transparent
to applications and without user intervention.

MINIX 3 has been under development for the past
two years and is becoming increasingly mature.
We have already reported on MINIX 3’s multiserv-
er architecture [3] and mechanisms to deal with
dead device drivers [4]. In this article we loosely
summarize what we have done to make MINIX 3
resilient against failures, where we stand now, and
what is left for future work. An overview of the

;LOGIN: FEBRUARY 2007

highlights of MINIX 3’s development and a tentative roadmap for future
work are given in Figure 1. As the figure shows, we hope to release a thor-
oughly tested fault-resilient version of MINIX 3 early next year.

The remainder of this article is organized as follows. We start out with a
short introduction to the recent history of MINIX 3. Then we give an
overview of the fault-resilience mechanisms we have implemented thus far
and perform a brief reality check. In the end, we discuss our current and
future work that will eventually lead to the release of a fault-resilient ver-
sion of MINIX 3 and then conclude.

N &
N 2 N el
S~ & § SESey
S o A & o & S Y 5 S
NN S S & L ¥ S
FSTSEE L F§ o $857SFS

S s § S S E&EF S FE S & &
S 8o EaTFEE
$FT &5 28 8§ FT Vs 8 LFEESE
¥ 9 & L oL ¢ & « @ & 8 N
e PO P ST s Sy S
FEI TSI EFTELELS

K 7 O .G R 5 L s D T S

12 QLGS N m® S ¥ o & >

S EF T sl eFFLTESES

Y & NS S ¥ T EFE S L O ¥

Q")w% T S ch/oq,o@@q‘z,qw

€ o &I x € I & § ¥ &
1 | e e I IO
time ->

FIGURE 1: OVERVIEW OF THE HIGHLIGHTS OF MINIX 3’S
DEVELOPMENT AND TENTATIVE ROADMAP FOR FUTURE
WORK.

The Recent History of MINIX 3

As a base for MINIX 3 we used MINIX 2, which already ran some servers
in user space but still had in-kernel device drivers. Starting in late 2003,
we removed the drivers from the kernel, developed a user-space device
driver framework, and officially released MINIX 3 in October 2005. Since
then, the system has been downloaded over 100,000 times and a small but
growing user community has formed to support MINIX 3. The official Web
site (www.minix3.org) and newsgroup (comp.os.minix) are frequented by
many enthusiasts who want to participate in our quest for a secure and
dependable operating system.

The architecture of MINIX 3 is shown in Figure 2. All servers and drivers
run as independent user-mode processes—each encapsulated in a private
address space protected by the MMU hardware—on top of a tiny microker-
nel of under 4000 lines of executable code. The bottom half of the micro-
kernel is responsible for programming the CPU and MMU, interrupt han-
dling, and IPC. The in-kernel clock and system task provide an interface to
kernel services, such as I/O and alarms, for the user-mode parts of the
operating system. The most common servers provide file system services
and process management functionality. A special server, called the reincar-
nation server, manages all servers and drivers and constantly monitors the
system’s well-being. With this design as a stable base we were able to
achieve failure resilience, as we discuss below.

ROADMAP TO A FAULT-RESILIENT OS 15

16

;LOGIN: VOL. 32, NO. 1

A
User
[e) O [e)
@
S W 1 P
(&)
8 ,
einc
@ Seney
n
D ___________
Printe
Driver
V
o A
(&)
© -
& ‘. ys\ " Clock
| \ | \
T Kernel \\'Isask,’ \ Task,
!q—) - - _ -
Xy

FIGURE 2: ARCHITECTURE OF MINIX 3. THE OPERATING SYSTEM
IS COMPARTMENTALIZED IN USER SPACE, BUT COMPONENTS
CAN INTERACT WITH EACH OTHER BY PASSING MESSAGES. THE
POSIX READ() CALL, FOR EXAMPLE, IS TRANSFORMED INTO A
REQUEST TO THE FILE SERVER, WHICH ASKS THE DISK DRIVER
TO READ THE BLOCK FROM DISK, WHICH, IN TURN, ASKS THE
IN-KERNEL SYSTEM TASK TO PERFORM PRIVILEGED OPERA-
TIONS, SUCH AS WRITING TO THE DISK’S 1/0 PORTS.

MINIX 3 currently runs over 400 standard UNIX applications, including
the X Window system, two C compilers, language processors, several
shells, many editors, a complete TCP/IP stack that supports BSD sockets,
a virtual file system infrastructure, and all the standard shell, file, text
manipulation, and other UNIX utilities. The POSIX-compliant interface
offered by MINIX 3 facilitates porting of common Linux and BSD applica-
tions. For example, porting an application to our system is often simply a
matter of recompilation.

Performance measurements on a 2.2-GHz Athlon show that the overhead
of our system is 5-10% compared to the base system (MINIX 2) with in-
kernel device drivers [3]. User-mode Fast Ethernet runs at full speed, and
our user-mode disk drivers show an average overhead of about 8% to per-
form disk I/O compared to in-kernel disk drivers. Since neither MINIX 2
nor MINIX 3 has been tuned for performance, we expect to find a some-
what higher overhead when the system is compared to Linux or FreeBSD.
Nevertheless, MINIX 3 feels fast and responsive. For example, the boot
time, as measured between exiting the multiboot monitor and getting the
login prompt, is less than 5 seconds. At that point, a POSIX-compliant
operating system is ready to use.

Crash simulation experiments show that our system can withstand failures
and gracefully recover by restarting the driver rather than rebooting the
entire computer [3]. For example, in one experiment, we used wget to
retrieve a 512-MB file from the Internet while repeatedly killing the
Ethernet driver every 4 seconds. The network transfer successfully com-
pleted in all cases, with a performance degradation of just 8%. Although
these experiments prove the viability of our approach, manually killing a

driver to simulate a crash is not representative for many device driver fail-
ures. Therefore, we recently started to experiment with automatic fault
injection, with promising results, as discussed next.

Achieving Fault Resilience

The key principles we used to make MINIX 3 failure resilient are fault iso-
lation, defect detection, and run-time recovery. Fault isolation is required
to prevent problems from spreading and limit the damage bugs can do.
When a bug is properly caged it becomes easier to pinpoint the defect, and
recovery may be possible. In the following we briefly discuss how we real-
ized each principle in MINIX 3. As an aside, this model may have conse-
quences for the accountability of software vendors [5], but in this article,
we focus on the technical aspects of our design.

FAULT ISOLATION

Although we have fully compartmentalized the operating system in user
space, as illustrated in Figure 2, isolation cannot be achieved by means of
address-space separation alone. This is because servers and drivers need
potentially dangerous mechanisms to communicate and share data in order
to make the system work. Instead of granting such powers to all processes,
we have carefully reduced the privileges of each according to the Principle
Of Least Authority (POLA). Each device driver, for example, is loaded with
a protection file that precisely lists its resources, including device memory,
/O ports and IRQ lines, and IPC capabilities. The reincarnation server
ensures that the restriction policy is in place before the newly started driv-
er gets to run.

Memory protection is realized by combining MMU and kernel protection.
The MMU ensures that a process cannot directly access another process’s
memory. However, to prevent memory corruption in processes that need to
share data, processes can grant access to precisely specified memory areas
by sending a capability that is checked by the kernel when data is read or
written. It has to be noted that DMA is still a potential danger, but this is a
hardware problem and not a limitation of our system. Fortunately, I/O
MMUs are becoming more common, and when we have the proper hard-
ware we will solidify our defenses.

DEFECT DETECTION

The reincarnation server is the central component that guards all servers
and drivers in the system. During system initialization the reincarnation
server adopts all processes in the boot image as its children; servers and
drivers that are started on the fly also become its children. Therefore, in
line with the POSIX model, the reincarnation server will be notified by the
process manager when a system process exits. Based on the exit status
retrieved from the process manager, three cases can be distinguished: a
process exit or panic, a CPU or MMU exception, or a user signal. Each of
these cases is considered as a separate defect class.

In addition, the reincarnation server has three other ways to monitor the
system for anomalies. When a driver’s protection file specifies so, the rein-
carnation server periodically pings the driver and expects it to reply with a
heartbeat message. Not responding is considered a defect and initiates the

;LOGIN: FEBRUARY 2007 ROADMAP TO A FAULT-RESILIENT OS 17

18

;LOGIN: VOL. 32, NO. 1

recovery procedure. Furthermore, the reincarnation server acts as an
arbiter in case of problems. For example, the network server can request
replacement of an Ethernet driver that does not adhere to the multiserver
protocol. Finally, the user can instruct the reincarnation server to dynami-
cally update the system. In this way, when a bug or other vulnerability is
found, the defective component can be replaced on the fly as soon as a
patch is available.

RECOVERY PROCEDURE

When a server or driver is started, it can be associated with a (generic)
shell script that governs its recovery procedure. When a defect has been
detected, the reincarnation server looks up the malfunctioning process’s
recovery script from its internal tables and runs it. All relevant parameters,
such as the component that failed, defect class, and failure count, are
passed along so that the script can decide what to do. The simplest policy
may log the error and shut down the malfunctioning component, but in
many cases it is possible to replace it with a fresh copy. A sample policy
script that uses a binary exponential backoff protocol in restarting failed
components is shown in Figure 3.

component=$1 # args from reinc. server
reason=%$2 # dynamic update = 6
repetition=$3 # current failure count

if [! $reason -eq 6]
then
sleep $((1 << ($repetition - 1)))
fi
service restart §component

FIGURE 3: RECOVERY SCRIPT THAT USES A BINARY EXPONEN-
TIAL BACKOFF PROTOCOL IN RESTARTING A FAILED COMPO-

NENT TO PREVENT BOGGING DOWN THE SYSTEM IN CASE OF
REPEATED FAILURES, UNLESS THE USER EXPLICITLY REQUEST-
ED A DYNAMIC UPDATE [4].

Once a component has been restarted it needs to be reintegrated into the
system. First, the reincarnation server updates the corresponding name
server entry in the data store, which uses a publish/subscribe mechanism to
inform dependent components about the new system configuration. For
example, the file server will be notified when a disk driver is restarted and
its new IPC endpoint is published in the data store. At this point, the file
server can reinitialize its own tables and can request the driver to reinitial-
ize itself. If the restarted component lost state during its crash, it can, in
principle, retrieve a backup made by the crashed component from the data
store. In our current prototype implementation, however, all drivers are
stateless or can be reinitialized from the server level. Recovery of stateful
components is not used by our prototype implementation, but the mecha-
nisms required to do so are in place.

;LOGIN: FEBRUARY 2007

Reality Check

Although our system has been designed to recover from failures in both
servers and drivers, there are limits to what we can do. Since the core oper-
ating system servers maintain a lot of state, recovery is currently not sup-
ported. For example, the process server keeps track of process IDs, child-
parent relationships, alarms, and more. Although a crash does not take
down the entire system, all user programs will be seriously hampered.
Nevertheless, our approach deals with an important class of problems,
since 70% of the operating system typically consists of driver code, with
reported error rates 3—7 times higher than those of ordinary code [2].

The assumption underlying our recovery procedure is that failures are
transient and can be repaired by replacing malfunctioning components.
For example, rare timing causing an exception, software aging from memo-
ry leaks, and the like may bring down a component, but in many cases a
restart will cure the problem. Moreover, our design not only helps when
disaster strikes but also opens the possibility for ante-mortem updates. At
any point in time the user can update the system by requesting the reincar-
nation server to replace a component under suspicion with a new one.
This feature helps system administrators to keep the system in good shape
without system downtime. It may also be useful in embedded systems that
need to automatically replace components when new versions are avail-
able.

Work for the Near Future

The general fault-resilience mechanisms presented here are currently
implemented in MINIX 3, but more work needs to be done, as shown in
Figure 1. In particular, a better performance assessment and a more thor-
ough evaluation of MINIX 3’s ability to recover from failures are needed.
We have already studied the performance of MINIX 3 compared to MINIX
2 and have concluded that the transformation of in-kernel drivers into
user-space drivers resulted in a performance overhead of about 5-10%. We
are currently investigating how MINIX 3 compares to other UNIX-like
operating systems such as Linux and FreeBSD. Preliminary results show
that the overhead is somewhat higher, but we do not have the precise
numbers yet. However, because MINIX 3 is not optimized for perfor-
mance—in contrast to the other systems—it will be hard to tell to what
extent the overhead is due to MINIX 3’5 multiserver design or to the differ-
ences in, for example, compiler quality, memory management algorithms,
and file system implementation.

In addition, we are working on a better evaluation of MINIX 3’s ability to
survive failures in critical operating system components and transparently
repair the system. Our current focus has been to reincarnate dead device
drivers, but recovery from failures in stateful components has our interest
as well. Furthermore, we have mostly tested the system’s failure resilience
by manually killing components, but this approach is not representative
for failures that are caused by, say, programming bugs. Therefore, we
recently ported the fault injection tool used by Nooks [6] to MINIX 3,
which allows us to inject more representative faults by mutating the driver
binaries. This method already proved its value, as we discovered a small
number of bugs in the core components, which we fixed. More important-
ly, the results thus far indicate that our system is indeed capable of surviv-
ing and recovering from common failures.

ROADMAP TO A FAULT-RESILIENT OS 19

20

;LOGIN: VOL. 32, NO. 1

Summary and Conclusion

In this article, we briefly described the recent history of our work on
MINIX 3 and we showed how the modular design of MINIX 3 can be
exploited to achieve failure resilience within the operating system. A time-
line with the highlights of MINIX 3 thus far and a tentative roadmap for
future work was presented. Although more development and testing is
needed, the principles discussed here show that it is possible to improve
operating system dependability by revisiting design choices that were made
decades ago. All in all, we believe that MINIX 3 has serious potential to
claim a niche in the operating system market—for example, on moderately
powerful embedded systems where security and dependability are at stake,
such as mobile phones, set-top boxes, and medical appliances.

REFERENCES

[1] TJ. Ostrand and E.J. Weyuker, “The Distribution of Faults in a Large
Industrial Software System,” Proc. 2002 ACM SIGSOFT Int. Symp. on
Software Testing and Analysis, ACM, pp. 55-64, 2002.

[2] A. Chou,]J. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical
Study of Operating System Errors,” Proc. 18th ACM Symp. on Operating
System Principles, pp. 73-88, 2001.

[3] J.N. Herder, H. Bos, B. Gras, P Homburg, and A.S. Tanenbaum,
“Reorganizing UNIX for Reliability,” Proc. 11th Asia-Pacific Computer
Systems Architecture Conference, pp. 81-94, 2006.

[4] J.N. Herder, H. Bos, B. Gras, P Homburg, and A.S. Tanenbaum, “Who’s
Afraid of Dead Device Drivers,” Technical Report IR-CS-D29, Vrije
Universiteit, Amsterdam, 2006.

[5] A.R. Yumerefendi and J.S. Chase, “The Role of Accountability in
Dependable Distributed Systems,” Proc. 1st Workshop on Hot Topics in
System Dependability, 2005.

[6] M.M. Swift, M. Annamalai, B.N. Bershad, and H.M. Levy, “Recovering
Device Drivers,” Proc. 6th Symp. on Operating System Desigh and
Implementation, pp. 1-15, 2004.

