AMAZON.COM RECENTLY INTRODUCED
two new storage and computing services
that might fundamentally change the way
that we provision equipment for both e-

SIMSON GARFINKEL

Commodjty g‘r]d commerce and high-performance comput-
. . ing. | learned about these services a few

com pUt]n 9 W]th days after | had started looking for quotes

Am azon's SB and ECZ to purchase a multiblade server with 10-20

TB of storage to further my own research in

Simson L. Garfinkel is an Associate Professor at the computer forensics. Rather than moving

Naval Postgraduate School and a Fellow at the

Center for Research on Computation and Society at ahead with that pUTCh ase, | decided to eval-
Harvard University. He is also a consulting scientist ,

at Basis Technology Corp., which develops software uate whether or not I could use Amazon’s
for extracting meaningful intelligence from unstruc- offermg for this real-world prob]em. /\/\y
tured text, and a founder of Sandstorm Enterprises, . . , . .

a computer security firm that develops advanced conclusion is that Amazon'’s offermg 15

computer forensic tools used by businesses and gov-

ernments to audit their systems. good enough for my research and will prob-

ably save me tens of thousands of dollars,
but the system isn't yet ready for hosting
serious e-commerce customers.

simsong@acm.org

Amazon’s Simple Storage Service (S3) and Elas-
tic Compute Cloud (EC2) break up Amazon’s
awesome computer infrastructure into tiny little
pieces that the company can incrementally rent
out to any individual or business that needs e-
commerce or high-performance computing infra-
structure. Like Google and Yahoo!, Amazon has
built computing clusters around the world, each
with tens of thousands of computer systems. The
theory behind these services is that economies of
scale allow Amazon to run and rent out these
services to businesses at a cheaper price than
businesses can provide the services to themselves.

Amazon’s Simple Storage System

Amazon announced S3 back in March 2006. The
service allows anyone with a credit card to store
information on Amazon’s redundant and replicat-
ed storage network. Storage costs are 15 cents per
gigabyte per month; data transfer is 20 cents per
gigabyte. You may store an unlimited amount of
information, and there is no setup fee.

The best way to think about S3 is as a globally
available distributed hash table with high-level
access control. You store data as a series of name/
value pairs. Names look just like UNIX filenames;
the value can be any serialized object between 0O
and 5 GB. You can also store up to 4K of metadata
with each object.

;LOGIN: FEBRUARY 2007 COMMODITY GRID COMPUTING 7



8

;LOGIN: VOL. 32, NO. 1

All objects in Amazon’s S3 must fit in the same global namespace. The
namespace consists of a “bucket name” and an “object name.” Bucket
names are available from Amazon on a first-come, first-serve basis. You
can't have “foo” because it’s already been taken, but you could probably get
a bucket name with your last name, and certainly with your last name fol-
lowed by a random seven-digit number. Bucket names are reasonably
secure: You can list the names of the buckets that your account has creat-
ed, but you can't list the buckets belonging to other people. You can only
have 100 buckets per account, so don't go crazy with them.

Access control is based on these buckets. You can make your bucket read-
able by up to 100 Amazon Web Service Account IDs and read/write for up
to another 100 IDs. You can also make a bucket world readable, although
this is a lot like handing the world a blank check, since downloads do cost
20 cents per gigabyte. Near the end of this article we’ll see how this cost
compares with existing hosting services.

You send data to S3 using a relatively straightforward SOAP-based API or
with raw HTTP “PUT” commands (a technique that has taken on the name
“REST,” short for Representational State Transfer). Data can be retrieved
using SOAP, HTTP, or BitTorrent. In the case of BitTorrent, the S3 system
operates as both a tracker and the initial seed. There is also a program
called JungleDisk that lets you treat storage on S3 as if it were a remote file
system; JungleDisk runs on Linux, Mac OS, and Windows.

After delving into the needless complexity of SOAP, I gave up and decided
to use the pure HTTP/REST APL I'm using S3 to store images of hard
drives that I have acquired or developed during the course of my research
in computer forensics. With REST, I can store raw data without having to
first base-64 encode it. I also found it much easier to code up a simple S3
REST implementation than to deal with all of the overhead required for the
SOAP client.

S3 Performance and Security

I tested S3’s performance with the REST API from networks at MIT, Har-
vard, and my house. Both universities have ridiculously fast connections to
multiple Internet carriers. Despite this speed, both my upload and down-
load speeds averaged between 1 and 2 MB per second, depending on the
time of day. I saw similar performance from my house, where I have a 30
megabit per second Verizon FiOS connection. Based on the feedback in the
Amazon developer forums, these performance figures are at the upper end
of what others are seeing. One developer in Germany reported seeing be-
tween 10 and 100 kilobytes per second, depending on the time of day.
Although this speed is simply not fast enough for doing serious computa-
tion, it is good enough for backups and for using S3 to deliver Web objects.
Clearly, though, performance is an area that needs work for all S3 users.

Security is another important part of any storage system. Amazon’s S3 has
impressive support for privacy, integrity, and short-term availability. The
long-term availability of the service is unknown, since it ultimately de-
pends upon Amazon’s internal level of commitment. Surprisingly, the
weakest part of S3 is the service’s authentication architecture. I'll discuss
each of these issues next.

Data privacy is accomplished through the use of encryption and access
control. If you want your data to be encrypted, encryption must be done
before the data is sent to S3. You can protect names of the objects and
other metadata by communicating with Amazon’s Web servers using SSL



;LOGIN: FEBRUARY 2007

with HTTPS on port 443. In my testing with a 2-GHz Intel Core Duo
MacBook on MIT’ network, downloading data from S3 over SSL took
roughly 10% longer than downloading the same data over raw HTTP. This
minor overhead demonstrates that the computational cost of encrypting
data these days is really minor compared to other costs; nonetheless,
encryption still isn't free.

Integrity for stored data is accomplished with an end-to-end check using
the MD5 cryptographic hash as a checksum. When an object is stored to
S3, Amazon’s system computes the MD5 of that object and returns that
hash with its response. My S3 implementation compares Amazon’s com-
puted hash with a hash that I computed locally. If the two don’t match, my
implementation resends the data. Although my implementation will send
objects of any size, my code never sends objects larger than 16 MB.

Short-term availability is a reflection of Amazon’s connectivity, the load on
its servers and network fabric, and even the reliability of its code. In my
testing I found that somewhere between 0.1% and 1% of all PUTs had to be
retried because the PUT did not complete successfully. Normally PUTs suc-
ceeded on the second retry, but sometimes I needed to retry three or four
times. An Amazon employee posting in one of the developer forums rec-
ommended implementing an exponential back-off for failed writes [1], but
my implementation just retries as soon as it receives an error. After writing
more than a terabyte to S3, I never experienced a failure that required
more than four retries.

Long-term availability is a bigger question, unfortunately. Once the data is
actually stored at S3, it's Amazon’s responsibility to ensure that it remains
available for as long as the customer pays the bills. Amazon claims that the
data is stored on multiple hard drives in multiple data centers. Unfortu-
nately, Amazon doesn’t back up this claim with any sort of Service Level
Agreement (SLA). There is also no backup or recovery service in the event
that you accidentally delete some important data. As a result, it'’s important
to maintain a backup of any important data stored inside S3.

The authentication strategy of Amazon Web Services (AWS) looks quite
robust at first. Unfortunately, it’s really a steel bunker built on a foundation
of quicksand.

AWS supports a simple authentication strategy based on the SHA1I-HMAC
algorithm. Every AWS account has an Access Key ID and a Secret Access
Key. The Access Key ID is a 20-character string that’s used to uniquely
identify your account; the Secret Access Key is a 41-character string that’s
used to digitally sign SOAP and REST requests. To sign a request, you sim-
ply compute the HMAC of the request parameters using the Secret Access
Key as the key for the HMAC. This HMAC is sent along with the request.
Amazon’s servers, which know your Secret Access Key, compute the same
HMAC. If the two HMACs match, then the request is authorized. Requests
include a timestamp to prevent replay attacks.

The HMAC approach is fast, efficient, and pretty secure. The underlying
weakness is that the credentials are downloaded from the AWS Web site.
This means that anyone who knows your Amazon username and password
can download your Secret Access Key. Since Amazon allows the password
to be reset if you can’t remember it, by simply clicking on a link that’s sent
to the account’s registered email address, anyone who has control of your
email system can effectively delete all of the information you have stored
in S3. Amazon will have to rethink this authentication architecture before
organizations can trust it with mission-critical information.

COMMODITY GRID COMPUTING 9



10

;LOGIN: VOL. 32, NO. 1

The other real problem with S3 is the cost structure: Currently it costs
nearly as much to upload and download a piece of information as it costs
to store that same data for three months. Although this may be a dramatic
demonstration that the cost of storage is dropping much faster than the
cost of bandwidth, these bandwidth charges make S3 simply unaffordable
for many projects. Unfortunately, Amazon’s pricing made the S3 service
completely unusable for me until the company introduced its second grid-
computing offering—a high-performance computing utility that let me
move my computation close to my data.

The Elastic Compute Cloud

Amazon’s Elastic Compute Cloud (EC2) makes S3’s pricing strategy far
easier to manage by eliminating the bandwidth charges for moving data
between storage and computation.

As its name implies, EC2 lets you rent time on a “cloud” of computers.
These computers are all the equivalent of 1.7-GHz Xenon servers with 1.25
GB of RAM and 160 GB of local disk. The cost of these machines is 10
cents per CPU per hour. As with S3, it costs 20 cents per gigabyte to move
data between the rest of the Internet and EC2. However, there is no charge
to move between EC2 and S3. According to Amazon, each virtual machine
has 250 megabits per second of bandwidth, although how that translates to
speed between EC2 and S3 depends upon a variety of factors.

The “machines” that Amazon delivers with EC2 are actually virtual ma-
chines, each running on top of the Xen platform. You create a virtual
machine by storing a disk image inside S3 using special tools that Amazon
provides and then running a Java program that instantiates the virtual
machine. A second Java program lets you monitor the progress of the
machine’s creation; when it is ready, the script displays the computer’s
hostname. Obviously, the image that you instantiated should have an
account that lets you log into the machine.

Because EC2 is based on Xen, it should support any Linux distribution as
well as NetBSD, FreeBSD, Plan 9, and other operating systems. In practice,
though, EC2 is largely based on the RedHat Fedora Core operating system,
although there are instructions on the Internet for using it with Ubuntu
distributions. I found this disappointing, because FreeBSD and Darwin, fol-
lowed by Ubuntu, are my preferred operating systems.

Amazon makes no promises about the reliability of the EC2 computers:
Each machine can crash at any moment, and they are not backed up. In
my experience these machines don’t crash, but, remember, computers do
fail. If you want reliable storage, you can run two or more EC2 machines
as a cluster. A better approach, though, is to have the EC2 machines store
information in S3, which is sold as a reliable, replicated service.

What'’s really neat about EC2 is that you can build a small system and
expand it as it becomes more popular, by simply bringing up more virtual
computers. In fact, you could even bring up virtual machines on Thurs-
days and Fridays, if those are your busy days, and shut those machines
down during the rest of the week.

The EC2 security model is similar to that of S3, except that commands are
signed with an X.509 private key. Unfortunately, you download your pri-
vate key from the AWS Web site, so the security still fundamentally de-
pends on the AWS username and password. That private key can be used
to start up machines, shut them down, and configure the “firewall” that



;LOGIN: FEBRUARY 2007

protects your virtual machines on the EC2 infrastructure. The firewall
allows you to control which IP addresses and ports on the Internet can
reach which of your virtual machines. By default all ports are closed,;
youwll probably want to open the firewall to allow port 22 (ssh) through,
at the least. Machines that run Web servers should probably have port 80
opened. And, of course, you'll probably want to configure the firewall so
that your virtual machines can communicate with each other, at least on
some ports.

Amazon had an early security problem with EC2: The company was
neglecting to wipe the computer’s virtual disk drives before switching them
from one customer to another. That problem has since been corrected.

s3_glue: A C++ implementation of the S3 REST API

As T already mentioned, I've been using S3 and EC2 for my research in
computer forensics. As part of my research I've created an open source sys-
tem for imaging hard drives and storing the results in highly compressed
but random-access disk images [2]. This October I added support for S3 to
the library so that images could reside on the local computer or on Ama-
zon S3.

Amazon provides code samples for S3 in C#, Java, JavaScript, Perl, Python,
and Ruby. Although these examples are instructive, my disk-imaging sys-
tem is written in C++ for performance reasons. To make the code usable
for others I separated out the basic S3 implementation from the code that
is specific to my forensics library. The implementation can be downloaded
from http://www.simson.net/s3/. It uses libcurl [3] for HTTP.

Recall that S3 objects are all given object names and that these objects are
in turn placed into buckets. The REST API turns object and bucket names
into URLs of the form http://s3.amazonws.com/bucket-name/object-name.
Data is downloaded with an HTTP GET and uploaded with an HTTP PUT.
There is also provision for setting up a virtual host (e.g., http://bucket.s3
.amazonws.com/object-name), which makes it somewhat easier to have S3
directly serve Web content to browsers.

S3 requests are authenticated through additional terms that are added to
the query section of the URL. The “Signature=" term includes the HMAC
of the requests headers represented in a canonical form and the user’s AWS
Secret Access Key. The “Expires=" term allows you to specify when the
query will expire. Finally, the “AWSAccessKeyld=" term specifies the
requestor. Remember, authentication isn’t needed for buckets that are
world-readable or world-writable.

HTTP 1.1 allows a client to request a range of bytes; S3 implements this
part of the protocol, allowing you to request a few bytes of a very large
object. S3 limits an object overall to 5 GB, although a bug in Amazon’s
load balancers means that objects are effectively limited to 2 GB in size. I
store disk images larger than 16 MB as multiple pages, each of which is 16
MB in length before being compressed, so the 2GB limitation wasn't a
problem for me.

My S3 implementation provides simple and efficient C++ functions for list-
ing all buckets that belong to a user, making a new bucket, deleting a
bucket, selectively listing the contents of a bucket, getting an object, saving
an object, and removing an object. The code supports arbitrary name/value
pairs for metadata on an object. This metadata needs to be stored with an
object but can be independently retrieved.

COMMODITY GRID COMPUTING 1



12

;LOGIN: VOL. 32, NO. 1

S3 is pretty powerful as far as it goes, but there is a lot of functionality
missing. There is no way to rename an object, for example. There is no
way to search—you can'’t even search for objects of a particular length or
that have a particular metadata field in their headers. In this way, S3 is a lot
like Berkeley DB or the Python “dictionary” data structures: You can store
data, get it back, and iterate. Anything else is up to you. Because objects
can be listed and retrieved in lexical sort order, I expect that many applica-
tions will encode a lot of information inside the file name. That’s what I
did.

In addition to my S3 implementation, I've also created a command-line
utility called “s3.” This program is mostly for testing the S3 library and
maintenance of the S3 system. It implements UNIX-like commands for list-
ing the contents of a bucket, copying the contents of an object to standard
output, deleting an object, deleting a set of objects, and managing buckets.
This program is also available from my Web site.

Crunching the Numbers

In my research I have been running programs that take literally a month

to run on a workstation with a terabyte hard drive. With Amazon’s EC2
and S3 I can split the task up and run it on 30 virtual computers over the
course of a day, for roughly $72. Or I can run it on 60 virtual computers
for 12 hours, again for $72. This simple example demonstrates the big
advantage of renting time on another organization’s grid over building your
own. Unless you have enough work to occupy your grid 100% of the time,
every hour that a computer isn’t working is an hour that you paid for but
received nothing in return.

There are other alternatives to Amazon’s offerings. Dreamhost, an ISP that I
use for some of my personal work, just dramatically lowered the cost of its
Web-hosting plans. For just $9.95/month you can have 200 GB of storage
(automatically increasingly by 1 GB each week) and 2 TB a month of band-
width. Amazon would charge $30 for the same storage but a whopping
$400 for that much bandwidth. Unfortunately, Dreamhost had significant
reliability problems this past summer.

Pair.com, a premium Web-hosting company at the other end of the cost/
performance spectrum, charges $9.95/month for a basic Web-hosting
account with 500 MB of disk storage and 40 GB per month of bandwidth.
Amazon would charge 7.5 cents for the storage and $8 for the same band-
width. Pair.com will rent you a dedicated 2.8-GHz Celeron computer with
512 MB of RAM and an 80-GB hard drive with 600 GB per month of traffic
for $249/month. Amazon’s EC2 machines are faster, have twice the RAM
and twice the local disk, and cost just $72/month, although that 600 GB
per month of bandwidth will cost you another $120. On the downside,
Pair will provide 24/7/365 server monitoring and support, whereas the
Amazon servers can crash and there is no support other than what's avail-
able in the developer forums. But Pair won't let you bring up 50 machines
after lunch and then shut them down when you go home for dinner.

Whereas Amazon’s EC2 is an automated provisioning system for virtual
machines, another approach is being pursued by 3Tera, a small company in
Aliso Viejo, California. 3Tera has developed an operating system for grid
computing that allows a single application to be deployed across multiple
machines in an automated fashion. As of this writing 3Tera has licensed its
technology to UtilityServe, which will run AppLogic-based applications for
between 75 and 99 cents per RAM-GB hour; bandwidth is $1.49 to $1.99



;LOGIN: FEBRUARY 2007

per GB; the company includes between 100 and 4000 GB of storage in its
base packages, and it sells additional storage for $99 per 50 GB.

Conclusions

S3 and EC2 are obviously both young and immature services: They are
tantalizing in what they promise, but Amazon needs to address the issues
of authentication, availability, and long-term stability before businesses
should seriously rely on this offering. I wouldn’t trust my business to S3 or
EC2 without a signed contract in place that clearly outlined Amazon’s obli-
gations and my recourse against Amazon if those obligations were not met.

At the same time, I think that S3 and EC2 are a taste of the kinds of com-
puter utility services that will be available in the not-so-distant future.
High-quality storage, computation, and bandwidth will be available at
commodity prices. With any luck other companies will reimplement the
server side of Amazon’s APIs, making it possible to move a service easily
from one provider to another. With these kinds of services, I can spend my
time using a computer utility, rather than building one from blade servers
and RAID boxes. I can then devote my time to worrying about algorithms
instead of rack space, electricity bills, and cooling.

Because it is running so many computers, Amazon can run them a lot
cheaper than I can. Assuming that the company can make good on its
implicit availability and bandwidth commitments, this is going to be a very
compelling offering.

REFERENCES

[1] http://developer.amazonwebservices.com/connect/thread.jspa
?messagelD=46813.

[2] http://www.afflib.org/.
[3] http://curl. haxx.se/.

COMMODITY GRID COMPUTING 13





