RIK FARROW

rik@usenix.org

;LOGIN: VOL. 31, NO. 6

| RECENTLY READ A SUMMARY OF
new vulnerabilities in 2006 which stated
that, for the first time, buffer overflows had
fallen from number one to number four.
The new “leaders” in the vulnerability and
exploit race were cross-site scripting (XSS),
SQL-injection, and PHP file inclusion. Many
pundits drew from this the conclusion
that buffer overflow vulnerabilities are in
decline. If only that were true, perhaps we
would be seeing some light at the end of
this tunnel.

Developers, security companies, and vendors have
done considerable work to retire buffer overflows
as security issues. The early work includes scripts
that simply scan for offending string manipulation
functions, such as strcpy() in source code. Replac-
ing strcpy() with strncpy() adds bounds checking
when copying a string, and as long as the length
of the destination string is used as the bounding
value, this actually helps a lot. In the security
business, we call this “low-hanging fruit,” as find-
ing and fixing these vulnerabilities is as simple as
running a tool.

Other pathways to uncovering buffer overflows
include tracing input flows. An attacker manipu-
lates buffer overflows by providing some mali-
cious input, so the defending coder needs to fol-
low the flow and see how any input gets used. I
don’t want to make this sound easy, because it’s
not. Take the Sendmail vulnerability in the
address checking function that missed decrement-
ing a counter while parsing email addresses. That
bug had been there for many years, unnoticed—
until it was found in 2003. A second, similar bug
was found later in 2003, also in code that checks
email addresses.

Code reviews that can find bugs like these are
tedious. After the first bug was found, I down-
loaded the patches for Sendmail, then used them
to find the buggy routine (although there were
multiple functions patched, looking for ones relat-
ed to user input helped to shorten the search).
Then I walked through the crackaddr() function in
the header.c file, certain the mistake would be
found there. The error was there, I guessed cor-
rectly how it worked, but I didn’t actually uncover
the crucial place in this function where a variable
should have been decremented. It just isn't that
easy.



;LOGIN: DECEMBER 2006

A hacking group didn’t find the missing decrement either. They debugged
vulnerable versions of Sendmail and found a way to overwrite a FILE object
so that a read callback would point to their own, handcrafted code. This
code makes an outgoing connection to port 25/tcp at the IP address of the
attacker’s choosing [1] and runs a root-owned shell.

Invoking the Hardware Mantra

Since code reviews are so difficult, coming up with a solution that bypasses
code reviews is imperative. And there are many such solutions, some done
in software, and better ones manifested through appropriate use of hard-
ware.

Crispin Cowan et al. [2] created the idea of placing a value in memory
that would be overwritten during a buffer overflow, and testing that value
works as a check for buffer overflows. This idea, known as the “stack
canary,” forms the basis for many software protection schemes, including
one used by Microsoft. If this worked reliably, there would no longer be
exploitable buffer overflows in Microsoft code, as evidenced by the emer-
gency patch released on September 26 to fix a buffer overflow in the Vector
Markup Language (vgx.dll) code in IE versions 5 through 7 [3].

There are, of course, other techniques that can be used to thwart buffer
overflows. RedHat, in its versions of the Linux kernel, uses several soft-
ware techniques, most notably by changing the layout of memory during
process creation. By changing the location of the stack within an 8K win-
dow, getting an exploit to work correctly becomes much more difficult
(but could succeed eventually).

Sun Microsystems has long included software support in its kernel for
hardware protection. Sun’s SPARC chip architecture makes it easy to make
the stack nonexecutable, and this has been an option since the mid-1990s
in Solaris. Other prominent CPU vendors lagged way behind on this fea-
ture. Intel processors, until more recent versions, could have nonexe-
cutable stacks only by using a kludge that involved segment registers. New
AMD and Intel processors now make it much simpler to enable hardware
stack protection by no longer lumping write and execution permission bits
in memory management together.

Kiss of Death

Even if programmers and chip designers had solved stack-based buffer
overflows, we still have to deal with other related programmer errors,
including format string, integer overflow, and double free bugs. None of
these ever attained the number 1 status of buffer overflows, but all make it
into the top 40 vulnerabilities [4]. Protecting the stack does make exploita-
tion more difficult, but not impossible, as people are still writing both
buffer overflow and other bug-related exploits.

When I posted some of my thoughts about buffer overflows being toppled
from number 1 by Web scripting bugs, I got an even more thoughtful
response from Chris Wysopal. Chris pointed out that a buffer overflow that
gets prevented by any of the methods I've mentioned here has been con-
verted into a Denial of Service attack. All the mechanisms designed to
defend against buffer overflow to date halt the execution of the offending
program. With the exception of multiply threaded servers, such as Apache,
or ones that watch for untimely server death, such as Postfix, the server

MUSINGS



;LOGIN: VOL. 31, NO. 6

has died, denying service. Remember, if your Web browser mysteriously
dies while following a link, it may be a victim of an “unsuccessful” buffer
overflow attack.

“We stopped the buffer overflow attack, but the patient died.” How sad.

Just as significant, Chris pointed out that buffer overflow attacks have not
declined statistically. To me, this is the most damning point of all. Buffer
overflows have fallen to number 4 in the top 40 CVE vulnerability list only
because Web scripting bugs have increased in popularity. The absolute
number of buffer overflows has remained almost constant over the past
five years.

Web Services

Web scripting/programming errors now make up four of the top five
reported vulnerabilities. The “dot” category stands for vulnerabilities that
rely on the use of “..” to view or execute files that should be protected. I
would have thought that, like SQL-injection and XSS, these attacks should
have fallen to careful inspection of client-supplied input. Sadly, I am mis-

taken. People continue to make the same mistakes year after year.

I don’t want to trivialize this problem. XSS, in particular, is difficult to deal
with, although scrubbing <script> from user input to Web scripts would go
a long way toward curing this issue.

What really struck me was the “new” PHP bug, file inclusion, involving
simply appending a bit of text to a request to a PHP script. PHP has a rep-
utation for making it easy to write insecure Web scripts, and this flaw cer-
tainly bolsters that impression.

The Lineup

Team CYMRU leads off the 2006 Security focus issue with an article about
the computer underground. Rob Thomas gave the keynote at SRUTI [5] on
this very topic. If you have ever worried about sharing your personal infor-
mation online, or with anyone, whether he or she is a bank clerk or just
some anonymous person on the phone, you will want to read this article.
It’s not just the level of fraud but, as the authors write, the lack of any
attempt to hide criminal activities that is just astounding. No wonder we
haven’t caught bin Laden by this time if the United States and other coun-
tries continue to permit blatant identity trading to go on (not that identity
traders are never caught; see [6]).

Next, a trio of German researchers share information about how they
detect and quarantine infected Windows systems on a university network.
Through the use of Nepenthe, a low-interaction honeypot, they can both
capture malware and detect without any false positives infected systems on
their network. I know that this is an issue for many organizations, and the
approach described here appears worth pursuing. Also, Gobel, Hektor, and
Holz describe the Haxdoor malware and the vast cache of identity informa-
tion it captured in just nine days.

I so enjoyed Andy Ozment’s Security 06 presentation that I asked him to
write for ;login:. Andy and Stuart Schechter have statistically analyzed the
bugs found in OpenBSD, relating each bug not just to the code patched but
to when that code appears in OpenBSD. Perhaps there is some light at the
end of this security tunnel after all.



;LOGIN: DECEMBER 2006

Nick Weaver and Dan Ellis carefully explain why white worms, those that
attempt good works rather than exploits, are not a good idea. If you have
ever considered writing a white worm, this article is certain to dissuade you.

Mike Scher, past ;login: contributor and winner of the “legal counsel of this
issue” award, entertains us with musings about tort law and negligence. A
recent case grabbed Mike’s attention, and he uses a similar, but fictitious,
case to describe just how an organization might be liable for negligence. If
you write policy or have anything to do with administering public servers,
you need to read this article.

Finally, Mike Howard argues that changing passwords too often can be
more harmful than simply using strong passwords. I believe Mike makes
his case well.

In the Sysadmin section, Mark Burgess continues his excellent series about
the nature of configuration management. After reading (and editing)
Anderson’s “Configuration Management” [7], I thought I knew it all. But
Mark has a different way of viewing things and a very convincing way of
getting the reader to look at configuration management issues in a new light.

Dave Josephsen’s article borders on security, but it really does belong in the
Sysadmin section. Dave got me interested when he told me about BGP
hijacking attacks designed to support spammers. Stopping spam is Dave’s
real focus, but the BGP attack is interesting in itself. Dave narrates the
story of the spam wars, reaching a conclusion you might recognize if you
have read Dave’s writing before.

Our columnists have done their work as well, with David Blank-Edelman
deciding to write about security in the same sense that TSA protects those
flying in U.S. airspace. Robert Haskins writes about the use of wireless by
ISPs, including solutions that may apply to those who have chosen to live
remotely. Heison Chak considers the security-related aspects of using VoIP.
Robert Ferrell enlightens us on the uses of sledgehammers in computer
security.

In the Book Reviews section, Elizabeth Zwicky continues her search for
good Windows security books, finding two, and tells us about reading
Security and Usability, an interesting collection of papers that came out last
year. Sam Stover reports on yet another Syngress book that contains some
new material and loads of repeated chapters. Finally, I managed to write a
couple of reviews myself.

Nick Stoughton has produced another article in his series about standards.
Nick has been the USENIX representative for standards for many years,
and these articles allow you to get an insider’s view of standards processes
(some of which will affect you).

We have three summaries in this issue, all related to security. The Security
'06 conference summaries belong in this issue, of course. Dan Geer has
produced excerpts from a much longer summary of MetriCon, the first
workshop on security metrics. And the organizers of the New Security
Paradigms Workshop have produced a very concise summary of hours of
discussion.

I would like to leave you with some parting thoughts related to the
CYMRU article about stolen identity. During my Guru presentation in
Boston at USENIX Annual Tech, I pondered aloud about how it is that

in this supposedly modern age our identity can be described in approxi-
mately 160 bytes of information. This small amount of data covers every-
thing you would need to present to get a car or home loan—and every-

MUSINGS



thing an identity thief would need as well. I think this is absurd, but I will
confess that I haven't come up with (and patented) a workable solution.

In the meantime, I suggest that you watch your own credit and banking
reports closely. Someone else’s jackpot could easily be your own misfortune.

REFERENCES

[1] “Technical Analysis of the Remote Sendmail Vulnerability”:
http://lwn.net/Articles/24292/.

[2] “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks”: http://www.usenix.org/publications/library
/proceedings/sec98/cowan.html.

[3] “Microsoft Internet Explorer VML Buffer Overflow”:
http://www.kb.cert.org/vuls/id/416092.

[4] “Vulnerability Type Distribution in CVE,” posting about the CVE top
38 (not 40, but that sounds better) vulnerabilities of 2006:
http://www.attrition.org/pipermail/vim/2006-September/001032.html.

[5] 2nd Workshop on Steps on Reducing Unwanted Traffic on the Internet:
http://www.usenix.org/events/sruti06/.

[6] “Hacker Hunters,” Business Week (May 30, 2005): http://www
.businessweek.com/print/magazine/content/05_22/b3935001_mz001
~htm?chan=tc.

[7] P Anderson, “System Configuration”: http://www.sage.org/pubs
/14_sysconfig/.

SAVE THE DATE! www.usenix.org/usenixoy

2007 USENIX ANNUAL TECHNICAL CONFERENCE
JUNE 17-22, 2007, SANTA CLARA, CA

Join us in Santa Clara, CA, June 17-22, for the 2007 USENIX Annual Technical Conference.
USENIX has always been the place to present groundbreaking research and cutting-edge

practices in a wide variety of technologies and environments and 2007 is no exception.

USENIX ANNUAL TECH IN 2007 WILL FEATURE:

e An extensive Training Program, covering crucial topics
and led by highly respected instructors

e« Technical Sessions, featuring the Refereed Papers
Track and a Poster Session

e Plus BoFs and more!

Join the community of programmers, developers, and systems professionals in sharing
solutions and fresh ideas.

;LOGIN: VOL. 31, NO. 6




