RIK FARROW

rik@usenix.org

2 ;LOGIN: VOL. 31, NO. 5

SOME GUY FROM QUALCOMM TOLD
me, during the USENIX Security program
committee party in Vancouver, that he was
amazed that | could come up with so many
columns. Sometimes | wonder about that
too, as | strive not to repeat myself or to
travel down already well-worn paths. Just
like following a rutted road, it is all too easy
to follow the groove.

I've just returned from the USENIX Security con-
ference in Vancouver, the fifteenth such confer-
ence, and, as usual, I find myself depressed. Not
just because the conference, which itself was a lot
of fun, is over, but because not enough has
changed.

True, some students showed how they could build
a simple device that was able to monitor the key-
board serial cable for possible username/password
combinations. The students came up with a
scheme that encoded passwords by varying the
time between keystrokes by 20 milleseconds,
adding some framing, and repeating the same
sequence of timings. If those keystrokes travel
across a network, even as part of an encrypted
SSH connection, they will expose the password.

Isn’t anything safe? No, not really, but there cer-
tainly are ways that we could make things better.
Sitting in on the 2006 USENIX/ACCURATE
Electronic Voting Technology Workshop
(www.usenix.org/events/evt06), I learned that
cryptographic techniques which would make vot-
ing more accurate have existed for many years. In
his presentation, Josh Benaloh of Microsoft Re-
search said that the hard problems in voting, such
as accurately recording votes, accurately counting
those votes, and providing the voter with proof
that her vote was recorded as cast without reveal-
ing the way she voted, are manna to cryptogra-
phers. Give them a difficult problem, and they eat
it up. So now we have a choice of solutions, not
just one. Are we using them? Not in the U.S.

Joseph Lorenzo Hall, a lawyer at UC Berkeley,
suggested that we need to add a new category to
open source licensing—*“open disclosure.” “Open
disclosure” means that vendors maintain both
control of and the license to their software, but
openly disclose the code so that it can be checked
for correctness. This sounds like a great idea,
especially in countries where everything gets done
for a profit, from prisons to hospitals, and even
voting machines. But there are flies in this oint-



ment, as some voting vendors’ code is so ugly that they would likely drop
out of the business sooner than reveal their code. As he said this, I heard
mumblings in the room from people who had actually had permission to
audit DRE (Direct Recording Election) machine code, quietly agreeing
with him about the crappiness of the code used in popular voting
machines.

Another talk really knocked my socks off (yes, I was wearing shoes). Ka-
Ping Yee, also of UC Berkeley, talked about work he had done with David
Wagner, Marti Hearst, and Steve Bellovin to create voting software. They
had split the voting code into two parts: the set of images that represent
the ballots and screens that make up the user interface, and the code that
interprets the voter’s input. Each image, representing a particular contest
for, say, corporate commissioners, can be rendered in advance, tested,
approved, and digitally signed. The logic that ties the images together,
creating a flow from one screen to the next, can also be verfied through
testing. Sounds pretty simple, and it actually is. Instead of the 31,000+
lines of C++ code sitting on top of the Microsoft Foundation Libraries and
Windows CE that’s found in Diebold’s DRE system, Ping and his friends
wrote their functional e-voting software in 293 lines of Python and just a
couple of libraries. Hmmm, seems like that just might be short enough to
audit.

There was much more going on during EVT 2006: read the summaries in
this issue of ;login:. I left knowing that it was definitely possible to create
trustworthy voting systems and that Europe, Australia, India, and other
countries had successfully worked with e-voting systems, but my own
country, the U.S., had decided to stick with systems known to be broken or
ones still sealed in secrecy.

IMumination

There were certainly bright notes during the Security conference: for
instance, Andy Ozment presented a paper showing that code, at least
OpenBSD code, actually has been getting better. He and Stuart Schechter
showed that most of the security problems found in OpenBSD came from
code inherited when OpenBSD was forked from NetBSD. These bugs con-
tinued to be found for many years, while a much smaller amount of new
code was found to contain bugs as well. Finally, a ray of hope, and one that
might apply to other code bases as well.

But I'm still depressed. Unsurprisingly, no new technique for guaranteeing
the security of any computer system appeared. Instead, we are besieged by
growing complexity. Sure, you can still strip down a UNIX, Linux, or BSD
system to its bare minimum and reduce your risk factor enormously. The
version of Linux to be used in the One Laptop per Child (laptop.org) proj-
ect will be extremely stripped-down, as befits an OS designed for a single
hardware target (no extra device drivers) to be used by children, with no
system administration needed. There are still some floppy-disk versions of
UNIX-like operating systems around, and many more that fit into small
(16MB) flash devices. These come close.

But when I run a process listing on a Linux, Mac, or Windows system, 1
am astounded at the number of processes and dismayed at the number of
processes I don't recall enabling or needing. The complexity of desktop
systems has grown along with the apparent need to coddle the user. Oh, I
guess I should write “improve the user’s experience.” While it is true that



automounting a CD and popping open a file browser or music player is a
nice feature, it still represents complexity and provides an attacker with
the ability to execute commands as the currently logged-in user. If you
wonder if this ever happens, just consider the Sony BMG debacle of late
2005, when it was disclosed that millions of Windows systems had a file-
hiding rootkit installed in the name of digital rights management (DRM).
Ed Felten of Princeton provided a great synopsis of why many vendors do
the wrong thing, while Apple has managed to do the right thing with their
DRM. And Felten’s student, Alex Halderman, gave us the details of the
rootkit.

Please do not think that because you use Linux, BSD, or Mac OS X you are
not vulnerable. During Black Hat, a conference occurring simultaneously
with Security ‘06 (too bad), two researchers displayed a wireless hack that
affects most Wi-Fi devices based on Atheros chips and demonstrated it on
Mac OS X Tiger—just because of the perceived security of that OS. No OS
is immune to faults, but some systems will have fewer faults than others.

Lineup

In this issue, we lead off with Steve Johnson. In the June *06 issue of ;login:
I mentioned that Steve had found some surprising performance results
when he experimented with data locality. Keeping often-referenced ele-
ments close together, in structures, has become a mantra in modern pro-
gramming (see Spinellis in the April 2006 ;login:), but Steve clearly shows
that this may not be the best strategy. Programmers (and system design-
ers), take note!

Mike Howard sounds off next with a response to Luke Kanies’s article
(login:, April 2006) about Ruby. Mike considers Python nearly as object-
oriented (completely so in v2) as Ruby, with many of the same features as
Ruby but more maturity.

In the Sysadmin section, Mark Burgess continues his series on configura-
tion management. He is followed by Brad Knowles, who discusses in detail
the state of NTP, providing excellent advice about the appropriate use of
NTP and stratum one and two timeservers.

The Technology section brings something for which I have been searching:
a discussion of CPU and system technology designed to deal with the large
difference between CPU and memory speed. Richard McDougall and James
Laudon write about Sun’s new T1 CPU architecture. In a computing world
dominated by Intel and AMD, Sun has taken a very different tack, reverting
to an earlier processor design, then building an eight-core, multi-threaded
system. The T1 architecture provides some very significant throughput
gains in applications that already have many threads, such as Apache and
Oracle, while using much less power (and producing less waste heat) than
their powerful competitors’ chips. People whose applications match this
processor’s strengths owe it to themselves (and their energy budgets) to
take a close look at this technology.

Timo Sivonen then explores two techniques for using encrypted file sys-
tems within FreeBSD. Timo explains how he tried two GEOM encryption
facilities, GBDE and GELI, and compared their performance, including the
use of different encryption algorithms.

In the Network section, Mike Freedman writes about OASIS, a system for
automating server selection. Like two articles that appeared in the June 06



issue of ;login:, this article is based on a paper that appeared at NSDI "06.
The OASIS system provides ways that clients can be directed to the most
appropriate server. Most systems for choosing the best of a set of replicated
servers choose the closest server, but the OASIS algorithm also takes into
account the current load reported by each server.

I wrote the next article in response to a request from Teus Hagen of NLnet.
Teus thinks that the world needs a project to create a low-cost networking
infrastructure. As I dug into this topic, I could see that while there are
some projects dancing around the edges of this issue, what Teus has in
mind goes much further. This article explores some issues in wireless tech-
nology, using RoofNet as an example, then ends with Teus’s wish list for
this new technology.

David Blank-Edelman has written the second half of column about tie(),
outdoing himself (as usual), while Robert Haskins takes a look at the
world of anti-spam solutions. Heison Chak considers how echo arises in
VoIP. Robert Ferrell is back with another /dev/random column, to be taken
not seriously but certainly thoughtfully. After an excellent selection of
book reviews, two articles about the standards process, and USENIX Notes,
this issue ends with an array of conference reports: 2006 USENIX Annual
Tech, SRUTI ’06, and EVT *06.

The mention of standards reminds me of something I wanted to include in
this Musings. Nick Stoughton’s description of work on the ISO-C commit-
tee sent me to an article by Dennis Ritchie on the birth and early life of the
C programming language. I enjoyed reading Nick’s article, but I equally
appreciated Dennis’s viewpoint on the development of C (and reading
about Steve Johnson’s part in this). You can find this article at http://cm
.bell-labs.com/cm/cs/who/dmr/chist.html.

I will confess that I see some features of the C language very differently
from that of one of its creators. I heard this echoed during USENIX
Security, where one panelist described C as “the best macro-assembler ever
written.” My own view of C is similarly colored, as I found it wonderfully
close to the assembly I was using when I first learned C. But I also like to
call C the programming language for people who write operating systems,
and I hope that the many programmers who don’t write operating systems
will consider writing in strongly typed languages that have bounded arrays
and don’t allow manipulation of pointers. The computing world would be
a much safer place if they did so.





