MARSHALL KIRK MCKUSICK

disks from the
perspective of a

MOST APPLICATIONS DO NOT DEAL
with disks directly. Rather, they store their
data in files in a file system. One of the key
tasks of the file system is to ensure that the
file system can always be recovered to a
consistent state after an unplanned system
crash (e.g., due to a power failure).

file system

Dr. Marshall Kirk McKusick writes books and articles,
consults, and teaches classes on UNIX- and BSD-
related subjects. He has twice served on the Board
and as president of USENIX.

kirk@usenix.org

18 ;LOGIN: VOL. 31, NO. 3

Although the file system must recover to a consis-
tent state, that state usually reflects the state of
the file system sometime before the crash (often
data written in the minute before the crash may
be lost). When an application needs to ensure that
data can be reliably recovered after a crash, it does
an fsync system call on the file or files that con-
tain the data in need of long-term stability. Before
returning from the fsync system call, the file sys-
tem must ensure that all the data associated with
the file can be recovered after a crash, even if the
crash happens immediately after the return of the
fsync system call.

The file system implements the fsync system call
by finding all the dirty (unwritten) file data and
writing these data to the disk. Historically, the file
system would issue a write request to the disk for
the dirty file data and then wait for the write-com-
pletion notification to arrive. This technique
worked reliably until the advent of track caches in
the disk controllers. Track-caching controllers
have a large buffer in the controller that accumu-
lates the data being written to the disk. To avoid
losing nearly an entire revolution to pick up the
start of the next block when writing sequential
disk blocks, the controller issues a write-comple-
tion notification when the data are in the track
cache rather than when they are on the disk. The
early write-completion notification is done in the
hope that the system will issue a write request for
the next block on the disk in time for the con-
troller to be able to write it immediately following
the end of the previous block.

This approach has one seriously negative side
effect. When the write-completion notification is
delivered, the kernel expects the data to be on sta-
ble store. If the data are only in the track cache
but not yet on the disk, the file system can fail to
deliver the integrity promised to user applications
using the fsync system call. In particular, seman-
tics will be violated if the power fails after the
write-completion notification but before the data
are written to disk. Some vendors eliminate this
problem by using nonvolatile memory for the
track cache and providing microcode restart after



;LOGIN: JUNE 2006

a power failure to determine which operations need to be completed.
Because this option is expensive, few controllers provide this functionality.

Newer disks resolve this problem with a technique called tag queuing. With
tag queuing, each request passed to the disk driver is assigned a unique
numeric tag. Most disk controllers supporting tag queuing will accept at
least 16 pending I/O requests. After each request is finished, the tag of the
completed request is returned as part of the write-completion notification.
If several contiguous blocks are presented to the disk controller, it can
begin work on the next one while notification for the tag of the previous
one is being returned. Thus, tag queuing allows applications to be accu-
rately notified when their data have reached stable store without incurring
the penalty of lost disk revolutions when writing contiguous blocks.

Tag queuing was first implemented in SCSI disks, enabling them to have
both reliability and speed. ATA disks, which lacked tag queuing, could
either be run with their write cache enabled (the default), to provide speed
at the cost of reliability after a crash, or with the write cache disabled,
which provided reliability after a crash but at about a 50% reduction in
write speed.

To try to solve this conundrum, the ATA specification added an attempt at
tag queuing with the same name as that used by the SCSI specification, Tag
Command Queueing (TCQ). Unfortunately, in a deviation from the SCSI
specification, TCQ for ATA allowed the completion of a tagged request to
depend on whether the write cache was enabled (issue write-completion
notification when the cache is hit) or disabled (issue write-completion
notification when media is hit). Thus, it added complexity with no benefit.

Luckily, with SATA there is a new definition called Native Command
Queueing (NCQ) that has a bit in the write command that tells the drive if
it shall report completion when media has been written or when cache has
been hit. Provided that the driver correctly sets this bit, the disk will have
the correct behavior.

In the real world, many of the drives targeted to the desktop market do not
implement the NCQ specification. To ensure reliability, the system must
either disable the write cache on the disk or issue a cache-flush request
after every metadata update, log update (for journaling file systems), or
fsync system call. Because both of these techniques lead to noticeable per-
formance degradation, they are often disabled, putting file systems at risk
in the event of power failures. Systems for which both speed and reliability
are important should not use ATA disks. Rather, they should use drives
that implement Fibre Channel, SCSI, or SATA with support for NCQ.

DISKS FROM THE PERSPECTIVE OF A FILESYSTEM

19





