April 2004 ;login:

k review

SOFTWARE ARCHITECT BOOTCAMP,

2ND ED.
RAPHAEL C. MALVEAU AND
THOMAS J. MOWBRAY
Upper Saddle River, NJ: Prentice Hall, 2003.
Pp. 400. ISBN 0-13-027407-0.
Reviewed by Harry DeLano
hdelano@adelphia.net

OVERALL IMPRESSIONS

Reviewing books isn't as much fun as
writing software, but it can be pretty sat-
isfying. | was a bit skeptical when |
began reading this book, mostly because
of a personal aversion to things military
and bureaucratic. The bootcamp anal-
ogy kind of bothered me because, as |
see it, the primary purpose of military
training is to turn a human being into a
mindless, obedient drone. My attitude
softened as | realized that there is a lot of
common sense here that would help one
to understand the culture if one happens
to get involved in a large software proj-
ect. Actually, this book is more like Offi-
cer Candidate School than bootcamp
and seems designed to help someone’s
career develop from “just” programming
into leading a team of developers to suc-
cessfully deliver a system.

If that’s what you're interested in, this
book might be for you. It reviews the
techniques and tools used to help design
a system at very high levels of abstrac-
tion, taking into account a wide range of
points of view. It also covers many of the
software development environments
currently available. The reader is also
offered tips on how to mold oneself pro-
fessionally, including advice on how to
improve communication skills and a
discussion of various aspects of the psy-
chology of software development.

In spite of my background in engineer-
ing application development, system
administration, and systems program-
ming on various platforms, as well as
participation as a systems analyst on
large software development projects, |

BOOK REVIEWS

found the perspective taken in this book
was pretty much new territory. The
overview to the use of components here
is enlightening.

OVERVIEW OF BOOK

Bootcamp is about the need for software
architects and the role they should play
in large commercial software develop-
ment projects. “The era of limitless
demand for IT talent is over.” This is
partly due to the methods described
here to build these systems. Techniques
and technology in this field have evolved
to allow more regimented and con-
trolled development. (This, by the way,
has made outsourcing easier.) What are
these techniques and technologies? A set
of formal models has evolved for speci-
fying (1) what the problem is, (2) who
cares, and (3) how that system will be
built. The new technologies include the
use of components (as opposed to just
objects) in building large, distributed
software systems.

The book is organized by chapters corre-
sponding to some aspect of military
training (e.g., “Jump School,” “Military
Intelligence™), with a final chapter con-
taining advice on how to design your
career. Again, the military analogy used
to explain how one might be a software
architect fits well with the authors’ rigid
and hierarchical view of how teams
might best work.

THE DETAILS

What follows is a collection of what
seemed to be the salient points from
each of the first five chapters of the
book.

CHAPTER ONE: INTRODUCTION

This chapter includes some interesting
(unverified) facts worth mentioning:
“Corporate America spends more than
$275 billion each year on approximately
200,000 application software develop-
ment projects”; application development

Book REVIEWS

61

62

success rates were only 16% in 1994 vs.
26% by 1998; the cost of failed projects
went from $80 billion in 1995 to $75 bil-
lion in 1998; cost overruns dropped
from “$59 billion in 1005 [sic, probably
1995] to . .. $22 billion in 1998.”

CHAPTER TWO: MILITARY HISTORY

This is an overview of the field of soft-
ware architecture. It seemed a little inco-
herent to me in that it introduces five
“schools of thought” on the subject and
then goes on to describe only a couple of
them thoroughly, interspersed with gar-
bled references to others. For example,
they throw in a mention of “Enterprise
Architecture” without providing previ-
ous noticeable context to help under-
stand how it fits into the discussion.

An attempt is made to justify the need
for architects and to describe how one
operates, including what tools they use
to build system specifications. In design-
ing a system, the architect needs to con-
sider multiple viewpoints to achieve
simplicity, maintain strict consistency in
terminology to achieve system under-
standing, and use the notion of “com-
plete models,” describing multiple
phases of development while taking care
not to get too detailed. There are tech-
niques available to allow the considera-
tion of several points of view of the
project. One of the approaches to defin-
ing a model (the Zachman Framework)
provides for 30(!) viewpoints.

Information systems have evolved from
static and local to dynamic and global,
so that we now have distributed multi-
organizational systems with heteroge-
neous hardware and software configura-
tions. The architect needs to be able to
separate concerns about business appli-
cation functionality from concerns
about distributed-system complexity.
Requirements change frequently and
account for the majority of system soft-
ware costs of the life cycle, so there’s a
need to “future proof” the architecture.

book reviews

Once careful consideration has been
given to what problem the system will
solve, there needs to be a way of describ-
ing the solution in fairly general terms.
We used to write systems in which the
code was all in one place and data was
in another, but both were in the same
neighborhood. Then the object-oriented
approach came along and software is
now written so that the code and the
data it is associated with are encapsu-
lated into elements (objects). These
objects work together through message-
passing mechanisms (fairly local and
fairly primitive (sockets, RMI, etc.).
Lately, it has been found that these
object-oriented elements need to work
with each other in very heterogeneous,
widely distributed environments. There
are many common approaches used in
the various communication environ-
ments (“idioms”) that could be
abstracted and used in specifying how
the software project might solve a prob-
lem.

The drift of this chapter seems to be that
there is a need for a good set of architec-
tural tools to describe how to have a suc-
cessful software development project.
One reason is that there is a need for a
system to be resistant to requirements
and context changes. In the past, writing
specifications and using object-oriented
development techniques were sufficient.
However, that was before the need for
globally distributed enterprise require-
ments. Now the problem needs to be
described from various stakeholders’
points of view. These techniques allow
one to propose solutions that are
abstract enough that the underlying
technology can be ignored above a cer-
tain level in the hierarchy of system
stakeholders (investor, architect, devel-
opment manager, developer). Develop-
ment can then proceed by taking
advantage of component-based tools to
bring the higher-level vision to fruition.
Development and implementation tech-
nologies can be left as details.

The authors make the point that 70% of
the code in a typical application is infra-
structure. Component technology sup-
posedly means that reinventing the
wheel is no longer necessary. That was
the promise of OO programming, but
now the “idioms” we see over and over
again that are used to have objects play
together are defined as abstract elements
of models and have been made part of
the infrastructures that are now available
for component-based development.

The authors review various approaches
to this need and seem to settle on the
OSI’s X.900 Reference Model for Open
Distributed Processing as about the best
currently available. There are other
choices (e.g., IBM’s 4+1 View Model),
but most are variations on the theme of
RM ODP.

These tools force one to take several
points of view in describing a solution
to the problem: enterprise (what the sys-
tem’s purchaser needs it to do); informa-
tion (what data will flow and how);
engineering (familiarity with the guts of
the infrastructure, similar to an OS engi-
neer); computation (partition of the sys-
tem into components that can inter-
operate in a distributed fashion and def-
inition of the boundaries between com-
ponents, and use of CORBA IDL [see
below]); technology (component inter-
operability concerns).

RM ODP is described over the course of
about 200 pages in a set of four docu-
ments that are concise but “relatively
inscrutable.” This includes conformance
assessment criteria that can be used to
decide whether or not the project is
going well.

The notion of “design patterns” is intro-
duced, which has been used to codify
and document a lot of software knowl-
edge. The authors state that patterns
represent a rejection of originality as a
technical goal (so leave your imagina-
tion at home). A very formal mechanism
exists for documenting patterns, and

Vol. 29, No. 3 ;login:

these are collected in catalogs you can
buy and which architects should study
to be pattern literate. Design patterns are
derived as follows: a single design occur-
rence is an event; two occurrences are a
coincidence; three constitute a pattern.

The formality referred to as “anti-pat-
terns” are patterns, enhanced with anno-
tations, known to have failed in their
attempt to solve a problem. Included is a
description of how a new version might
be derived from that original ill-used
pattern to better solve the original prob-
lem (a sort of tale of woe with a happy
ending). There is a class of patterns
called idioms; these are programming-
language specific (think cookbooks).

CHAPTER THREE: BAsIC TRAINING

Here the authors go over the tools avail-
able to a software architect for doing the
actual development. It reviews a history
of software environments, starting with
procedural technology, in which pro-
gram code exists separate from the data
it deals with. This is OK, but if data rep-
resentation is modified, there can be a
large impact on the program. OO tech-
nology (pieces of data and program ele-
ments to access and manipulate that
data all together — OK but weak for dis-
tributed processing since language-spe-
cific encapsulation is insufficient to
support software reuse and distributed
systems); objects communicating with
each other via messages, devoid of soft-
ware-architecture approach; specifica-
tion objects representing modules; rapid
iterative prototyping, with ruthless dis-
regard for architectural principles (bad).

They describe the evolution of distrib-
uted technology, from file servers
through database servers and transac-
tion processing monitors through dis-
tributed objects to N-tier component-
ware. Object-oriented middleware is an
outgrowth of procedural predecessors,
including RPC, socket-based Open Net-
work Computing, and Distributed Com-

June 2004 ;login:

book reviews

puting Environment. Later, Microsoft’s
Distributed Common Object Model
attempted to add another layer of
abstraction, but, according to the
authors, it still exposed too much of its
underlying distribution mechanism.

CORBA (Common Object Request Bro-
ker Architecture) attempts to provide a
standard interface to services used by
applications, no matter what platform
they run on. Using CORBA Interface
Definition Language is a way to stan-
dardize on APIs throughout a system.
Vendors usually provide hundreds of
APIs, and developers pick and choose
from that list as they see fit, causing
there to be many more used in the proj-
ect than really need be. Providing a layer
between the application and the OS ser-
vices needed by the application that is
tailored to the needs of the organization
simplifies the use of those OS services,
making them more manageable and
maintainable.

In component technology, specification
objects represent constraints rather than
programming objects. It emphasizes
larger-grained software interfaces and
modules. Component infrastructures
include MS .Net and Sun Java Enterprise
Java Beans, including CORBA. Software
architecture for componentware allows
parallel, independent development of
the system or its parts (good for out-
sourcing). It tries to standardize means
of component interaction so that cus-
tom interfaces between individual com-
ponents are minimized. Distributed
components can communicate using
standard interfaces by way of CORBA
and its IDL, which is centered around
the Object Request Broker; CORBA Ser-
vices provide a way to implement
CORBA on particular OS platforms,
including Netscape Communicator(!);
XML allows for universal data inter-
change.

A comparison of J2EE and .Net shows
that .Net is easier to use but J2EE is

more robust and might be preferred by
experienced developers, since it allows
greater programmer flexibility (hey, |
thought that was bad!).

CHAPTER FOUR: SOFTWARE ARCHITECTURE:
GOING TO WAR

Here the authors go over some ways
that large software projects happen and
then lay out steps for an architectural
approach. Most large software is very
fragile (sucks) except for “telecommuni-
cation systems, video games, mainframe
operating systems, or rigorously inspected
systems (e.g., CMM Level 5).” (Hmm,
how about the Linux kernel?) They
point out that traditional system
assumptions are local and assume that
the system will be stable, but in a distrib-
uted system one needs to assume that
things will be global and unstable. This
is like comparing Newtonian mechanics
to quantum mechanics. Also, distributed
systems typically involve more than one
organization to deal with. They recom-
mend the following approach: proactive
thinking (actively anticipate problems);
use design patterns and anti-patterns to
avoid redesigning the wheel; use the
Universal Modeling Language to lay out
and describe the design.

Traditionally, large systems are pulled off
by “heroic programmers” coming in to
rescue a flagging project. They make it
work under extreme time pressure but
typically leave a fragile and undocu-
mented system. Architects must avoid
this by initially laying out the project
very carefully (using the latest tools like
CORBA IDL and UML), making sure
that appropriate development tools are
used (componentware), and staying on
top of the development process to make
sure that no heroes are needed.

The architecture-centered development
process should include the following
steps: system envisioning, requirements
analysis, mock-up prototype, architec-
ture planning, architecture prototype,

BOOK REVIEWS

Book REVIEWS

63

project planning, parallel development
(of components), system transition
(quality assurance), operations and
maintenance (rolling it out), and system
migration (moving the organization
over to the new system). What’s new
about all of this? The process has been
very much more formalized as the com-
ponentware approach has evolved. For
example, the architecture-planning step
involves documenting these architec-
tures using OSI’s ODP: enterprise (how
the business works), logical information
architecture (what objects are needed to
represent the business), computational
interface (what will flow between these
objects and how), distributed engineer-
ing (allocation of responsibilities), and
technical selection (component mecha-
nisms).

CHAPTER FIVE: SOFTWARE ARCHITECTURE:

DRriLL ScHoOL

Here we are introduced to the idea of
using “design levels” to lay out a model.
Design levels have been applied to hard-
ware design for decades and are used to
simplify by separating concerns. Soft-
ware may be looked at as having various
levels of granularity (objects and classes
[the finest, defined by programming
language], configurations of objects [the
next level up], micro-architecture,
frameworks, applications, systems [the
coarsest]).

The last five chapters of the book cover
how best to provide leadership in a soft-
ware development project. Topics
include how to be a good leader, project
management basics, the architect’s role
vis-a-vis the project manager, various
roles in the software design process,
teamwork communication skills, using
UML, architectural mining, and the psy-
chology of software development. Some
highlights follow.

The architect acts as an assistant to the
project manager.

book reviews

Many experienced programmers will not
be able make the shift from the proce-
dural to the object paradigm.

Component architectures can be looked
at as having four layers: foundation
(classes to manage basic object services),
domain (business entities), application
(specialized domain classes for particu-
lar views), and user interface (tailored
application classes for various types of
user).

There’s a “process for creating processes”
(sub-projects?). The software architect
must be an expert in teamwork and
make sure that the team works well
together. Also, he or she has responsibil-
ity for explaining incremental develop-
ment to upper management, justifying
required shifts in architecture.

It’s often necessary to force the “lone
wolf” developer into constructive inter-
action.

There are lot of issues with regard to
communications, including running
good brainstorming sessions (and being
able to decide when they’re needed),
keeping good records of meetings, mak-
ing sure consistent terminology and
modeling notation is used, and listening
well.

Use Universal Modeling Language to
document the meta-model of applica-
tions and systems. “Design a thing con-
sidering its next larger context — a chair
inaroom.”

Architectural mining is extracting from
preexisting designs information on how
those designs could be applied to the
problem at hand.

Polya’s paradox: It's often easier to solve
a general problem than a specific one
(which may have an overwhelming
amount of detail).

The traditional approach of “analyze
requirements, design, code, test” is being
replaced by a more iterative approach

wherein this cycle is done repeatedly
over the life of the project for a particu-
lar piece of the system. This provides for
more feedback opportunities.

Psychological techniques include being
able to propagandize without seeming to
do so. Taking advice is difficult by
nature. Architects need to avoid situa-
tions where positive feedback causes
developers to get carried away in the
next phase by trying to top themselves.
This usually leads to a system that’s too
complex.

Signs of egomania in software architects
(sampling): Forgetting that the job is
about communicating, not winning
arguments; use of the royal “we”; refer-
ring to developers as “grunts”; believing
these signs are about someone else.

“A typical adult gets angry about ten
times every day.” Not me.

Career advice is offered, including how
architecture isn't taught much in schools
yet; so, for now, you'll have to develop
your own curriculum.

CONCLUSION

As | said earlier, | was skeptical when |
first got this book, but I'm now glad I
had a chance to spend time with it. It
covers a fast-developing field and pro-
vides lots of detail that might be handy
to delve into if ever one finds oneself
working on a large enterprise software
project. In fact, it might convince you
that you want to be a software architect.
Further information can be found at the
Worldwide Institute of Software Archi-
tects (http://www.wwisa.org).

Vol. 29, No. 3 ;login:

