
79

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

S3rd USENIX Conference on
File and Storage
Technologies (FAST ‘04)
MARCH 31–APRIL 3, 2004
SAN FRANCISCO, CALIFORNIA

TECHNICAL SESSIONS

RELIABILITY & AVAILABILITY
Summarized by Kiran-Kumar
Muniswamy-Reddy
Best Paper award
ROW-DIAGONAL PARITY FOR DOUBLE DISK

FAILURE CORRECTION

Peter Corbett, Bob English, Atul Goel,
Tomislav Grcanac, Steven Kleiman,
James Leong, and Sunitha Sankar, Net-
work Appliance, Inc.
Peter Corbett described a new algo-
rithm, Row-Diagonal Parity (RDP), for
protection against double failures and
described its application to RAID.

The RDP algorithm uses a simple parity
scheme based on EX-OR operations.
Each data block belongs to one row-par-
ity set and one diagonal parity set. In a
simple RDP array, there are p + 1 disks.
The stripes across the array consist of
one block from each disk. In each stripe,
one block holds diagonal parity, one
block holds row parity, and p – 1 blocks
hold data. Every row parity block has an
even parity of the data blocks in the row,
excluding the diagonal parity block.
Every diagonal parity block has an even
parity of the data and row parity blocks
in the same diagonal. In case of double
disk failure, each diagonal misses one
disk, and there are two diagonal parity
sets that miss only one block. Once we
recover one block, we can recover a
complete row. Using this, we recover
another diagonal, and so on.

In the Q&A session, someone asked why
weren’t triple (or more) failures consid-
ered. The speaker said that double fail-
ures are the more common case and that
this could be extended for triple failures.

Another asked whether the algorithm
could really be added to an existing
RAID, as the paper claims. The speaker
replied that it could be added to an
existing RAID.

IMPROVING STORAGE SYSTEM AVAILABILITY
WITH D-GRAID
Muthian Sivathanu, Vijayan Prab-
hakaran, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau,
University of Wisconsin, Madison
This paper won one of the two Best Stu-
dent Paper award.

The talk was given by the primary
author, Muthian Sivathanu. Normal
RAID works on a simple failure model.
The basic premise of this work is that if
D or fewer disks fail, RAID or D-GRAID
continues to operate with some de-
graded performance. The disk array
becomes completely unavailable once
more than D disks fail. D-GRAID de-
grades gracefully and also recovers
quickly in the event of a disk failure.

For graceful degradation, D-GRAID
uses two techniques: selective metadata
replication and fault-isolated data place-
ment. In selective metadata replication,
the naming and system metadata struc-
tures of the file system are highly repli-
cated. Thus, failures of a few disks do
not render the entire array unavailable.
In fault-isolated data placement, seman-
tically related blocks are placed within
the array’s unit of fault-containment.
For example, all the blocks of a file are
placed within a disk. This way, semanti-
cally meaningful data units are available
under failure. Since fault-isolated data
placement reduces the parallelism inher-
ent in RAID, they make copies of blocks
of “hot” files across the drives of the sys-
tem.

FAST ‘04 l

This issue reports on the First Sympo-
sium on Networked Systems Design
and Implementation (NSDI ‘04) and on
the 3rd USENIX Conference on File and
Storage Technologies (FAST ’04).

For NSDI ‘04: Our thanks to Amin
Vadhat, who shepherded the following
summarizers:

Magdalena Balazinska
Laura Grit

Vinay M. Igure
Suchita Kaundin

Chip Killian
Ramakrishna Kotla

Xun Luo
Vinay Mallikarjun

Piyush Shivam
Chunqiang Tang

Praveen Yalagandula
Aydan Yumerefendi

For FAST ‘04: Thanks to Ismail Ari and
his summarizers:

Michael Abd-el-Malek
Nitin Agrawal

Akshat Aranya
Dean Hildebrand

Andrew Klosterman
Xun Luo

Kiran-Kumar Muniswamy-Reddy
Steve Schlosser

Shafeeq Sinnamohideen
Deepa Tuteja

Wenguang Wang
Lan Xue

Aydan Yumerefendi

Note: The reports on BSDCon ‘03, held
in San Mateo, California, September
8–12, 2003, can be found at
http://www.usenix.org/events/
bsdcon03/confrpts.pdf

MEASUREMENT, MODELING,
AND MANAGEMENT
POLUS: GROWING STORAGE QOS MANAGE-
MENT BEYOND A “FOUR-YEAR-OLD KID”
Sandeep Uttamchandani, Kaladhar
Voruganti, John Palmer, and David
Pease, IBM Almaden Research Center;
Sudarshan Srinivasan, University of
Illinios at Urbana-Champaign
Summarized by Nitin Agrawal
Sandeep Uttamchandani described the
Polus framework, which addresses the
QoS goal transformation problem in the
context of policy-based storage manage-
ment.

In spite of prior research and standardi-
zation, the problem of mapping high-
level QoS goals to low-level storage
device actions still yields complex and
error-prone processes. Polus generates
this mapping by using a combination of
rule-of-thumb specifications, a reason-
ing engine, and a learning engine. Cur-
rently, policies are specified as a col-
lection of rules in <event, condition,
action> format, and the management
module simply invokes the appropriate
rule. The problems with this approach
are complexity (the level of detail
required in generating the rules) and
brittleness with respect to changing sys-
tem configurations and workloads.

Polus performs the balancing act by
requiring only high-level specifications
from the administrator and using
machine learning and pre-packaged pro-
cedures for the rest. The paradigm
essentially consists of three parts: taking
input from toolkit user, quantifying the
relations using learning functions, and
base strategies.

The work illustrates how Polus can pro-
vide storage management guidance to a
simulated Storage Area Network file sys-
tem. A quantitative comparison of Polus
with rule-based systems is done for dif-
ferent system states. A future direction

80 Vol. 29, No. 3 ;login:

of work is to handle incomplete and
even incorrect specifications.

During the Q&A, someone pointed out
that the decision of when to perform
prefetching, which was described as a
candidate for a Polus-based learning
framework, would be good only if it is
taken quickly. Sandeep’s response was
that they used the prefetching example
only as an illustration. Managing a real
system using the Polus paradigm is cur-
rently under implementation. In sum-
mary, the paper proposes Polus as a
conceptual stepping stone in the direc-
tion of “non-rule”-based approaches for
automated system management.

In normal RAID, recovery is slow, as all
the blocks in a disk must be recovered.
D-GRAID makes recovery fast by recov-
ering only the “live” file system data, i.e.,
data that is currently in use by processes.

BUTTRESS: A TOOLKIT FOR FLEXIBLE AND
HIGH FIDELITY I/O BENCHMARKING

Eric Anderson, Mahesh Kallahalla,
Mustafa Uysal, and Ram Swaminathan,
Hewlett-Packard Laboratories
Summarized by Steve Schlosser
Mustafa Uysal presented Buttress, a flex-
ible, highly accurate I/O generation tool.
Buttress can be configured both as a
synthetic workload generator and as a
trace replayer. Reproducing very heavy
I/O workloads with high fidelity
requires a great deal of care, especially to
correctly handle bursts of traffic, which
exist in many workloads. The authors
contend that getting this right requires
I/Os to be issued within 100 microsec-
onds of their intended arrival time.
Another goal of Buttress is to be as
portable as possible and not to require
modifications to the host operating sys-
tem. With this goal in mind, Buttress is
implemented as a user-level program,
working with standard pthreads on both
Linux and HP-UX. It requires a multi-
processor machine to produce the

desired I/O loads of up to 100,000 I/Os
per second.

In order to generate a workload with
very high fidelity, Buttress has to deal
with many issues. First, Buttress has to
minimize latency to shared data struc-
tures by reducing contention at high
load. It does this by minimizing the
number of lock operations, minimizing
critical section time, and using bypass
locking. Second, Buttress must minimize
the impact of unpredictable OS behavior
owing to unpredictable system-call
latencies and preemption due to inter-
rupts. It must deal with multiprocessor
clock skew by recalibrating the clock
when a thread switches CPUs. To handle
timing variations on thread wakeup,
threads are allowed to pre-spin before
they are to issue events. Lastly, it uses a
single low-priority spinning thread to
keep track of time.

To evaluate Buttress, they compared its
performance to two simple trace replay
methods. The first uses existing OS
syscalls like Select and Sleep to handle
timing, and the second uses a dedicated
thread to spin and keep track of time.
Using a range of workload traces, they
showed that Buttress issues the majority
of requests within 100 microseconds of
their intended issue time and handles
bursts better than the simple schemes.

One questioner in the Q&A session
wondered if Buttress verified data that
was written to the disks using check-
sums. Mustafa answered that in this
methodology the data that is actually
stored is not important, just the I/O
requests themselves, and that Buttress
does not write any real data to the disks.
Another asked whether there is value in
extending Buttress to operate at the file
system level rather than the block level.
Another asked if using realtime exten-
sions to Linux or HP-UX would help the
simple replay methods that just use sys-
tem calls. Mustafa said they tried that

with realtime HP-UX but that the results
still weren’t as good as with Buttress.
Another asked about the intuition
behind why such accuracy is necessary.
Mustafa said there were two factors:
naive approaches end up issuing I/Os
out of order, and handling bursts cor-
rectly requires higher accuracy than one
would think.

DESIGNING FOR DISASTERS

Kimberley Keeton, Cipriano Santos,
Dirk Beyer, Jeffery Chase, and John
Wilkes, Hewlett-Packard Laboratories
Summarized by Steve Schlosser
Keeton presented a solver to automati-
cally design basic dependability solu-
tions for large storage systems based on
a customer’s workload, recovery require-
ments, and the penalties of outages in
terms of dollars lost. Using these param-
eters, and a few assumptions about the
types of recovery mechanisms that are
available, the system formulates a mixed
integer program and uses an existing
solver, CPLEX, to find a solution.

The system uses simple models of the
available hardware (i.e., hosts, storage
area networks, and disk arrays) and of
the available data protection mecha-
nisms (i.e., remote mirroring, tape
backup). Remote mirrors can use syn-
chronous or asynchronous updates, with
or without batching. Tape backup solu-
tions can be kept locally or off-site. A
system can use the secondary copy either
for failover or to reconstruct the pri-
mary copy. Lastly, the secondary copy
can be kept hot or unconfigured, and
can be dedicated or shared.

Given all of these alternative configura-
tions and the customer’s requirements,
the goal of the system is to find the best
configuration to meet the customer’s
needs.

The key is to express the user’s depend-
ability requirements in terms of mone-
tary penalties (dollars per hour). First is

81June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sthe data-outage penalty rate, which is
the penalty until the system comes back
up. Second is the data-loss penalty rate,
which is how much recently written data
is lost when the system goes down.
Given these penalties and the customer’s
workload requirements, the system can
find the optimal solution.

They evaluated the system using the
Cello 2002 file system trace from HP
Labs, looking at the average bandwidth
multiplier for bursts of activity and at
the batch update rate. They used a num-
ber of different scenarios ranging from a
university IT department backing up
student directories to a large financial
institution with regulatory requirements
for backup and availability. These sce-
narios ranged from cases in which data
loss was not so important to those for
which data loss would be a business
catastrophe. The examples illustrated the
choices of dependability solutions that
were appropriate for those scenarios.

During Q&A, a questioner wanted to
know if the models took into account
the solution’s performance requirements
as well as dependability requirements.
Keeton said that they only consider
update rates as an element of the solver,
but that other issues of performance are
an area of future work. She also men-
tioned that outlay costs are annualized
and depreciated over three years with
one failure per year. Another questioner
mentioned that financial penalty is not
linear and should be asymptotic. Keeton
agreed that this is an important exten-
sion to this work. The last questioner
asked if this method can be used to
extend existing systems. Keeton said, yes,
the system can do this.

KEYNOTE ADDRESS
SCALING FILE SERVICE UP AND OUT

Garth Gibson, Panasas, Inc., and
Carnegie Mellon University
Summarized by Dean Hildebrand
Garth Gibson discussed the need for
improvements in file access and several
current methods for doing so. He
believes that quality expectation drives
technology, with the highest level of
quality being demanded by the Tri-labs
and the oil and gas industry, requiring
throughput of 1GB/s and 1.2GB/s,
respectively. For technology to improve
and breach the chasm, the need for such
performance must be demanded by the
masses. This includes the need for both
file and file aggregate bandwidth
improvements.

Current improvements started with the
evolution from monolithic supercom-
puters to Linux clusters, giving a cost
improvement from $100 million/Tflop
to $1 million/Tflop. Garth then dis-
cussed several phases of file access
improvements that have occurred since
this development:

n Scaling up the NAS File Server
To eliminate the single file-server
bottleneck, the file system is parti-
tioned among several file servers.
Limitations: Cannot increase the
aggregate throughput of a single
file/directory.

n Partitioning is a manual process
and quickly becomes non-optimal.
Backup consistency issues.

n Scaling out phase 1: client data
cache. Exploits client data cache,
i.e., NFSv4 delegations. Limitations:
Workloads can exceed client cache
size.

n Scaling out phase 2: forwarding
servers. Binds many file servers into
a single system image. Forwards
requests from accessed file server to
the data’s home file server. File sys-
tem still partitioned, with each file

FAST ‘04 l

server providing global data access.
Limitations: Data not directly con-
nected to accessed file server must
travel through two file servers.

n Scaling out phase 3: any server will
do. All file servers have access to all
storage (not indirectly through
another file server). Limitations:
Throughput for a single file is not
increased.

n Scaling out pPhase 4a: asymmetric
out-of-band. Clients obtain file lay-
out map from a metadata server
and access storage devices directly.
Limited by network instead of CPU.
Examples: SanFS, EMC High Road,
SGI CXFS, Panasas, etc.

n Scaling out phase 4b: symmetric
out-of-band. Client cluster is file
server. Examples: RedHat GFS, IBM
GPFS, Sun QFS, etc.

The description of file service scaling
improvements concluded with a state-
ment that Phase 4 is the most advanced
architecture currently available. Panasas
has combined the architecture of Phase
4a with object-based storage, an evolu-
tionary improvement to standard SCSI.
Each object is a container of related
data, offloading most data path work
from server to an intelligent device.
Garth explained that the features of
object storage he likes the most are
metadata encapsulation, extensible
attributes, security at device through
digital signatures, and a smaller file lay-
out map allowing more caching while
providing performance and scalability
for a variety of workloads.

Garth concluded with a statement that
the most important aspect in improving
throughput is utilizing out-of-band file
access. Therefore, a pNFS (Parallel NFS)
initiative has started to provide a single
standard framework for data access,
whether it is based upon blocks, objects,
or files. This effort will continue to
reduce file access cost by sharing client
support among all vendors, enabling the

82 Vol. 29, No. 3 ;login:

file service to scale up and out for use by
the general population.

GRABBAG
DIAMOND: A STORAGE ARCHITECTURE FOR
EARLY DISCARD IN INTERACTIVE SEARCH

Larry Huston, Rajiv Wickremesinghe,
Intel Research Pittsburgh; Rahul Suk-
thankar, M. Satyanarayanan, Gregory
R. Ganger, and Anastassia Ailamaki,
Carnegie Mellon University; Erik Riedel,
Seagate Research
Summarized by Aydan Yumerefendi
Larry Huston presented Diamond, an
attempt to provide efficient searches
over large volumes of data. The key
insight behind the system is to move
some of the search functionality to the
storage servers and to discard irrelevant
data as soon as possible. By distributing
the search over a number of servers,
Diamond speeds up query execution. It
also limits the network traffic by sending
only relevant data.

Diamond uses Active Storage to execute
client-specified queries wrapped in
“searchlets.” Each searchlet consists of
configuration code and a number of
predicate filters, which are applied in
sequence and determine the useful data.
The system also dynamically manages
the load among the storage servers and
the client machine by using two differ-
ent algorithms: CPU partitioning dele-
gates work based on the CPU power of
each machine, and queue backpressure
considers each system stage as a queue
and maintains a certain load on each
stage.

The implementation of Diamond runs
on RedHat Linux 9. Tests of the system
use SnapFind, a custom application for
performing searches in digital images.
The evaluation results show that Dia-
mond performs well and correctly bal-
ances the load among all participants.
An audience member pointed out that
searchlets do not maintain state and, as a
result, they limit the system expressive-

ness. Larry answered the question by
saying that lack of state allows for better
load distribution, yet gives the system
enough expressive power.

More information about this project can
be found at http://info.pittsburgh.
intel-research.net/project/diamond/.

MEMS-BASED STORAGE DEVICES AND
STANDARD DISK INTERFACES: A SQUARE PEG
IN A ROUND HOLE?
Steven W. Schlosser and Gregory R.
Ganger, Carnegie Mellon University
Summarized by Andrew Klosterman
Steven Schlosser introduced a novel
storage device, the MEMStore, a mag-
netic storage device that uses X- and Y-
axis motion to access desired data. He
explained how the settling time of the
seeks is dependent on the maximum of
settle time in both the X- and Y-axis,
and that the X-axis settling time domi-
nates.

In evaluating this new storage technol-
ogy, Mr. Schlosser compared the inter-
face of current storage technologies
(logical block addressing) with various
alternatives for the MEMStore that
might exploit its unique characteristics.
He examined roles (uses of MEMStores
in systems) and policies (ways to change
systems to specifically use MEMStores).
Two tests were used to evaluate the fit-
ness of MEMStores for a given role or
policy: a specificity test and a merit test.
The specificity test evaluated the fitness
of a MEMStore for a particular role or
policy. The merit test evaluated whether
a change in the abstraction for use of the
storage device was warranted.

After presenting some results of tests
from his paper, Mr. Schlosser concluded
by mentioning that MEMStores can be
used as fast disks in systems with pro-
grammers using the familiar LBN
addressing scheme.

During the Q&A session, Dan Ellard of
Harvard asked whether or not the

“busiest disk” from the EMC trace saw
the most I/Os or had the worst seeks,
because (Dan claimed) sometimes lots
of small I/Os tend to be sequential. Mr.
Schlosser did not have an answer to the
question, but posited that by replacing
that disk with a MEMStore, the trace
replay improved, thus validating the use
of MEMStores in that role. Another
question was raised as to the actual
performance of the MEMStore research
prototypes, but Mr. Schlosser had to
inform the audience that no instances of
the device he modeled yet exist as fully
implemented storage systems.

Additional information may be obtained
from http://www.pdl.cmu.edu/MEMS.

A PERFORMANCE COMPARISON OF NFS AND
ISCSI FOR IP-NETWORKED STORAGE

Peter Radkov, Prashant Shenoy, Univer-
sity of Massachusetts; Li Yin, University
of California, Berkeley; Pawan Goyal
and Prasenjit Sarkar, IBM Almaden
Research Center
Summarized by Wenguang Wang and
Lan Xue
This paper turned out to be the most
controversial paper of the conference.
Prasenjit Sarkar presented a perfor-
mance comparison of two IP-networked
storage protocols that allow remote data
access. The basic idea is to measure how
performance differs when clients access
remote data via file system versus IP-
based storage area networking (SAN).
NFS and iSCSI were used as specific
instantiations of file- and block-level
access protocols in this experiment.

Using combinations of micro- and
macro-benchmarks, this paper provides
a thorough comparison between NFS
versions 2, 3, and 4 and iSCSI. Individ-
ual file and directory operations and
overall application performance are
measured, with both data-intensive
workloads and metadata-intensive
workloads, under various scenarios.
Also, a decent amount of work has been

83June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sdone to identify the bottleneck of NFS
protocol by capturing and analyzing the
network message overhead.

The experiment results show that for a
single-client environment, NFS and
iSCSI have under comparable perfor-
mance data-intensive workloads, while
iSCSI outperforms NFS by a factor of
two for metadata-intensive workloads.
This work also identifies lack of meta-
data caching and update aggregation as
the two major reasons for NFS degrada-
tion.

However, the fairness of the perfor-
mance comparison between NFS and
iSCSI was questioned. The major con-
cerns and comments raised by the audi-
ence can be summarized as follows: It’s
not an apple-to-apple comparison
because block-level protocol accesses
data directly from storage, which is
straightforward and bypasses file system
layers overhead, while NFS provides
more complex functionality which
incurs extra overhead as a consequence.
In addition, NFS is being improved and
optimized, and the performance of the
NFS prototype can differ greatly from an
optimized implementation of NFS.
Thus, it’s still a question whether the
results and conclusions of this experi-
ment can be generalized to every NFS
implementation.

OPTIMIZING BLOCK ACCESS
A VERSATILE AND USER-ORIENTED
VERSIONING FILE SYSTEM

Kiran-Kumar Muniswamy-Reddy,
Charles P. Wright, Andrew Himmer, and
Erez Zadok, Stony Brook University
Summarized by Michael Abd-el-Malek
Kiran-Kumar Muniswamy-Reddy
described Versionfs, a versioning file sys-
tem that differs from earlier versioning
file systems such as Elephant and CVFS
in that existing applications do not have
to be modified in order to access previ-
ous versions. Additionally, multiple ver-

sioning policies provide flexibility, and
current-version access is optimized.

Whole-file versioning is used, as
opposed to block-level versioning, as
that is viewed as more user-friendly. Ver-
sions are created on close, mmap, or
metadata operations (e.g., chmod). Two
types of per-file versioning policies are
provided: retention (how many versions
to keep – number, total space) and stor-
age (how to store versions – full, com-
press, or sparse). Copy-on-change is
used, which is different from copy-on-
write because the new data is compared
to the old data and a version is created
only if they are different. Existing
(unmodified) applications can work
with versioned files using a preloaded
library that overrides the various file sys-
tem syscalls.

Using the Am-utils benchmarks, the
authors show little (1–4%) time over-
head when using their versioning file
system. Approximately 20% more stor-
age is required for the old versions.
However, the Postmark benchmark runs
two times slower.

Q: Wenguang Wang. Each directory has
more files than before. What’s the
performance penalty?
A: In a directory with many small files
(such as Postmark), we found a differ-
ence in chopping down the directory in
system time. It depends on the lower-
level file system, but, yes, we did find a
difference.
Q: Ed Gould. Hard links were not ver-
sioned, why? If I have two symbolic links
to a file, will operations on each of these
symbolic links create a different version?
A: Yes.
Q: Daniel Ellard. You used open/close to
create new versions. What about NFSv3
that does not have open/close? Alterna-
tively, if you have more than one thread,
how do you create different files?
A: Haven’t done this yet; it’s a direction
for future work.

FAST ‘04 l

Q: When two processes with different
files are open at the same time, how
many versions are created?
A: One on every close; we keep a counter
every time a file is opened.
Q: Brent Calaghan. Insertion/deletion of
data into the middle of files, how does
that work with sparse data mode, where
all following blocks are “pushed down”
and sparse mode won’t be as useful?
A: Yes, that is an issue. There is no way
for us to tell if data is pushed down.

Q: Val Henson. Did you have LD_PRE-
LOAD set to anything else before you
started this project? Because this is not
transparent to the user, since they have
to set LD_PRELOAD.
A: Yes that’s true, the user has to do this.

TRACEFS: A FILE SYSTEM TO TRACE THEM
ALL

Akshat Aranya, Charles P. Wright, and
Erez Zadok, Stony Brook University
Summarized by Deepa Tuteja
Akshat Aranya described the details of
Tracefs, a stackable and portable file sys-
tem developed for capturing file system
traces. The motivation of this work is to
evaluate file system performance and
help in its development. Security appli-
cations, such as monitoring activities,
can also be built based on this work.
The background study or related work
quoted is in the BSD, Sprite, and
Roselli’s FS tracing studies. The work is
based on the design goals of flexibility,
performance, convenience, security, pri-
vacy, and portability.

Architecture of the system is such that
the Tracefs (consisting of a number of
tracers) sits in between the VFS layer
and the file system to be traced. The
main components of the tracer are input
filters, assembly drivers, output filters,
and output drivers. The input filters
determine what to trace based on the
user input. The job of the assembly driv-
ers is to convert the traced operations
and its parameters into a traced stream

84 Vol. 29, No. 3 ;login:

format. The output filters perform a
series of transformations like encryp-
tion/compression. The output is written
to a stable storage by the output drivers.
The stable storage can be a file or a
socket and can be specified by the user.
The traces generated are in binary for-
mat, which helps in saving space and in
parsing.

Anonymization is required to deal with
the concerns of security and privacy. But
at the same time, some correlation is
required for the traces. Here symmetric
key encryption methodology is used for
anonymization.

Evaluation of the system was done on
different sets of input and output filters.
The configuration of input filters used
were:

n full – to trace all file system opera-
tions

n medium – tracing only 40–50% of
the operations

n light – tracing approx. 10% of the
operations

The various output filters used were
none, compression, checksum, encryp-
tion, and all.

The Am-utils and the Postmark bench-
marks, respectively CPU-intensive and
I/O-intensive, were used to test the sys-
tem. The system did not show much
variation for the elapsed time when
using different output filters on the Am-
utils benchmark. For the Postmark
benchmark, there is an overhead over
ext3 for elapsed time and the system
time.

Using compression filters reduces the
size of the traces. The compression ratio
achieved is in the range of 8–21. Post-
mark generates traces 2.5 times faster
than Am-utils, which explains the differ-
ence in overheads. Also, the file size
increases because of the encryption
padding required for anonymization.

To conclude, Tracefs gives a systematic
approach to tracing and is a general
solution that can be applied to various
situations. It can be configured and is
extensible in the sense that any output
or assembly filters can be used with it. It
is mainly helpful in file system develop-
ment and security applications.

Additional information is available at
http://www.fsl.cs.sunysb.edu.

HYLOG: A HIGH-PERFORMANCE APPROACH
TO MANAGING DISK LAYOUT

Wenguang Wang, Yanping Zhao, and
Rick Bunt, University of Saskatchewan
Summarized by Shafeeq
Sinnamohideen
The objective of this work is to improve
disk I/O performance for servers with
multiple concurrent users. Most reads
are absorbed by in-memory buffer
caches, so writes dominate the disk
workload. Write performance is deter-
mined by disk performance (seek time
and bandwidth), strategy (overwrite or
log-structuring), and scheduling. Over-
write overwrites a block’s previous con-
tents with its new contents, possibly
requiring a seek from the last write. LFS
(Log-structured File System) aggregates
small writes together and writes them in
one log segment, making use of the
disk’s sequential write bandwidth. LFS,
however, was generally believed to per-
form poorly for random update work-
loads because of the overhead of
cleaning partially used segments (those
with data that has been superseded by
more recent writes). The authors
observe that advances in disk technol-
ogy, particularly the increasing ratio of
sequential bandwidth to positioning
time, lead LFS to outperform Overwrite
on modern disks, except when disk
space utilization is high.

To overcome this, the authors propose
HyLog, a hybrid scheme that offers the
benefits of both LFS and Overwrite.
They observe that most writes go to a

small number of hot pages, while most
of the overhead in LFS comes from
cleaning cold pages. Thus, HyLog sepa-
rates the disk into an LFS portion for
hot data and an overwrite portion for
cold data and directs writes to the
appropriate section based on the
observed write frequency. On standard
benchmarks, such as TPC-C, HyLog
picks nearly the optimal hot page per-
centage, and thus performs similarly to
the best of both LFS (at low utilization)
and Overwrite (at high utilization)

Bill Morris from Sun asked why a ran-
dom write, sequential read workload
was not evaluated. The response was
that it is not common, but represents a
worst case.

OPTIMIZING BLOCK ACCESS
ATROPOS: A DISK ARRAY VOLUME
MANAGER FOR ORCHESTRATED USE OF DISKS

Jiri Schindler, Steven W. Schlosser, Min-
glong Shao, Anastassia Ailamaki, and
Gregory R. Ganger, Carnegie Mellon
University
Summarized by Andrew Klosterman
Jiri Schindler presented a means for
extending the logical volume abstraction
of disk arrays to accommodate efficient
access to two-dimensional data struc-
tures. Through an example, he showed
how traditional data layouts lead to effi-
cient (streaming sequential) access in
only one dimension. With a modifica-
tion to the data layout, using what he
called “quadrangles,” more efficient
access can be obtained. With quadran-
gles, column-major access can be per-
formed on entire disk tracks at one time
and row-major access is semi-sequential
by exploiting disk head, or track, switch
times as the disk spins (eliminating rota-
tional latency).

Graphical examples of the quadrangle
data layout scheme were presented,
along with a graph showing the
increased efficiency for accessing two-

85June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sdimensional data with quadrangles.
Experiments showed the performance
gains resulting from the more efficient
data layout on TPC trace replays. Mr.
Schindler concluded by pointing out
that by exploiting the physical character-
istics of disks and maintaining the LBN
programming model, efficient access to
two-dimensional data structures was
possible.

During the Q&A session, Wenguang
Wang of the University of Saskatchewan
asked whether switching disk heads
instead of disk tracks would improve
accesses with quadrangles. Mr.
Schindler’s response was that the use of
head switches or track switches
depended on the manner in which the
disk sequenced its logical block num-
bers. Val Henson of Sun Microsystems,
asked how the disk and array parameters
could be extracted such that quadrangles
could be exploited. Mr. Schindler indi-
cated that experimental extraction (e.g.,
at format time) suffices to obtain the
necessary information.

Additional information may be obtained
from http://www.pdl.cmu.edu, the Paral-
lel Data Laboratory at Carnegie Mellon
University.

C-MINER: MINING BLOCK CORRELATIONS IN

STORAGE SYSTEMS

Zhenmin Li, Zhifeng Chen, Sudarshan
M. Srinivasan, and Yuanyuan Zhou,
University of Illinois at Urbana-
Champaign
Summarized by Deepa Tuteja
Zhenmin Li described the use of block
correlations for improving the effective-
ness of storage systems. There have been
previous approaches for exploiting file
correlations, but these did not scale well
enough to be used for block correla-
tions.
There are three possible approaches to
obtaining block correlations: the white
box approach, used by NASD, the gray
box approach, used by SDS, and the

black box approach, used by probability
graphs and C-Miner. The probability-
graph approach works well for finding
file correlations, but cannot be effec-
tively used for block correlations due to
a scalability problem and multi-block
correlation problem. C-Miner gives a
practical black box approach that uses
data mining techniques. It is based on
the “frequent sequence mining” algo-
rithm called CloSpan. The main obser-
vation is that the correlated blocks are
accessed together in a short period of
time. The frequency sub-sequences are a
good indication of block correlations.

For an evaluation of the system, a com-
parison was done among the following
approaches: no prefetching, sequence
prefetching, correlation-directed
prefetching (CDP), and CDP with disk
layout. CDP decreases the miss ratio by
24% and reduces average response time
by 25%. Another test done to determine
the stability of block correlations shows
that they are very stable and effective for
a long time. There are, however, reason-
able time and space overheads associated
with it due to data mining.

C-Miner can improve the performance
of a storage system and involves reason-
able overheads. It can also be used to
solve other problems such as network
traffic monitoring and intrusion detec-
tion.

Additional information is available at
http://carmen.cs.uiuc.edu.

WORK-IN-PROGRESS REPORTS
Summarized by Andrew Klosterman

SELF-*
Andrew Klosterman, Carnegie Mellon
University
The Self-* project is building a brick-
based distributed-object store from the
ground up with management in mind.
Current figures place storage adminis-
trative load at about one administrator
per 5–10 TB. This figure makes manage-

FAST ‘04 l

ment a large part of storage total cost of
ownership.

The system is built around a human
organizational analogy, with individual
storage bricks being self-optimizing
“workers,” while a hierarchy of “supervi-
sors” decide how to spread data and
work across the worker nodes. In the
process of building the system, the team
plans to get real management experience
in order to more effectively target the
problem. More information:
http://www.pdl.cmu.edu/SelfStar.

SPENSA: AN ADAPTIVE DISTRIBUTED FILE
SYSTEM

Douglas Santry, University of Cam-
bridge
The Spensa system is a brick-based clus-
ter system in which all bricks are peers.
Each brick in the system will run the
Xen hyper-visor, to allow bricks to both
store data and do processing. The cluster
will thus be able to run databases, genetic
searches, Web servers, etc., in virtual
machines inside the cluster.

The Xen hyper-visor allows live migra-
tion of virtual machines, which permits
a variety of optimization decisions. For
example, migration can be used to load-
balance or to bring data close to the cor-
responding computation. In addition,
they envision that the system will be able
to snapshot virtual machines, allowing
the system to restart a previous snapshot
if a virtual machine crashes.

MRAMFS: A FILE SYSTEM FOR NON-
VOLATILE RAM USING INODE COMPRESSION

Nate Edel, University of California,
Santa Cruz
Magnetic RAM (or MRAM) is a new
type of non-volatile RAM. The project
studies ways to include MRAM in file
systems. Because MRAM is very expen-
sive compared to disk space, they use
compression to conserve space usage.
The system puts small files in MRAM in
order to improve performance. They

86 Vol. 29, No. 3 ;login:

compress inode data using Gamma
compression and file data on a block-by-
block basis. Gamma compression takes a
128-byte inode down to around 15–20
bytes.

They have a prototype implementation
that only compresses inode data, but will
eventually implement data compression
as well. Evaluation shows that the cur-
rent prototype performs comparably to
ext2 running in a RAM disk. This work
is the starting research for another proj-
ect called the Linking File System.

AVFS: AN ON-ACCESS ANTI-VIRUS FILE
SYSTEM

Charles Wright, Stony Brook University
AVFS is a virus-scanning file system,
which uses a stackable file system
approach to layer virus checking onto an
existing file system. Most current virus
scanners operate on points such as close
or exec. AVFS scans for virus signatures
on every read and write.

The system operates in two modes. In
immediate mode, when a virus is writ-
ten the block is discarded; when it is
read the file is quarantined. However,
this allows a virus to evade detection by
writing itself in several different ses-
sions. To address this problem the sys-
tem also has a forensic mode, in which it
versions files on the first writes, and
does not return an error until a virus
signature is detected in the file. The sys-
tem uses a variant of the ClamAV OSS
scanner, which uses automation for pat-
tern finding. However, ClamAV is slow
in the number of patterns that are searched.
Thus, the AVFS team modified ClamAV
into Oyster, which is faster than the
original scanner.

LIMITING LIABILITY IN A FEDERALLY
COMPLIANT FILE SYSTEM

Zachary Peterson, Johns Hopkins
University
Congress has enacted a variety of data
maintenance acts and regulations to

enhance corporate accountability. Most
of these acts require that storage keep an
audit trail by keeping versions of data.
However, companies want to limit their
liability within compliance to these acts.

This work focuses on how to securely
delete data in a file system that keeps
such an audit trail. Current secure dele-
tion technology either requires multiple
overwrites to remove magnetic signa-
tures, or keeping data encrypted and
securely deleting the key. Both of these
techniques are difficult to perform in a
versioning file system.

This work proposes keeping data
encrypted using a small (128-bit) key
kept in the file inode. This allows the
user to securely delete the file by
securely deleting this key. The current
progress in the project is a modified ext3
file system that performs versioning (but
does not implement this secure deletion
technology). The versioning ext3 file
system can be found at http://www.
ext3cow.com.

MODELING STATEFUL NETWORK FILE SYSTEM
PROTOCOLS USING HIDDEN MARKOV
MODELS

R.J. Honicky, UC Berkeley and Network
Appliance
One difficulty in building synthetic file
system workloads is that operation
orders is very important. For example,
read and write operations to a file must
be performed after an open to that file.

This work proposes the use of hidden
Markov models (HMMs) to model file
system workloads. HMMs have been
used extensively in fields such as speech
recognition. The group uses a vanilla
HMM learning algorithm to generate an
HMM for a trace, along with some
methods to try to avoid local minima.

They have performed some initial work
at validating the results. The operation
counts, and the operation pairing
counts, are similar to the original trace,

and hand inspection seems to show the
traces to be similar.

FILEBENCH

Patrick McDougall, Sun Microsystems
The team asserts that file system bench-
marks are used mainly in two ways.
They are used by vendors to classify and
characterize products, and they are used
by designers to set design goals. For both
of these tasks the benchmarks must rep-
resent applications and not simply I/O.

For example, in cases the group has
encountered, a database ran much more
slowly than corresponding benchmarks
would have suggested. They determined
that it was due to slow performance in a
logging thread, which gated the perfor-
mance of the whole system. None of the
existing benchmarks revealed this criti-
cal dependency.

They are working on a new file system
benchmark that incorporates a variety of
improvements. For example, they hope
to make it modular, to include file sys-
tem aging, to make it scalable by
throughput, users, data set, and clients.

There are a variety of techniques for
benchmarks, each with a set of draw-
backs. Micro-benchmarks have limited
coverage, trace replay can lose depend-
encies, and model-based approaches can
lose important details. They plan to
make a model of I/O generation and
dependencies for individual threads, to
attempt to avoid these problems.

FILE ATTRIBUTE-BASED PREDICTIONS AND
OPTIMIZATIONS

Daniel Ellard, Harvard
This group’s studies have found that
there is a strong association between cre-
ate time attributes of a file and the oper-
ations performed on the file during its
lifetime. They have implemented a sys-
tem that builds a model of these associa-
tions. It is small and can be put into the
kernel.

87June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

SThey are currently exploring ways in
which these associations can be used to
improve file layout, caching, and replica-
tion policies. They also speculate that
this information could be used to make
global tuning decisions and identify
common idioms (such as lock files).

More information on the work can be
found at http://www.eecs.harvard.edu/sos
or http://www.pdl.cmu.edu.

TBBT: A TRACE-BASED FILE SYSTEM
BENCHMARKING TOOL

Ningning Zhu, Stony Brook University
This work focuses on building an NFS
trace playback tool. It is very hard to
capture the important attributes of a
real workload in a model, which makes
trace replay important in a variety of sit-
uations. A variety of traces are available
to the research community, and the
number will continue to increase. This
makes a replayer an important tool.

The playback tool involves a variety of
challenges. For example, creating the ini-
tial file system image is difficult, as is file
system aging, concurrency, error han-
dling, and disk and CPU perturbation
by the tool itself.

The replayer should be available to the
community in two to three months.

RELIABLE PARALLEL FILE TRANSFER

Lu Zhao, Bowling Green State
University
A variety of methods exist to do file
transfer, such as FTP, HTTP, bitTorrrent,
grid FTP, and parallel FTP. This group
hopes to build a protocol that captures
both reliability and parallelism.

In the proposed protocol, clients request
file info from a main server. This main
server knows the location of other stor-
age nodes containing pieces of the data.
This node tells these other nodes to send
data to the client. The data is protected
with checksums; if a checksum fails, the

client can re-request data from another
server.

CAN REPLICAS CONVERGE ACROSS NETWORK
PARTITIONS

Brent Byuonghoon Kang, University of
California, Berkeley
Many systems use optimistic replication,
where updates go to a single replica and
are lazily propagated to other replicas.
Previous work uses a version vector with
an entry for each node; when combined,
the vector takes the highest values of the
previous vectors, plus an update for the
combining itself.

However, with a network partition, the
vectors can diverge. Instead of using a
version vector, this work uses an
approach called a summary hash history,
which they claim allows for convergence
on network partition.

COLLABORATIVE BUFFER CACHES IN DATA
CENTERS

Zhifeng Chen, University of Illinois at
Urbana-Champaign
Many data centers contain heteroge-
neous systems with low latency connec-
tions and a large amount of cache in a
variety of locations. This creates a prob-
lem in that caches often will contain the
same data. This group proposes content-
aware caching, where each cache has
some knowledge of the other caches in
the system and can use this knowledge
to improve its caching policies. This
knowledge can be obtained through
message passing or by prediction of
cache behavior.

DEEP STORE

Lawrence You, University of California,
Santa Cruz
One cost problem in storage systems is
the maintenance of the growing volumes
of archival data. This group proposes a
new archival storage system to ease the
cost and difficulty of maintaining
archival information. For example, they
propose the removal of redundancy

FAST ‘04 l

Erez Zadok from Stony Brook University
questioned how clients that perform
multiple fetches or partial fetches from
mirrors affect Circus. Mirroring reduces
sharing, and thus the benefit, but paral-
lel fetches do not. Erik Reidel from Sea-
gate Research wanted to know how more
sophisticated sharing models such as
90/10 or zipf would affect results. The
response is that the results are applicable
to the shared portion of the workload.
Yitzhak Birk from Technion questioned
whether the use of digital fountain tech-
niques wouldn’t be a better solution to
the problem. While fundamentally dif-
ferent, it shifts the cost into client CPU
usage and disk capacity, which may be
cheaper than improving disk seek time.

A FRAMEWORK FOR BUILDING UNOBTRUSIVE
DISK MAINTENANCE APPLICATIONS

Eno Thereska, Jiri Schindler, John Bucy,
Brandon Salmon, Christopher R. Lumb,
and Gregory R. Ganger, Carnegie Mel-
lon University
Summarized by Michael Abd-el-Malek
This was one of the two Best Student
Paper awards. The talk described a
mechanism for running low-priority
applications that perform disk mainte-
nance (e.g., backup, cleaning, cache
writeback, etc.). Storage systems can use
idle time or “wasted” disk head rotation
time in order to handle disk requests for
the background applications, without
impacting foreground applications.

Idle-time detection is conceptually sim-
ple, and so the presenter concentrated
more on how to make use of “wasted”
disk head rotation time. For example, if
you have two foreground disk requests
that are spaced apart in their disk layout,
then you can process a disk request that
occurs in the middle of the rotation for
free. This constitutes the freeblock
scheduling subsystem.

An API is provided that lets an applica-
tion register its intent to read/write
blocks in the system in the background.

although they may have started at differ-
ent times.

The traditional approach is to serve each
transfer individually and let each client
progress at its own rate. If the requested
file is too large for the server’s cache,
however, the multiple request streams
will thrash in the cache. In the worst
case, the access pattern to the disk
degenerates toward random.

The proposed solution is to use the
client’s memory as a reorder buffer and
transfer each block read from the disk to
each client that needs it in the order it is
read from the disk. Since scheduling the
optimal sequence of transfers is NP-
hard, the following heuristic is used:
First, blocks are read to satisfy the most
demanding (fastest, furthest ahead)
client. Other clients are sequentially
served blocks from the cache as fast as
they can be transferred. If a client falls
far behind, it is moved ahead to the
most recent block, leaving a gap of miss-
ing blocks. When a client reaches the
end of the file, it sequentially reads any
missing blocks.

The system was evaluated with a syn-
thetic workload of requests arriving in a
Poission distribution, uniformly distrib-
uted across files with an average size of
512MB. The server and network were
configured so that the bottleneck to
sequential transfers would be the server’s
disk. Both identical and varied client
network links rates were considered.
With identical links, the network becomes
the bottleneck, and with varied links, the
disk is the bottleneck, but at much
higher performance than with sequen-
tial transfers. Circus is insensitive to
changes in file size, unlike sequential,
but degenerates to sequential if file shar-
ing is low. The conclusion is that content
servers don’t benefit from sharing if the
files they are serving are large, and block
reordering helps if there is sharing, up to
a 10x speedup at the sweet spot.

Vol. 29, No. 3 ;login:88

using inter- and intra-file compression.
They also hope to manage content; data
lives and dies with applications and sys-
tems. Performance is also a challenge,
since many users require near-line access
to archival data.

CACHING & SCHEDULING
CAR: CLOCK WITH ADAPTIVE REPLACEMENT

Sorav Bansal, Stanford University;
Dharmendra S. Modha, IBM Almaden
Research Center
Summarized by Xun Luo
Dharmendra presented CAR, an
enhanced CLOCK-caching algorithm,
which keeps conformation with CLOCK
on the primitives and outperforms
CLOCK across a wide range of cache
sizes and workloads.

The idea of CAR is to maintain two
clocks; one of them contains pages of
“recency” while the other contains pages
of “frequency.” New pages are first
inserted in the former and graduate to
the latter upon passing a certain test of
long-term utility. The researchers did
extensive trace-driven tests on the CAR
algorithm and observed that CAR is
comparable to ARC and substantially
outperformed LRU and CLOCK.

CIRCUS: OPPORTUNISTIC BLOCK REORDER-
ING FOR SCALABLE CONTENT SERVERS

Stergios V. Anastasiadis, Rajiv G.
Wickremesinghe, and Jeffrey S. Chase,
Duke University
Summarized by Shafeeq
Sinnamohideen
The goal of this work is to improve the
scalability of Internet content servers
that perform whole-file transfers, such
as those serving images or non-stream-
ing video and music. In these cases, the
client needs to receive the entire file
before it can make progress. In common
with other Internet services, the major-
ity of accesses are to a small number of
common files. Many clients may simul-
taneously be fetching the same file

An asynchronous calling model is used –
an application callback is called when
the freeblock subsystem is about to han-
dle a disk request. This model is useful
because it gives freedom to the applica-
tion to lazily allocate memory.

Evaluation using TCP-C, Postmark, and
a synthetic benchmark demonstrates
that free disk bandwidth is available,
even if no idle time is detected (e.g., in
the case of Postmark). Foreground
performance is not impacted.

More information is available at
http://www.pdl.cmu.edu/.

MOBILE STORAGE
INTEGRATING PORTABLE AND DISTRIBUTED
STORAGE

Niraj Tolia, Jan Harkes, and M.
Satyanarayanan, Carnegie Mellon Uni-
versity; Michael Kozuch, Intel Research
Summarized by Akshat Aranya
Niraj Tolia presented “lookaside caching,”
a technique that harnesses the conven-
ience and speed of portable storage
devices, such as USB memory keychains,
to enhance performance and availability
of distributed file systems.

Niraj started his talk by asking whether
portable storage devices can be used in
more meaningful ways or if they are just
glorified floppy disks. He showed that
portable devices and distributed file sys-
tems have certain complementary prop-
erties. For instance, portable devices
provide high performance and availabil-
ity, whereas distributed file systems pro-
vide robustness, consistency, and high
capacity.

The basic idea behind lookaside caching
is to use a portable device as a fast cache;
a file server is still the authoritative source
for a file. Whenever a file is opened, its
20-byte SHA-1 hash on the portable
device is compared with that stored on
the server. If the hashes match, then the
file is provided from the portable store;

89June 2004 ;login:

l

 C
O

N
FE

R
EN

C
E

R
EP

O
RT

Sotherwise it is fetched from the server.
The benchmark results show significant
performance improvement for slow
links even when a small number of files
are served by the cache.

The work was questioned for contrived
benchmarks: Why would anyone carry
around the Linux kernel source code on
a portable device for compilation? Also,
a member of the audience suggested
work on policies to decide what to put
in the lookaside cache.

SEGANK: A DISTRIBUTED MOBILE STORAGE
SYSTEM
Sumeet Sobti, Nitin Garg, Fengzhou
Zheng, Junwen Lai, Yilei Shao, Chi Zhang,
Elisha Ziskind, and Randolph Y. Wang,
Princeton University; Arvind Krishna-
murthy, Yale University
Summarized by Akshat Aranya
Sumeet described a system to manage
data and mobile devices in a heteroge-
neous environment. The Segank system
provides a uniform namespace and loca-
tion independence of data without com-
plete replication. The major emphasis of
Segank is on awareness of network char-
acteristics so as to minimize use of weak
links.

Segank guarantees consistency by main-
taining an invalidation log that main-
tains the timestamp for each update.
The most recent invalidation log is
maintained in a portable device that the
writer carries. The log is propagated
lazily to invalidate stale copies of the
data. This approach decouples data
propagation from log propagation.

Segank uses a multicast protocol, called
Segankast, for location and access of
replicated data. This provides network-
aware reading by heuristically building a
multicast tree. Data is shared using
snapshots. This provides a trade-off
between freshness and performance.

The presentation generated plenty of
interest from the audience, who raised

questions about concurrency and
compared the system with alternative
approaches like VNC. There were also
some concerns about background prop-
agation of data in insecure mobile envi-
ronments, which, the speaker pointed
out, were orthogonal to the problems
addressed by the system.

FAST ‘04 l

