User-mode API for Tape Libraries

Aram Khalili

Computer Science Department
University of Maryland Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250
akhalil@umbc.edu

Abstract

Tape libraries are becoming more commonplace
in various installations, whether they are used for
automatic backups, archive or on-line storage. This
work represents a freely distributable user-mode C-
library that implements various SCSI commands of
the Exabyte EXB-210 unit.

1 Introduction

Tape libraries are becoming more and more
common in installations where large amounts of data
need to be stored but also retrieved often for anal-
ysis. Up until recently mass storage systems were
used only at scientific facilities but due to the de-
velopment of new applications such as digital li-
braries, and electronic commerce the demands for
storing enormous amounts of information while at
the same time providing efficient access to this in-
formation is becoming commonplace. The original
project at the Laboratory for Information Systems
Technology called for development of a file system
that integrates tape libraries with disk storage in a
transparent manner. The project has been stopped,
but our results are freely available. We chose Linux
as the operating system to support this project since
access to the source code, internals documentation,
and a large support group were necessary require-
ments [2, 5].

In order to understand the behavior, in terms
of performance, of the robotic arm that performs the
mount operations in our Exabyte EXB-210 tape li-
brary we developed a user mode API for access to
the SCSI medium changer command set [3]. Our
interface is built on top of the generic SCSI inter-

face (sg driver) presently available in the Linux ker-
nel. Based on our knowledge there is currently no
other driver or utility available for any of the public
domain Unix operating systems for managing auto-
mated tape libraries.

2 The library’s SCSI Interface

The SCSI-2 Interface standard[1] is a standard
that enables a host computer and peripheral devices,
such as this tape library and its tape drives, to com-
municate. The library and tape drives are indepen-
dent SCSI devices, and each supports an indepen-
dent set of SCSI commands.

2.1 Architecture of the SCSI Inter-
face

The physical components of a SCSI system con-
sist of the following:

host adapter: A device which connects between a
host system and the SCSI bus. The device usu-
ally performs the lowest layers of the SCSI pro-
tocol and normally operates in the initiator role.

initiator: A computer equipped with a SCSI host
adapter card enabling it to send commands,
messages and data across the SCSI bus to tar-
gets. The initiator can also receive data, mes-
sages and status information from the targets.

targets: Devices capable of receiving commands
from an initiator. The tape library and the tape
drives are independent targets. The library is
the target for cartridge inventory and movement
commands, while the tape drive(s) is the target
for read and write operations.

SCSI bus: The SCSI cables that connect initiators
and targets.

2.2 Architecture of the tape library

The tape library includes the following types of
components:

medium changer element: This is the robotic
arm that moves the tapes. There is exactly
one medium changer element in this unit. The
medium changer is also called the cartridge han-
dling mechanism (CHM) and the transport ele-
ment.

data transfer element: This is a tape drive, of
which there can be one or two in our unit.

storage element: This is a cartridge holder.
There are either 11 or 21 storage elements in
a EXB-210 tape library. It is also called stor-
age location. The structure that contains 10 of
the storage elements is called a magazine or a
cartridge magazine.

cartridge: Tapes. There can be 0 to 21 tapes in
the library (plus 3 for two tape drives and one
medium changer, theoretically).

bar code scanner: A bar code scanner that may
be mounted on the medium changer. This com-
ponent is optional, i.e. there can be 0 or 1 bar
code scanner in the unit. It scans bar code la-
bels (if installed) on the cartridges.

2.3 SCSI commands supported by
the library

The EXB-210 unit has two kinds of SCSI de-
vices, the tape drive(s) and the medium changer,
each supporting a different SCSI command set. Out
of the list of commands that the tape library sup-
ports (see [4]) we have implemented this subset of
commands: INQUIRY, MODE SENSE, MODE SE-
LECT, INITTIALIZE ELEMENT STATUS, MOVE
MEDIUM, POSITION TO ELEMENT and READ
ELEMENT STATUS.

2.4 INQUIRY

The INQUIRY command requests that the li-
brary sends information regarding its static parame-
ters to the initiator. INQUIRY is used to obtain in-
formation such as vendor and product ID, firmware
code revision levels, serial number, availability of an
optional barcode scanner in the library and support
of various SCSI-2 and other options.

2.5 MODE SENSE

The MODE SENSE command is used to dis-
cover the current operating mode parameters of the
library. It can return useful information such as
the number and addresses of tape storage locations
(11,21), the number of medium changers (1), and
the number of tape drives (1-2). It gives information
about the parameters that are valid for the MOVE
MEDIUM command, i.e. which types of moves the
library supports, whether LCD security mode (ac-
cess restrictions) is enabled, the LCD, and whether
SCSI bus parity is enabled. It can also be used to
determine default settings, and currently saved (in
non-volatile memory) settings.

2.6 MODE SELECT

MODE SELECT allows one to define the cur-
rent operating parameters for the library. It allows
one to set the parameters which can be discovered by
MODE SENSE. Note that parameters are constant
and cannot be changed.

2.7 INITIALIZE ELEMENT
TUS

STA-

This command causes the library to check all
elements for tapes, and the tape’s barcodes, if a bar-
code reader is installed. This includes the tape drive
and the medium changer, although no action is taken
on an INITIALIZE ELEMENT STATUS targeting
the medium changer, since this information is always
maintained and assumed to be accurate. Checking
is done in increasing element address order.

2.8 POSITION TO ELEMENT

This command requests the medium changer to
position itself vertically (for a standalone unit; hor-
izontally for rack mounted systems) in front of the
requested address. If the medium changer’s element
address is given as the destination, the changer po-
sitions itself in a park position, giving (manual) ac-
cess to the tape drive(s) and tape magazine(s). This
command can also be used to reduce travel time if
the next move command’s source address can be pre-
dicted, or to position the changer at a place where
the average distance to any location is minimized.

2.9 MOVE MEDIUM

The MOVE MEDIUM command causes the
medium changer, if possible, to move the cartridge
from the source to the destination address. Nor-
mally this is between the tape magazine and the tape
drive(s), but one could also exchange the magazine
location of a tape, to minimize the travel distance
for frequently used tapes. If the destination address
is one of a tape drive, the library will insert the car-
tridge. Valid source and destination element com-
binations can be discovered by the MODE SENSE
command.

2.10 READ ELEMENT STATUS

This command allows one to discover the sta-
tus of the elements of the library. Elements are the
tape drive, the medium changer, and the storage
locations. Information that can be obtained about
the elements include whether they are in a normal
state, the location of the transport element, whether
a storage slot is filled with a tape and whether a tape
drive or the medium changer contains a tape.

3 Linux’s SCSI Interface

Probably ever since its inception Linux in-
cluded support for SCSI devices. The main function-
ality used in the command library (mid-level) lies
in /usr/src/linuz/drivers/scsi/scsi.c and (higher
level) in /usr/src/linuz/drivers/scsi/sg.c It was
not necessary to explicitly call hardware-level code
(adapter drivers). The purpose of this interface is
to provide a simple and consistent abstraction of

a SCSI device that allows user-process control and
follows file-system command syntax. Secsi.c facil-
itates the kernel with the mechanisms to scan the
SCSI bus for devices (using INQUIRY), issue and
queue commands to these devices and maintains the
kernel data structures about them. It also imple-
ments exception handlers, such as SCSI time-out,
abort and reset routines, and re-entrance prevention
for the low-level driver. It also supplies functions
for registering and removing removing drivers and
modules.

On top of scsi.c sit sg.c, sd.c and st.c. Sg.c
provides the file-system interface for generic SCSI
devices utilizing the scsi.c functions. It implements
the open, close, read, write and toctl calls that ab-
stract the SCSI devices as files. Linux uses this to
create the special device files /dev/sg* where a let-
ter corresponding to the device’s discovery during
intial scan follows the sg, e.g. /dev/sga for the first
discovered device (the one with the lowest SCSI ID).
These device files can be accessed through the nor-
mal file operations. An open system call will return
the usual file descriptor, which can be passed to write
to issue commands to the device. The data for the
command is the actual SCSI command appended to
an sg_header structure, which the user has to pro-
vide. The structure includes information about the
command, a return value field and a buffer with the
command descriptor block. After the write finishes,
a read is used to read back the results.

Sd.c and st.c provide similar abstraction for
disk and tape devices, respectively. They were not
used for this part of the project which only deals
with the medium changer device.

4 Tape Library API

The functions we developed for access to the
medium changer command set are the following;:

int inquiry(int fd, inquiry_t *ing,
u_char type);

int mode_sense(int fd,

_ul6 pagecontrol,
__ul6 pagecode,
elt_addr_assgn_t *eas,
tgd_t *tgd,

dev_cap_t *dcp,
LCD_t *LCD,
parity_t *par);

int mode_select(int fd, __ul6 save,
elt_addr_assgn_t *eas,
LCD_t *LCD,

parity_t *par);

int init_elt_status(int fd, __ul8 nbl);
int move_medium(int fd, __ul6 tea,

__ul6 src, __ul6 dest);
int position_elt(int fd, __ul6 tea,

__ul6 dest);

int read_elt_stat(int fd,
elt_stat_req_t *esr,
elt_stat_data_t *esd,
elt_stat_page_t **esp,
stor_elt_desc_t **sed,
data_transf_elt_desc_t *xdted,
med_transp_elt_desc_t **mted) ;

4.1 inquiry

Inquiry takes as arguments the file descriptor
to the special device file, a pointer to a pre-allocated
inquiry_t structure for the data that the command
should return, and the type of inquiry requested.
Valid values for the type are 0 for standard inquiry
data, 1 for the Supported Vital Product Data page,
and 2 for the Unit Serial Number page. It returns
the number of bytes read from the SCSI bus.

4.2 mode_sense

Mode_sense takes as argument the file descrip-
tor to the special device file, the control type, the
page code, and pointers to elt_addr_assg-t, tgd-t,
dev_cap_t, LCD_t and parity_t. Valid control type
arguments are 0 for the current operating values of
the library, 1 for a changeable value mask, which sets
all bits of unchangeable values to 0 and all bits of
changeable values to 1, and 2 for the default values.
The page code holds information about the type of
pages requested. The following values are valid:

1Dh - Element Address Assignment page.

1Eh - Transport
page.

Geometry Descriptor

1Fh - Device Capabilities page.

22h - LCD mode page.

00h

Parity page.
3Fh - All pages in above order.

The pointers to the structures need only be pre-
allocated if the corresponding page is requested, oth-
erwise NULL may be passed. Mode_sense returns the
number of bytes read from the SCSI bus.

4.3 mode_select

Mode_select’s arguments are similar to those for
mode_sense, except that mode_select includes the op-
tion to save the sent values to non-volatile memory
(1 to save, 0 otherwise), and that only structures
that can be modified are passed. They need to be
pre-allocated and set to the desired values if one
wants to change their values, otherwise they may
be NULL. Mode_select returns the number of bytes
read from the SCSI bus.

4.4 init_elt_status

Init_elt_status takes the file descriptor and an
indicator of whether the library should attempt to
scan bar codes as arguments. Set nbl to 0 scan for
bar codes labels, and to 1 to omit. It returns the
number of bytes read from the SCSI bus.

4.5 move_medium

Move_medium takes the file descriptor and the
element addresses of the transport element, and the
source and destination addresses. It returns the
number of bytes read from the SCSI bus.

4.6 position_elt

Position_elt takes as arguments the file descrip-
tor and the element addresses of the transport ele-
ment and its destination. It returns the number of
bytes read from the SCSI bus.

4.7 read_elt_status

Read_elt_status takes the file descriptor, and
pointers to various structures as arguments.
elt_stat_req_t describes the type of request, i.e.
whether bar code information should be returned
(0 for no, 1 for yes), and which type of elements
should be reported on, 0 for all, 1 for the trans-
port element, 2 for the storage elements, and 4 for
the data transfer elements. Upon successful com-
pletion, elt_stat_data-t will hold the element address
of the first element, the number of elements, and
the number of bytes returned. FElt_stat_page_t holds
the type of element reported, the length in bytes
of information per element, and the total number
of bytes of information. Up to three records, one
record per element type will, will be returned, hence
the double pointer. The next structures hold infor-
mation on a particular element. Multiple records
may be returned. The structure pointers passed to
read_elt_status should not be pre-allocated. It re-
turns 1 for success and 0 for failure.

4.8 Additional functionality

In addition to the above implementation of the
meadium changer’s SCSI commands we found it nec-
essary or useful to write the following routines and
programs. The routines are for the control of the
tape drive of the library, and the programs encap-
sulate some of these functions to be more useable.
The routines are

int load(int fd, int luflag);
long get_position(int £d);

long set_position(int fd, long pos);

int rewind_tape(int fd);

int set_block_length(int fd, int blocksize);

All functions take as their first argument the
file descriptor for the special device file. Load takes
a load/unload flag as an additional argument. Set-
ting the flag to 1 causes the tape drive to load a
tape inside of it, 0 causes it to unload. If tape drive
is not in auto-load mode, one needs to load a tape,
once it has been inserted into the drive, before one

can perform I/O on it. An unload will eject the
tape. The command returns the number of bytes
read from the SCSI bus. Get_position takes no ad-
ditional arguments and returns the current offset in
blocks of the tape. Set_position takes an offset as
another argument and seeks the tape to the desired
location. It returns the number of bytes returned by
the ¢octl command. Set_block_length takes the integer
blocksize as an additional argument and tries to set
the current blocsize to the desired value. Valid val-
ues depend on the blocksizes supported by the tape
drive. It also returns the number of bytes returned
by the ioctl call.

At this point the following programs exist:

move <device> <src> <dest>

load <device> [load/unload flag]
eject <device>

position <device> <dest>

read_stat <device>

All the programs take the device file as their
first argument. Additonal arguments passed to move
are the source and destination element addresses.
It assumes the default transport element address of
86. Load takes an optional load/unload flag. If it
is ommitted a load is performed on the device, if
it is given, it is passed to the load function, which
will load on a 1 and unload on a 0. Eject is just
a more familiar form of load (device) 0. Position
takes the block offset as another parameter and seek
to the specified block. Read_stat takes no additional
arguments and implements the READ ELEMENT
STATUS command for all elements.

For a more detailed discussion of the functions
and their data structures we direct the reader to the

source code and accompanying material, which will
be available at ftp://ftp.cs.umbc.edu/pub/exb210/.

4.9 Use of the API

We used the API functions to collect perfor-
mance measurements of the unit. We generated a
workload of file accesses using a uniform distribution

over the interval [0,8] in seconds for interarrival time
of successive requests, a uniform distribution over
the interval [1,40] in kilobytes for file sizes, uniform
distribution over [1,10] of tape IDs. One process
read the simulated workload and issued requests to
another process, which interpreted the request and,
using the API calls, fetched the right tape, loaded it,
seeked to the given location, read or wrote the speci-
fied number of blocks, and collected timing informa-
tion. Reads and writes were done using Linux’s st
interface, seeks with our set_position function. When
we ran it, one thing we immediately noticed is that
the library cannot service requests coming in at such
a high rate, so in our next workload we changed
the interarrival time to a uniform distribution over
[0,40], which the device could handle. This indicates
that this device by itself will not give adequate inter-
active on-line performance, but will work well as an
automatic backup device. The most expensive oper-
ation time-wise was an eject. The manual does not
give information about the device’s caching scheme,
and other things relevant to the performance of the
individual commands, so we are left guessing as to
why the unit behaves as it does. Another observa-
tion we made is that in sequential reads, if a 32 block
boundary is crossed, the read command will take 2
orders of magnitude longer complete. A similar phe-
nomenon happens during writing. Otherwise read
and write completion time vary by a small amount.

5 Conclusion

We have developed a freely distributable library
of functions that implement SCSI commands on a
EXB-210 tape library and used it to collect perfor-
mance measurements of the device. We see our li-
brary as a helpful tool to other programmers desiring
to write programs that access the functionality of the
EXB-210 unit for application development, and we
have included some command encapsulation for use
in such things as automatic backup scripts.

References

[1] ANSI, Small Computer Systems Interface-2
(SCSI-2), X3T9/89-042

[2] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, and D. Verworner, “Linux Kernel

Internals”, Addison-Wesley, 1996.

Exabyte Corporation, “Installation and Oper-
ation”, 1994.

Exabyte Corporation, “EXB-210 and EXB-220
8mm libraries: SCSI Reference”, 1996.

David Rusling, “The Linux Kernel”, The Linux
Documentation Project, 1996.

Friedhelm Schmidt, “The SCSI Bus and IDE
Interface: Protocols, Applications, and Pro-
gramming”, Addison-Wesley, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[PDF/X-1a:2001]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

