USENIX Association

Proceedings of the
FREENIX Track:
2001 USENIX Annual
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




Designandimplementatiorof the X Renderingextension

Keith Packard
XFree86Core Team,SuSHnNc.
keithp@leithp.com

Abstract

The 2000Usenix TechnicalConferenceéncludeda pre-

sentatioroutlining the stateof the X renderingerviron-

mentandthe capabilitiesnecessaryo bring X into the

modernworld. Duringthepastyear anew extensionhas
beendesignedandimplementedas part of the standard
XFree86distribution.

TheX Renderingextensioraddressesiary of theshort-
comingsinherentin the core X renderingarchitecture
without addingsignificantly to the protocol interpreta-
tion or implementationburden within the sener. By
borrowing fundamentaimagecompositinghotionsfrom
the Plan9 window systemand providing sophisticated
and extensiblefont rendering, XFree86is now much
moreableto supportexisting applicationswvhile encour
agingnew developmentsn userinterfaces.More work
remainsto be donein areaswherebestpracticeis less
well establishedincluding precisepolygonrasterization
andimagetransformations.

1 Intr oduction

At the 2000 Usenixconferencethe authorpresented
papelfPac00& whichdiscussedheproblemsnherentin
the core X renderingarchitecturealongwith somepro-
posalson what a solution might look like. The funda-
mentalproblemwasthatthe renderingsystemhadcod-
ified practicethat was, in hindsight, soonto be obso-
lete. A rushto releasehe original X11 standardeft no
time for researchthat could have resolved sometech-
nical problems. Perhapghe mostimportantissuewas
thatthe hardwareof thaterawasnot fastenoughfor the
window systemto provide a more sophisticatednodel
to interactive applications.

Some of the proposalsin last years paper—alpha
compositing, anti-aliasing, sub-pixel positioning and
trapezoids—aréncludedin this new extension. Other

partsof the extension,mostnotablythe client-sidefont
managementiave beendevelopedduringthe designof
theextension.

The developmentof this extensionhasoccurredin an
entirely openfashion,with input solicited from all ar-
easof thewindow systemcommunity Peopleinvolved
with XFree86,KDE, Qt, Gdk, GnomeandOpenGLall
contributedto thefinal architecture.

Someareasof the specificationare still not complete
andtheimplementatioris underconstructionput Ren-
derhasalreadybecomeanimportantpartof the XFree86
distributionastoolkit andapplicationdevelopmenstarts
to take advantageof its presencelt hasalsodelivereda

strongmessagéehat XFree86is readyandableto carry
the developmentof the X Window Systemforwardinto

thefuture.

2 Rendering Model

The X Renderingextension(Render)Pac008f diverges
from the core X [SG92 renderingsystemby replacing
thepixel-valuebasednodelwith anRGB model. While
pixel valuesare still visible to the client, every pixel
value, even thosestoredin pixmaps,hasan associated
color value. This providesa naturalcolor-basedmag-
ing basewhile still allowing applicationgo seethe pixel
valueswhennecessary

One compromiseresulting from this changeinvolves
pseudo-colorvisuals. The best practice would be to

dynamicallyallocatecolors to most closely matchthe

displayedcolors. However, the number of pseudo-
color desktopss dwindling, so a static color modelis

usedinstead. This significantlyreduceghe implemen-
tation burdenwhile still allowing applicationgo runon

pseudo-colothardware. (In fact, the current XFree86
implementationis without even this simplified support
andyetno bug reportshave beenfiled to date.)



Along with the presentatiorof imagedataascolor val-

ues,Rendersupplantgherasterop manipulation®f the
coreprotocolwith theimagecompositingoperatordor-

mally definedby PorterandDuff in 1984[PD84. These
operatoramanipulatecolor datain a naturalway by in-

troducingtransparengandallowing colordatato mix as
imagesarerenderedcatoponeanother

ThePorterDuff compositingnodelunifiestheusualno-
tion of transluceng, wherea pixel is entirely covered
with a non-opaquevalue,with the notion of partial cov-

eragewherea portion of the pixel is coveredwhile the
remainingportionis uncovered.Rendeusegartialcov-

erageio approximatenti-aliasing partially coveredpix-

els alongthe edgeof geometricobjectsarerenderedas
if they weretranslucent.

All of theoperationdn Renderarespecifiedin termsof
the primitive compositingoperatorsyielding a consis-
tentmodelandallowing aminimalimplementationThe
renderingmodelis designedo work well with modern
toolkits andapplicationsby providing necessargener-
residentoperationsn assimpleafashionaspossible.

21

Image Compositing

Physically translucenbbjectsabsorbsome,but not all,
of thelight passinghroughthem.Thecolorof theobject

affectswhich wavelengthsare most strongly absorbed.

Visually, translucentobjectsappearto affect the color
andbrightnesof objectsbheyondthem.

The effect of an opaqueobject partially obscuringthe
field of view is similar; at fine enoughresolution,the
color sampledat a point nearthe edgeof the objectwill
appearasa mixture of the overlying andunderlyingob-
ject colors. Porterand Duff usedthis propertyto trans-
late partial coverageinto transluceny.

The effect of light on a translucenbbjectcanbe simu-
latedby blendingthe color of thetranslucenbbjectwith
that of objectsbeyondit. Whendealingwith computer
images transluceng canbe describedasa mathemati-
cal operationon the color dataof a collectionof images.
The PorterandDuff compositingmodelconsistof for-
mulaewhich usecolor datain conjunctionwith a per
pixel opacityvaluecalled“alpha”. With theseformulae
mary intuitiveimagemanipulationcanbe performed.

2.1.1 Image Compositing Operators

Eachof the operatordefinedby Porterand Duff oper

ateindependentlyn eachof the color channeldgn each
pixel. Theequationsareabbreviatedto shov the opera-
tion onasinglechannelof a singlepixel.

A commoncompositingoperationis to placeoneimage
over another Transparenareasof the overlying image
allow the underlyingimageto shav through. Opaque
areashide the underlyingimagewhile translucentreas
blendthe two imagestogether By definingthe “alpha”

of apixel asanumberfrom 0 to 1 measuringts opacity

asimpleequationcombinegwo pixel colorstogether:

Cresult= Cunder- (1 — @over) + Cover - aover

PorterandDuff call thisthe“over” operator

Another commonoperationis to maskan image with
anothertransparenareasn themaskareremovedfrom
theimagewhile opaqueareasof the maskleave theim-
agevisible.

Cresult= “mask’ Cimage

Thisis the“in” operator They provide acompletecom-
positing algebraincluding other operations;only these
two areneededor this extension.

Oneimportantaspectof this modelis thatit createsa
new imagedescriptiorwhich attachesanothewalue“al-
pha”to eachpixel. This valuemeasurethe “opacity” of
the pixel andcanbe operatecn by the renderingfunc-
tionsalongwith the color components.

2.1.2 Destination Alpha

Sometimedt is usefulto createcompositémageswhich
arethemselestranslucentin otherwords,containalpha
values. This effect canbe achieved by augmentinghe
operatorsith anoperationvhich produces composite
alphavaluealongwith the color values. For the “over”
operatorthe compositealphavalueis definedas:

aresult= Qunder (1 — aover) + cover

The*“in” operatorcompositealphavalueis:

Aresult= *mask ®image

Theresultingimagescannow beusedin additionalren-
deringoperations.



2.1.3 Premultiplied Alpha

Visiblein theabove equationdor computingthe “over”
operatoris the asymmetryin the computationof alpha
andthe colorcomponents:

oresult= @under- (1 — @over) + aover

Cresult= Cunder- (1 — aover) + Cover - aover
This is “fix ed” by respecifyingthe imagedataasbeing
“premultiplied by alpha”. Eachcolor componenin the
imageis replacedby that componenmmultiplied by the
associate@lphavalue.Blinn [Bli94] notesthatpremul-
tiplied imageseasily provide the correctresultswhen
run throughlong sequence®f operationswhile non-

premultiplied imagesinvolve awkward computations.

Theresultis thatall four componentarenow computed
uniformly with a singleequation:

Cresult= Cunder (1 — @0) + Cover

2.2 Render Compositing Primiti ve

ThePlan9 Window Systemdesignedy RussCox and
RobPike [Pik0Q], providesaunifiedrenderingoperation
basedPorterDuff compositing:

Cresult= (Cimage IN Cmask OVER Cregylt

All pixel manipulationsaredonethroughthis operation
which providesa simpleand consistenmodelthrough-
out the renderingsystem. Renderadoptsthis operation
but extendsit slightly. WherePlan9 providesonly an
OVER operator Renderallows ary of the operatorsle-
fined by Porterand Duff alongwith a specialoperator
designedor drawing anti-aliasedyraphicsadaptedrom

OpenGL.An illustration of the Renderoperatoris seen
in Figurel.

Using this basicrenderingprimitive, the extensionde-
fines geometricoperationsby specifyingthe construc-
tion of animplicit maskwhichis thenusedn thegeneral
primitive above. Anti-aliasedgraphicscanbe simulated
by generatingmplicit maskswith partial opacityalong
theedges.

3 Fundamental Render Objects

As with most X extensions,Renderaddsa numberof
X-sener residentdatatypedo encapsulatehe notions
expresseabove:

Destination

Figurel: Operationof the compositingprimitive

3.1 PictFormat

PictFormatshold information neededo translatepixel
valuesinto red, green,blue and alphachannels. The
sener hasa list of pictureformatscorrespondindo the
variousvisualson the screenalongwith additionalfor-
mats that representdata in various formats storedin
pixmaps.Therearetwo classe®f formats,Indexedand
Direct. Indexed PictFormatshold a list of pixel val-
uesandRGRBA valueswhile Direct PictFormatshold bit
masksfor eachof R, G, B andA.

Direct PictFormatsmay containall of R, G, B andA or

they may containonly R, G andB or only A. Theselat-

tertwo provide the necessaryjormatsfor separatalpha
masksandfor sener visualswhich have no destination
alphachannel.

Each Indexed PictFormat has an associatectolormap
from which the associatectolor valuesare allocated.
Thisallows multiple differentindexedformatsto coexist

by allowing applicationgo selectthe bestmatchingfor-

matandselectingthe associateadolormapfor windows
renderedn thatformat.

3.2 Picture

Picturesconnectan X Drawable (Window or Pixmap)
with a suitablePictFormat. They alsosene asa con-



venientplaceto placerenderingstatethatis relatedto
the picture. Whenthe PictFormatdoesnot provide an
alphachannel,the Picture may refer to an external al-
phachannelwhich is represente@sanotherPicture,of
whichonly thealphachannels used.Withoutthis exter-
nalalphachannelthePicturehasanimplicit alphavalue
of 1 for eachpixel.

Pictures are the universal pixel data representation
within Render Thereareno explicit pixel valuespro-
vided to any operation. To provide for solid colors or
repeatingpatterns,Pictureshave a ‘Repeat’ attribute,
whenset, the pictureis treatedas an infinite sourceof
databy tiling the contentof the picturealongbothaxes.

This allows solid color filling, tiling andstipplingto be
aspecialcaseof object-to-objectiatacopying.

One additionalpropertyallows for the optimizationof
imagepresentationdisplayswith known sub-pixel ge-
ometry In suchenvironments,applicationsneedcon-
trol overthe compositingof eachcolor componentThe
usualcompositingoperatorblendsall four components
using the samealphavalue. When the maskpicture
operandin the compositingprimitive hasthe ‘Compo-
nentAlpha’ attribute set, the R, G, B and A valuesare
interpretedasalphavaluesoperatingon eachchannein
isolation.

3.3 The CompositeRequest

At theheartof theRendermextensionliesasinglerequest:
all otherrenderingis definedin termsof the Composite
requestwhich performsthe basiccompositerendering
operationdescribedn Section2.2. This operatoris de-
finedin the Renderspecificatiorasfollows:

Conposite

op: OP

src: Picture

mask: Picture (or None)
dst: Picture

Src-x, src-y: Intl6
mask-x, nmask-y: Intl6
dst-x, dst-y: Intl6

wi dth, height: Cardl6

This requesttombineghe specifiedrectangle
of src and maskwith the specifiedrectangle
of dst using op asthe compositingoperator
Thecoordinatesrerelative to theirrespectie
drawvables origin. Renderings clippedto the

geometryof the dstdravableandthento the
dstclip-list, thesrcclip-list andthe maskclip-
list.

If the specifiedrectangleextendsbeyondsrc,
thenif src hasthe repeatattribute set,the src
picturewill betiled tofill the specifiedrectan-
gle. Otherwiserenderingis clippedto the src
geometry

If the specified rectangle extends beyond
mask,thenif maskhastherepeatattributeset,
the maskpicturewill betiled to fill the spec-
ified rectangle ptherwiserenderingis clipped
to the maskgeometry

If src,maskanddstarenotin thesameformat,
andone of their formatscanhold all without
loss of precision,they are corvertedto that
format. Alternatively, the sener will corvert
eachoperando thefallbackformat.

If maskis None, it is replacedby a constant
alphavalueof 1.

When dst has clip-notify set, a NoExpose
event is sentif the renderingoperationwas
not clipped by either src or mask, otherwise
asequencef GraphicsExposeventsaresent
covering areasin dst where renderingwas
clippedby srcor mask.

Someimportantnoteson this definition:

e Theoperandormatsneednot match;Renderauto-
matically corvertsformatsto eitherthe mostpre-
cise of the provided formatsor a fallbackinternal
formatin casesvherenoneof the providedformats
canholdthe datawithoutloss.

e Solidfills, patternsandimagecopy areall managed
by manipulatingthe ‘repeat’ attribute of the source
Picture.

e Geometrioobjectsaredrawvn by filling ‘mask’ with
an appropriateimage, theseobjects can then be
usedto stencilary pattern.

3.4 Client-Provided Immediate Data

As Picturegprovidetheonly representatiofor pixel data
within Render applicationgeneratedmagesmust use
theexisting coreX Putimagerequesto transmitthatin-
formationto the sener. A future extensioncould pro-
vide new imagetransferfunctionsthatwould eliminate



the intermediatebuffer aswell as offer standardmage
compressioralgorithmsto reducebandwidthconsumed
by bulk imagedatain a networkedervironment.

4 TextRendering

Font managemenand text renderinghas always been
a sourceof frustrationfrom bothimplementorsandap-
plicationdevelopers.X attemptedo abstracfontsinto
simple bitmap imagesalong with associatediata de-
scribedeitheras simple stringsor integer values. Ras-
terizationof theimageswasleft up to the X senerand
applicationaccesso advancedont information,suchas
kerning tablesand ligatures,was not possiblethrough
thestandardX interfaces.

Many applicationswhenfacedwith the X text model
simply gave up andimplementedall text renderingen-
tirely within the application,sendingthe resultingren-
deredimagedo the X sener. The X text renderingcode
was relegatedto drawing labelsfor buttonsanddialog
messagesThis is not a very efficient useof thetremen-
dousacceleratiompotentialof mostgraphicssystems.

While strugglingwith building a similar systemfor the
Renderextension,several factorscorvergedto redirect
developmentin anentirely new direction. Thefirst was
a realizationthat applicationswould needdirect access
to completefontinformation,preferablytheraw fontfile
itself. Only with suchdirectaccesgouldapplicationsde
assuredhatall of theinformationaboutthe font would
beavailableto them.

An initial Renderproposalprovided this accessdy ex-
tendingthe existing X Font Servicesprotocol. Applica-
tionsandthe X sener would sharefont datavia the X
font sener with applicationsrequestingadvancedfont
propertieswith complex new requests.Taking existing
font file formatsandgeneralizingheinformationsothat
a singleformatcould encapsulatall informationwasa
dauntingtaskthat| put off while developingthe simple
imagecompositionpartsof the extension.

The secondfactor which changedthe direction of the
text systemwas a discussionabout PDF files and em-
beddedont data.As with otherapplicationsthedisplay
of PDFfiles requiresthe presentatiorof fonts available
only to the application. The only portablemechanism
for usingapplicationprovided fonts within the existing
font framework is to have theapplicationusethe X Font
Serviceprotocolby creatingacustomfont senerwithin

the application. This addsanotherpoint of failure for
all X applicationsasthey now becomeunwittingly de-
pendenbn this font sener wheneer they accesdonts;
addinga large numberof suchapplicationswill signifi-
cantly reducethe performancdor all applicationsvhen
manipulatingfont names.

Onegoalfor Rendemvasto solve this problemin amore
straightforwardfashion.The obvioussolutionis to have
the applicationbuild a font from datait provided,send-
ing glyph imagesthroughthe X protocolstreaminstead
of throughthe backdoorwith the X Font Servicespro-
tocol.

The final factor evolved from a discussionaboutUni-

codeencodedonts. Beforeasingleglyph canbedrawn,

an X client receves geometricinformation for every
glyphin thefont, aswell asthe minimumandmaximum
valuesover the entire font. Whenusing outline fonts,

the only way this informationcanbe obtainedis to first

rasterizeavery singleglyph. For afont with 256 glyphs,
this is not a tremendousurden. Encodingscontaining
Han glyphs may containthousandf glyphs, causing
someperformanceconcerns.Unicodefonts can poten-
tially containmillions of glyphs. At this point, it be-
comesimpracticalto rasterizeall of the glyphsandde-
liverall of thisinformationto theapplicationespecially
whenonly asmallfractionof thefont is everlikely to be
displayed.

Any new text systemwould needto be designedo al-
low the incrementalrasterizatiorof glyphs. The prob-
lem with incrementallyrasterizingglyphs within the
X sener is that applicationswould needto incremen-
tally requesinformationaboutthe glyphs,which would
entail making extra round-trips at the protocol level.
Round trips are a seriousperformanceproblemin a
networked environment, and this performancepenalty
would be felt at applicationstartup(which is alreadya
sorepointwith someX applications).

Thesefactors—thedelivery of sophisticatedont infor-

mation,client-generatetbntsandtheneedto incremen-
tally rasterizefonts without increasingthe numberof

roundtrips—leadto avery simplesolution. The X Ren-
dering Extensionhasno font support. Instead,it pro-
videsa mechanisnfor applicationsto cacheglyph im-

ageswithin the sener andrasterizea sequencef them.
Applicationsare responsiblefor locating fonts, raster

izing glyphs and generatinggeometricinformation on

their own.

Thisresohesall threeproblemswhile reducingthecom-
plexity of the extension.Applicationshave directaccess



to the font files, andthusto all of the informationcon-
tainedtherein. As all fonts are client-supplied embed-
dedfontsin PDFdocumentarehandledasefficiently as
ary otherfonts. Finally, thereareno roundtrips for font

handlingat all. This reducesapplicationstartuptime,

asno requestaremadeof the X senerto list available
fonts or query font information. It also reducestypi-

cal network traffic, asonly the glyphsactuallyusedby

the applicationtransitthe network connection.The ex-

tratraffic consumedy glyphimagesis morethancom-
pensatedor by thelack of glyph metricinformationfor

glyphsneverdrawvn onthescreen.

Measurementsf typical applicationperformancepre-
sentedn Sectior4.3,shav markeddecreaselkothin ap-
plicationstartuptime andnetwork utilization,evenwhen
using8 bits for eachpixel in theglyphs.

4.1 Glyph management

The elimination of sener-side fonts within Render
presentssomenew challenges.Applicationsstill need
a conciseand efficient way of renderinga sequencef

glyphsalonga fixed baseline.Renderprovidesfor the

storageof multiple Glyphsin groupsknown as‘Glyph-

Sets’.EachGlyphis essentiallya Picturewith additional
geometricinformation that describeswhere the glyph

shouldbe drawn relative to the baselineand an offset
to thenext glyph.

Glyphsarenamedwithin GlyphSetsby arbitrary 32-bit

numbers:thereis no presumecdencoding.Thesenames
aretransmittedn 8, 16 or 32 bit encodingsthereis no

variablelengthencodingprovided.

Within the current XFree86implementation,identical
glyphs sharethe samestorage. This works within a
GlyphSet,and amongmultiple GlyphSetsfrom one or
more clients. This eliminatesthe senerside storage
overheador having clientsprovide their own glyphs.

The duplicaterenderingandtransmissiorof glyphscan
be amelioratedby having multiple applicationscooper

atein therasterizatiorof glyphsfor particularfonts. The
authorervisions a cooperatie shared-memorynecha-
nismwhereapplicationsn the sameaddresspacecan
work togetherto build the neededglyphs. Becausehe
nameasedto referto the GlyphSetawithin the X sener

have a lifetime no greaterthanthe X connectionwhich

createdhename theRenderprotocolallows eachclient

to have its own namefor eachGlyphSet. The GlyphSet
existsaslong asary nameexists.

Figure2: Renderinghreeglyphs

Significantinfrastructureandarchitecturavill needo be
designedor this kind of sharing.As thesechangeswill
notimpactthe Renderprotocolitself, this designcanbe
donewhenademonstratedeedexists.

4.2 Glyph drawing

Oncetheneededylyphsaredeliveredto theX sener, the
client renderssequencesf themwith oneof the Com-
positeGlyphgequestgtherearethree,correspondingo
thethreeglyph nameencodings) Theserequestsender
anumberof glyphlists, eachof which is offsetfrom the
previous by positionaldeltasalongboth axes. Changes
to the selectedylyph setmaybeintersperse@mongthe
glyphlists. Thisis verymuchlikethecoreX text render
ing requestswith the additionalgeneralizatiorof verti-
cal positionadjustmentsThe positionadjustmentsave
also beenextendedfrom 8 to 16 bits. An example of
simpletext renderingis shavn in Figure2. The glyph
positionsaremarkedalongthebaselinewith caretswvhile
the extentof eachglyphimageis outlinedwith adashed
box. Eachglyph containsthe distancefrom the upper
left cornerof the glyph imageto the renderingorigin,
thedimension®of theglyphimageandthedistancdrom
renderingorigin to the locationwherethe next glyph is
to bedrawn.

Whenapproximatinganti-aliasing,a sequencef sepa-
rateoperationsisingthe OVER operatogeneratemac-
curatevalueswhenmorethanoneoperationcoversthe
sameareawith alphavaluesthatareneithertransparent
nor opaque.The problemis thatthe sub-pixel geometry



Tablel: Network Utilization for Font Data.

Konqueror Kword

Numberof Lists 29 20
ListFonts | 1300+ 113000 888+ 215832
Numberof Fonts 21 14
LoadQueryl®ent | 1664+41384 1224+ 26900
AddGlyphs 63788+ 0 36840+ 0

of thetwo objectsis lostin the corversionto a coverage
value.

The OVER operatorassumeghat the sub-pixel cover
age by two objectsis bestapproximatedoy assuming
thateachobjectcoversthe samefractionof theotherob-
ject asof the pixel asa whole. Whendrawing text, a
betterapproximatioris to assumehatthe glyphsdo not
actuallyoverlap;the overall areaof coveragewithin the
pixelis thusthe sumof theareascoveredby eachpixel.

The glyph drawing requestsllow an optionalinterme-
diatePictureobjectto becreatedall of the glyphsin the

requestare renderedto this intermediatePictureusing
an ADD operator Theresultingimageis thenrendered
to the destinatiorusingthe operatorspecifiedin the re-

guest. The sener is free to eliminatethe intermediate
Picture object when the renderingresultwould not be

affectedby its use,suchaswhenthe glyphsarerepre-
sentedwith only a singlebit per pixel or whennoneof

theglyphsoverlap.

4.3 Network traffic analysis

With glyphsrasterizedwithin the clientandtransmitted
to the X sener, thereis an obvious concernthat these
glyphswill representinadditionalburdenplacedon the
network. While the glyph imageswill indeedincrease
thetraffic sentfrom the clientto the sener, thetraffic in

glyph metricsfrom the senerto theclientwill beelimi-

nated.

It turns out that for typical applicationexecution, the
elimination of the glyph metricsandfont namestrans-
mitted from the sener to the client morethancompen-
satesfor the additionaltraffic representedby the glyph

images. Table 1 shows the network utilization for two

commonapplicationsusingLatin fonts with fewer than
2564glyphs.

Of interestis the large numberof bytesneededo sim-
ply selectappropriatefonts; this is representedby the

ListFonts requestsand replies. As the core X archi-
tectureprovidesonly primitive string-basedont match-
ing, more sophisticatedschemesnustbe implemented
within theclient, necessitatinghetransmissiorof infor-
mationaboutavailablefontsfrom thesener.

Moving from smallLatin-1 encodedontsto largerHan
or Unicodefontswill significantlyincreasehe amount
of metric datatransmitted,while not significantly in-
creasingheamountof glyphdata:largepartsof theHan
or Unicodecharactesetwill notbeused.

It is importantto note that the core X architecturere-

quiresa roundtrip to list or openfonts. As applications
typically openmary fonts at startuptime, theseaddi-
tional roundtrips can dramaticallyincreasethe time it

takesto initialize theapplication.

5 The Xft library

The elimination of font handlingwithin the X sener
shifts the burdenof font file managemento the client.
Disparatemechanisméor font managemeramongdif-
ferent clients is not (usually) desirableleading to the
needfor a standardont file accesdibrary. Building on
thewell designed~reeype library, the Xft library pro-
vides for commonfont naming, font file management
andfont customization.Xft is not a partof the Render
extensionitself, but is anessentiapart of the overall ar-
chitecturefor providing font accesgo applications.

Xft alsoallows somelevel of compatibility with older
X senersby presentinga unified API thatusesthe core
requestgo approximatethe resultsgeneratedvith the
Renderextension. Applications can detectwhen this
happendo allow themto compensate Fortunately as
XFree86becomesven more penasie, the numberof
legagy X seners should continueto decreasaemaking
this compatibilitylargely unnecessary

An importantpremiseof the designof Xft wasthatthe
library shouldnot hide the underlyingrasterizatioren-
gine andfont files from the applications. Any attempt
to abstractthis accesswvould only sene to prevent ap-
plicationsfrom taking full advantageof the capabilities
presenwithin thefont files andrasterizatiorengine.

Thereis anobviousconflict presentiere— on onehand,
Xft providesenoughabstractiorto maskthedifferences
betweencore X fontsandRenderbasedylyphs,andon

the otherit providescompleteaccesdo an underlying



fontfile if presentApplicationswill needto preparegor
eithereventualityandactaccordingly The expectation
is that Xft will beusedby toolkit libraries,whichwould
beresponsibldéor managinghisdistinctionif necessary

5.1 Font Names

Selectingfonts is a two part process:first locating an
appropriatfaceandthenapplyingadditionalattributes
that modify the faceto createthe right glyph images.
Oncethis hasbeendone, attributesaboutthe font are
passedackto theapplication.

Xft unifies thesestepsinto one mechanism. An Xft-

FontNameis a typed propertylist; eachelementhasa
nameandavalue. Eachavailablefaceis representety
anXftFontNamecontainingthe propertieof thefaceas
providedby the underlyingfont mechanism.

ApplicationsconstructXftFontNamesandpresenthem
to the API. Thelibrary matcheghis namewith the avail-
able facesto selectthe bestfaceandthen presentghe
additionalpropertiesto the rasterizerto adjustthe final
glyph presentationTheresultingfont hasanassociated
namewhich containsadditionalinformation aboutthe
font, suchasthefile from which thefacewasloaded.

While the internal representatiorf a nameis a prop-
ertylist, it is corvenientfor existing applicationgo have
a string representationvhich canbe corvertedinto the
internalrepresentationThe generaformatfor Xft font
namestringsis:

< family > — < size > :< name >=< value > ...

A typical specificatiormight be “times-12"which spec-
ifies a 12-pointfont from the timesfamily. The default
valuesfor weight andslantyield a medium-weightro-
man variant. Even the family and size fields are op-
tional; Xft will choosea suitablefamily anddefaultsize
basedon the remainingprovidedattributes.In the mini-
mal casethefontname* will alwaysmatchsomething.

6 Renderis Still Under Construction

Thepiecesf Renderescribedboseaborearenotvery
controversial; they codify existing practicefrom other
systemswhich is known to work well. They have also
beenin usefor sometime, providing somereasonable
assurancessto their value. Two further components

of the extensionarelesswell understoocand currently

not implementedwithin XFree86. Thesecomponents,
polygon renderingand image transformation,are dis-

cussednext, presentingboth resoled and outstanding
issueswith currentthinking.

7 Polygon Rendering

Takingcuesfrom OpenGL[SAe99, Rendereduceghe
geometricmbjectsto berenderedy thesenerto a mini-
mal set. Complex objectsaretesselateavithin theclient
andsentto the sener asa setof primitive objects. This
minimizesthe implementationeffort within the sener
alongwith the effort neededo testthe conformanceof
animplementatiorwhile not penalizingapplicationgoo
severely.

Renderprovidestwo separateprimitive objects; trian-
glesandtrapezoids.Both aredefinedin termsof 32-bit
fixed point numberswhich use 24 bits for the integer
portionof thevalueand8 bits for the fractionalportion.
This allows muchmore preciselocationof the vertices
for polygonsand eliminatesa significantsourceof vi-

sualnoisecausedvhenobjectsaresnappedo aninteger
grid.

Trianglesare specifiedby locating their three vertices
usingthesecoordinates.Trapezoidsare more complex
asthey are designedto accuratelyrepresenthe tesse-
lations usedby PostScript{Ado85 and Gdk. Trape-
zoidsarerepresentedly two horizontallines delimiting
the top and bottom of the trapezoidandtwo additional
linesspecifiedby arbitrarypoints,asshavn in Figure3.
Any areabetweenthe four lines is a trapezoid(or, in
thedegeneratease atriangle). Allowing pointsnot co-
incidentwith the top or bottomof the trapezoidmakes
the edgesof multiple trapezoidsharingthe sameedges
align precisely;the sameline canbe usedfor all of the
trapezoidsrrespectve of the horizontalextentsof those
objects.

The rasterization of polygons seems like a non-
controversial problem; connecta sequenceof vertices
with lines andfill the coveredarea. However, a conse-
guentialissuedoesarise: the specificationof anappro-
priatelevel of renderingprecision.



Bottom ¥

Figure3: Renderinga Trapezoid

7.1 PrecisevsImpr ecise

The first questionwhich arisesis whetherthe precise
pixelizationof polygonsshouldbe specifiedin the stan-
dard. The core X protocolrequiresprecisepixelization
of all objects,which makes verifying the implementa-
tion quite easy but also essentiallyeliminatedthe util-

ity of thoseobjects. The core X specificationof most
primitivesturnedout to be too hardto implementeffi-

ciently in software,andonly somerecenthardwarehas
enoughflexibility to implementa significantportionin

hardware. Very few applicationsuse X geometricob-
jectsbeyondzero-widthlines.

For impreciserasterization)eaving the pixelizationen-
tirely unspecifiednakesthe primitivesvery difficult to
use;applicationsmustacceptwide variationsin poten-
tial presentationThequestioris whatconstraintshould
be appliedto pixelization. OpenGLhasrelatively weak
invariant requirementsecauseof the desirefor high-
performancenmixedsoftwareandhardwareimplementa-
tions. Existing applicationshave strongerrequirements
for consistenpixelizationwhich requireadditionalcon-
straints.

Precisepixelization placesstrong requirementson the
specification:the pixelizationspecifiedmustbe reason-
ableto implementaswell asreasonabléoking. A poor
specificatiorcanmale every implementatioruselessA
precisespecificationis alsousefulfor applicationsthat
needto mix sener side and client side rendering,but
only if thespecificatioris straightforwardto implement.

Insteadof offering only one of thesetwo modes,Ren-
derprovidesboth. An imprecisemodedesignedo map
to existing GL-optimizedhardwareanda precisemode

designedo satisfy the needsof applicationsrequiring
detailedcontrolovertherenderedesultson thescreen.

7.2 Impr ecisePolygons

Imprecisepolygonsmustmatcha brief setof invariants:

¢ Precisematding of abutting edges. Whenspecify-
ing two polygonsahutting alonga commonedge,
if thatedgeis specifiedwith the samecoordinates
in eachpolygonthenthe sumof alphavaluesfor
pixelsinsidethe unionof thetwo polygonsmustbe
preciselyone.

e Translationalinvariance The pixelization of the
polygonmustbethe samewheneitherthe polygon
or the targetdrawable aretranslatedby ary whole
numberof pixelsin ary direction.

e Sharpedges. Whenthe polygonis rasterizedwith
Sharp(non anti-aliased)edges,the implicit alpha
maskwill containonly 1 or O for eachpixel.

e Orderindependencelwo identicalpolygonsspec-
ified with verticesin differentordersmustgenerate
identicalresults.

Theseconstraintsare designedto minimize the visual
artifactsassociateavith polygontesselatiorandtransla-
tion. It is believedthattheseinvariantscanbe satisfied
with existing hardware.

7.3 PrecisePolygons

Precisepolygonspreseng difficult challenge For sharp
polygons, the specificationis straightforward: pixels
whosecenterpointsfall within the polygonare drawn,
thoseoutsideare not. Following the X model, pixels
whosecenterlie preciselyon an edgearedravn when
the polygoninterior is to theright, or if on a horizontal
edgewhenthepolygoninterioris below.

Given a 32-bit coordinatespace, this can be imple-
mentedexactly usingvaluesno largerthan64 bits, and
thatonly for clipping.

For smooth(anti-aliased)polygons,the answeris less
certain. The obvious answerof computingthe fraction
of eachpixel coveredby the polygonturns out to be



computationallyexpensve; no fewer than 192 bits ap-
pearto berequiredo preciselycomputeheareacovered
by a pixel intersectedy bothsidesof thetrapezoid.

While this may be betterthanthe computationneeded
to renderwide ellipsesfrom the core protocol, thereis
no reasonto believe that this particularspecificationis
ary betterthan onelessexpensve to implement. The
areacoveredby apixelis only aroughapproximatiorto
the correctvalueneededo filter the polygonshapeto a
collectionof pixels; a cheapespecificationwill be just
as“correct”, aslong asit generategssentialljthe same
values.

A currentproposalis to split the pixels involved into
three groups: pixels entirely covered by the polygon,
pixelsentirelyuncoveredby the polygonandpixelspar
tially coveredby the polygon. Coveredanduncovered
pixelsgenerateheobviousresults.

For eachpixel partially covered by the trapezoid,the

coverageis computedby clipping the trapezoidto the

pixel boundaries. Wherethe trapezoidedgesintersect
the boundariesof the pixel, the coordinatesare repre-
sentedas 16-bit fractional valuesalongthe pixel edge.
This precisionyieldspixel coverageerrorsof lessthanl

partin 215 while requiringonly 32 bit arithmeticfor the
areacomputatiorwithin the pixel.

Another proposalwould be to eliminate precisepoly-
gonsfrom the extension,leaving only imprecisepoly-
gons.Questiongemainaboutwhatadditionalinvariants
would needto be addedto the existing list andwhether
they would impacthardwareacceleratiorfor imprecise
polygons.

Which choice makes the most sensemay well depend
on whetheran efficient implementationcan be written
which captureseither the above definition of precise
polygonsor an alternatve precisespecification. Lack-
ing anefficientimplementationapplicationswill rapidly
gravitate to imprecisepolygons, leaving precisepoly-
gonsasyet anotheralbatrosswithin the X sener. *

7.4 PolygonRequests

Thereis asinglerequesthatrendersa setof trapezoids
and threerequestdor renderingtriangles. Trapezoids
are specifiedby four boundinglines, a top and bottom
horizontalline andtwo diagonallines, on the left and
right. The trapezoidin Figure 3 shows that the coor

1Along with PEX, XIE, LBX, widelines,...

dinatesspecifyingthe left andright edgesneednot be
coincidentwith the horizontalelements.

Thetrianglerequestdiffer only in the encodingof the
triangle vertices. The requestformats are taken from

OpenGLAPIs. Thefirst form deliversa simple list of

triangleswith onepoint pervertex in eachtriangle. The
secondusesa list of verticesandcombineshe lasttwo

verticesof atrianglewith thenext vertex to form another
triangle. This operatiorprecedesintil thelist of vertices
is exhausted.The final triangleform combinesthe first

andthird vertex of atrianglewith the next vertex to form

thesucceedingriangle.

Theserequestseachoperateasimplicit maskelements
in the baseCompositeoperator A sourcePicturepro-

videsRGBA elements Additional requestshatprovide

RGBA valuesfor eachvertex replacethe sourcePicture
with an implicit Picturegeneratecy interpolatingthe

RGBA vertex colorsthroughthe polygon. This allows a

wide rangeof color effectswith only afew requests.

8 Image Transformation

The final operationaddedto Renderinvolvesthe trans-
formationof imagedatawithin the X sener. Arbitrary
affine transformationgprovide a wealthof possiblema-
nipulationsthatcanbe acceleratedavith hardwaretradi-
tionally usedfor 3D texture mapping.

The Transformrequesttakes a quadrilateralareafrom
the sourceimage and mapsit to a quadrilateralarea
within the destinatiorarea.Verticesaremappedequen-
tially which allows an arbitraryaffine transformatiorof
theimagedatafrom sourceto dest.

The destinationquadrilateralforms an implicit alpha
maskwhich may be usedto smooththe edgesof the
transformedmage. The sourceimageis createdy fil-
teringthe sourcePictureduringthetransformationThe
precisesetof filters to be provided hasnot yet beende-
termined;the expectationis that commonhardwarefil-
ters should be included along with a few higher qual-
ity filters designedwith digital signal processingech-
nigues.

The eventualintentis to allow implementationgo pro-
vide additionalfilters as neededandto createa mech-
anismwithin the protocolto adwertiseat leastsomeof
their characteristics.



Thereareadditionalquestionsaboutedgeeffectswithin

the filter execution; perhapsadditional filter parame-
terswill be neededo generatepixel valuesbeyondthe
boundsof the sourcemage.

There is also a proposalto limit the destinationto
a trapezoidratherthan the more generalquadrilateral
form. This would probablysimplify the initial imple-
mentationwhile not overly restrictingfuture optimiza-
tions.

9 History and Status

The needfor the Renderextensionhas been present
ever since the X sener moved from monochrometo
color; theoriginal renderingarchitecturevasnever well
suitedto dealingwith color data. However, only with
the recentrenaissancef X-basedapplicationdevelop-
mentandconsequernteinvigorationof X technologyhas
enoughinterestandthoughtbeenappliedto researching
whatwasneeded.

Too much weight had beenhistorically given to com-
patibility with existing X applicationsand X seners.
The two new opensourceuserinterfaceernvironments,
GnomeandKDE, werehamstrundy theexisting X ren-
deringsystem.KDE acceptedhe limitations of the en-
vironmentandmadethe bestof them. Gnomereplaced
sener-siderenderingwith client-siderenderingturning
theX protocolinto asimpleimagetransporsystem.The
lack of hardwareacceleratiorandthe destructiorof rea-
sonableremote application performancedemonstrated
thatthis directionshouldbe supplantedvith something
providing a modicumof sener-sidesupport.

As of Usenix2000,no formal proposaldor a complete
extensionhad beenproducedand yet considerablén-
terestattendedhe presentatiorof a collectionof ideas
relatedto this issue. One of the attendeesRob Pike,
describedhe architectureof the renderingsystemthat
he and RussCox had developedfor the Plan9 window
system.The simpleunified architecturgrom thatenvi-
ronmentwaslifted with only slight extensionsto form
the coreof this new X-basedrenderingsystem.

The Renderextensionprotocolwasdiscussedvithin the

XFree86communityfor several months. Onceit had

stabilized,animplementatiorwas startedwith the goal

of producinga workabledemonstratiorof anti-aliased
text by Augustof 2000.

At this point, theimplementatiorprovidessupportonly

for the basiccompositingprimitive alongwith the text

primitives. The issuesdiscussedbove relatedto anti-

aliasedpolygon rasterizationprecludean implementa-
tion of either polygon or image transformationopera-
tors. Oncethatissuehasbeenresoled,theimplementa-
tion canbe completed.

Startingin Octoberof lastyear an architecturefor ac-
celeratingthe Renderextensionhasbeenunderdevel-
opmentwithin the XFree86 sener. As the protocol
hasbeendesignedor implementatioron modernhard-
ware, the implementationof the primitivesthemseles
hasbeenrelatively straightforvard. As expected hard-
ware accelerationprovides a tremendougerformance
benefit.Early measurementsf simpleimagecomposit-
ing by theauthorandMark Vojkovich shavedthe hard-
warerunningasmuchasforty timesfasterthanreason-
ably optimizedC code.

Latein 2000,Xft supportwasbeenintegratednto the Qt
toolkit, whichformstheunderpinninggor theK desktop
ervironment. Thattoolkit providesa completeabstrac-
tion for all renderingoperationssotheactof modifying
thetoolkit instantlyprovidedanti-aliasedext in all KDE
applicationsWith Qt 3.0, additionalRenderfunctional-
ity will be utilized, allowing applicationsto composite
imagesonthescreen.

Someattemptshave also beenmadeto utilize Render
within the Gnomecommunity However, until the tran-

sitionfrom Gtk+ 1.2to Gtk+ 2.0,too muchof theunder

lying X font modelis exposedo applicationgo enablea

completeransition.Gtk+ 2.0shouldbereadywithin the
next year, providing the communitywith anothertoolkit

free of coreX font dependencies.

10 Conclusion

The X Renderingextensionprovidesa completelynew

renderingmodel for usewithin the X window system.
Its small size and low level primitives permit a rela-
tively modessizeimplementatiorwhile providing com-
pletefunctionality. Theprimitiveshave beendesignedo

closely matchboth applicationrequirementsand hard-
warecapabilities.

The X desktophasalreadybeguna transformatiorwith
the introduction of anti-aliasedtext in several toolkits
andapplicationsuites. Wheretoolkits wereoncestrug-
gling to provide modernuserinterfacetechniquesRen-



derstepsin andpermitsapplicationgo speaktheir own
language. New applicationshave beenthreateningto
turn X into a simpleimagetransportprotocol; the core
renderingsystemhasproven essentiallyunworkablein
the modernworld. Renderbringsgraphicsbackto the
sener, exposingthe capabilitiesof the hardware while
permittingapplicationgo againrun efficiently acrossa
network. Renderallows the X window systemto again
supportthe advancemenbf the opensourcedesktopen-
vironment.

Acknowledgments

The Renderextensionhasbeenthe work of mary peo-
ple,amongthem:

e ThomasPorterand Tom Duff, who formalizedthe
imagecompositingoperators.

e Rob Pike and RussCox, who designedhe Plan9
window systemfrom whichthe compositingmodel
waslifted.

e JuliuszChroboczekand RaphLevien, whosepro-
posalfor client-sideglyph managementliminated
font handlingfrom the X sener.

e JonLeech,Brad Granthamand Allen Akin, who
patientlyexplainedhow OpenGLworks.

e Mark Vojkovich, who describedhow modern2D
graphicshardware functionsand for designingan
acceleratiorarchitecturdor Render

e Dirk Hohndel,who provided the initial sparkthat
touchedoff thewholething.

e SuSE,which fundsthe authors involvementwith
XFree86.

Thanksalsogo to Bart Masse for helpin preparingthe
manuscript.

References

[Ado85] AdobeSystemdncorporated.PostScriptLan-
guage RefeenceManual Addison Wesley,
1985.

[Bli94] Jim Blinn. Compositingtheory IEEE Com-
puter Graphicsand Applications September
1994.Republishedn [BIi98].

[Bli98] Jim Blinn. Jim Blinn’s Corner: Dirty Pixels

MorganKaufmann,1998.

[Pac00a] Keith Packard. A New RenderingModel for
X. In FREENIXTrack, 2000 UsenixAnnual
Technical Confeence pages279-284, San
Diego, CA, June2000.USENIX.

[Pac00b] Keith Packard. The X RenderingExtension.
Xfree86 draft standard,The XFree86Project,
Inc.,2000.

[PD84] ThomasPorter and Tom Duff. Composit-
ing Digital Images. Computer Graphics
18(3):253—259July 1984.

[Pik00] RobPike. draw - screengraphics Bell Labo-

ratories,2000. Plan9 ManualPageEntry.

[SAe99] Mark Seyal, Kurt Akeley, andJonLeach(ed).
The OpenGL Graphics System: A Specifica-
tion. SGI,1999.

[SG92] RobertW. ScheiflerandJamesGettys. X Win-
dow SystemDigital Pressthird edition,1992.



