
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Adding Response Time Measurement of
CIFS File Server Performance to NetBench

Karl L. Swartz
Network Appliance

Adding Response Time Measurement of
CIFS File Server Performance to NetBench

Karl L. Swartz - kls@netapp.com
Network Appliance

Abstract

The standard benchmark for NFS file server perform-
ance, SPEC SFS (also known as LADDIS), measures
performance in terms of both throughput—the aggre-
gate amount of data a file server can move across the
network per unit of time—and response time—the
time required to service an individual client request.
NetBench, the most commonly used file server
benchmark for the CIFS (or SMB) protocol measures
only throughput. Network Appliance believes re-
sponse time is as important a performance metric as
throughput, especially in the highly interactive envi-
ronment typical of CIFS networks, since throughput
offers little solace to a user waiting to access a file.

This paper documents the methodology and tools de-
veloped to measure response time during a NetBench
run. While cumbersome and primitive, useful data has
been produced, demonstrating that the fundamental
idea is sound. SPEC SFS has had a noticeable effect
on vendors of NFS file servers, motivating them to
improve response time from an average of 50ms in
1993 to less than 10ms in 1997. Given the ability to
measure response time in the CIFS environment, hope-
fully a similar improvement can be encouraged in
CIFS file servers.

1. Introduction

“Never underestimate the bandwidth of a station
wagon full of tapes hurtling down the highway.”

- Andrew Tanenbaum

Throughput is an important metric for file server per-
formance, but for individual, interactive users, good
response time is far more critical. The standard
benchmark for NFS file servers, SPEC SFS (also
known as LADDIS) [1,2], measures both. When Net-
work Appliance introduced support for the CIFS (or
SMB1) protocol [3], we wanted to measure both attrib-

1 CIFS (Common Internet File System) is simply a re-
christened SMB (Server Message Block), to the confu-
sion of many. Individual operations in the protocol are
still commonly referred to as SMBs.

utes of our file server’s performance using this new
protocol, but were disappointed to find that the file
server portion of NetBench [4]2 only measures
throughput.

The desire to have response time data led us to proto-
type a process which would permit measurement of
response times during the course of a NetBench run.
While the tools and methods are a crude hack, the
project was successful enough to produce useful re-
sults [5], and the tools were further refined and used
with a subsequent NetBench run on a larger, more in-
teresting configuration [6].

Since NetApp does not have source code for Net-
Bench, we could not enhance it with the time-
stamping features of SPEC SFS. Even with the
source, we might not have been able to do so—SPEC
SFS is a synthetic benchmark [7] which generates the
desired sequence of NFS requests, but NetBench is an
application-level benchmark, generating relatively
high-level file system calls. Not only doesn’t a single
call necessarily have the one-to-one correspondence
with an SMB (a single CIFS transaction), as would be
needed to measure the response time of a single op-
eration, it might not even be generating SMB calls at
all if, for example, it were being used to evaluate a PC
NFS product.

Instead of modifying the benchmark itself, we cap-
tured network traffic between the server and a typical
client. The resulting packet trace was subsequently
analyzed off-line, matching client requests with the
corresponding response packet(s) from the server and
then computing the response time. The result does not
reflect the time spent in the client’s network protocol
stack, unlike SPEC SFS, but the results can be mean-
ingfully compared for two different CIFS file servers.

2 NetBench, the most widely cited PC-oriented bench-
mark, is not actually specific to any underlying proto-
col—it can be used with any protocol a PC (or Mac)
client can use, and thus can just as easily be used to
evaluate NetWare, NFS, or even local file systems.

An additional benefit of this approach is that response
time can be measured for any CIFS traffic, so other
benchmark suites such as BAPCo’s SYSmark for File
Servers [8] could be substituted. (The response time
tools might need to be enhanced to understand SMBs
not encountered in the NetBench runs, but the hooks
are in place to make this a relatively simple process.)

2. Data Collection

The test networks used were reasonably standard ones
for NetBench, with client (load-generator) machines
distributed evenly across multiple 100Base-TX net-
works. The key modification was the addition of a
machine to capture packets flowing between a selected
client and the server. In the early runs, this machine
was on a hub with the server. This allowed us to select
a different client on the fly in case the one initially
being monitored dropped out of test. This flexibility
did not prove to be necessary, and the packet capture
machine was moved to a hub with the client to be
monitored, as shown in Figure 1. This permitted the
use of a dedicate switch port (or ports) to the server, a
more typical configuration for a large installation.

The large number of clients used in a NetBench run
(our largest configuration used 200 clients, plus a few
spares) makes a fully-switched network—with even
the clients on dedicated switch ports—an unlikely sce-
nario. However, this setup may be desirable for other
benchmarks. It poses a problem since no shared net-
works are available on which to place the packet cap-
ture machine. Fortunately, many switches allow a
monitoring port to be configured to which packets
from one or more other ports are directed.

During the course of a NetBench run, the packet cap-
ture is started immediately after the client starts run-
ning the mix (one data point of the benchmark) and
stopped shortly before completion. This is an ex-
ceedingly tedious process, but no hooks which can be
used to automatically trigger and terminate the packet
capture are apparent within NetBench. The packets
missed at the beginning and end of this process are not
a great concern since a large sample is still obtained.

3. Packet Capture Tools

In the early stages of this effort, Cinco Networks’
NetXRay software [9] was used to perform the packet
capture. It ran on a spare PC in our lab, and could
decode SMB traffic, “printing” the decoded trace to a
file. This reduced the time required to develop the
Perl script used to analyze the data, but not the execu-
tion time of the analysis. When we started working
with large samples, we found that the printer drivers
were intolerably slow, and NetXRay occasionally died
while attempting to decode some packets. We ended
up writing our own decoding tool, but NetXRay’s de-
coding served our prototyping process well.

A discussion in the SPECweb mailing list led us to
suspect the resolution of the times reported by
NetXRay [10]. An NT version of the SPECweb96
benchmark had been released, but it was discovered
that the NT timer resolution was “only tens of milli-
seconds at best.” Several Ultra SPARCs were in our
lab as SPEC SFS load generators. The snoop utility
which comes with Solaris 2 looked promising, with a
claimed accuracy of 4 microseconds. We decided to
switch to this packet capture tool for future runs,
which required some modifications to the SMB de-
coder to accommodate the different format for the
capture files.

While snoop gave us better timer resolution, we
found that it also tended to drop packets, often in large
quantity. A sample large enough to provide statisti-
cally meaningful results was still obtainable, but re-
working the analysis code to properly match up SMB
commands and their responses without being tripped
up by dropped packets was a challenge.

The moral of this is that during benchmark runs for
which accurate timing is important, a dedicated packet
capture device such as a Network General Sniffer [11]
is probably a worthwhile investment, instead of trying
to make a general-purpose computer perform this spe-
cialized job well. (One would have thought that since

packet
capture

hub

client client

hub

client client

server

switch

Figure 1: Switch-based benchmark configura-
tion with packet capture machine on client hub

Network Appliance promotes the value of dedicated,
appliance-like devices for specific tasks, we would
have realized this sooner!)

4. Packet Trace Analysis

The core of the response time measurement is an
analysis tool which studies the captured packet traces,
looking for SMB commands and the corresponding
replies from the server. The time-stamps on the cap-
tured packets are used to compute the time from when
the first part of the command appeared on the network
until the last packet of the response appeared. This
tool was written in Perl for convenience of initial im-
plementation and modification. It’s quite slow and
uses a prodigious amount of memory. Rewriting it in
C would speed it up immensely, and perhaps reduce
the memory demands, but it isn’t run that often and we
can obtain the resources when needed, and thus have
not felt sufficient need to justify the investment in a
full rewrite of the code.

The analysis is broken into three passes. The first pass
scans the input, doing basic lexical analysis and sanity
checking, then converting the data into an internal
format. TCP sequence numbers are studied to catch
packets retransmitted by TCP because they were not
acknowledged by the receiver, and, with packet length
information, to detect when packets have been
dropped by the packet capture process. Packets which
are continuations of an SMB command or response
which required multiple packets are linked back to the
initial packet.

The second pass ensures that at least the first and last
packet of a multiple packet command or response are
present. (Intermediate packets aren’t important since
they don’t influence the overall response time of the
operation.) More error checking is done and various
counts are updated.

The third analysis pass examines packets which are the
initial packet of an SMB command. The command is
matched to a response based on Multiplex ID, with
TCP sequence numbers and other consistency checks
used to ensure that a response is indeed the one which
corresponds to the command. (Multiplex IDs recycle,
and protracted packet drops can lead to unfortunate
coincidences if one is not careful.) If all the checks
pass and the last packet of the command is present, the
response time is computed by subtracting the time-
stamp on the initial packet of the command from the
final packet of the response and then tabulated.

5. Special Handling of Write_Raw SMBs

Determining a meaningful response time for the
Write_Raw SMB poses an interesting challenge, as if
the many artifacts of the data collection process where
not challenge enough. This SMB begins with the cli-
ent sending a relatively small chunk of initial data
along with a reservation request for a much larger (up
to 65,535 bytes) block of data. The server saves the
initial data, reserves space for the large block of data,
and responds to the client. The client then sends the
block of data.

In the most frequently observed case, the server does
not generate any response to acknowledge the receipt
of the block of data. Any error is reported to the client
in the next access to the file handle. This access can
be arbitrarily far in the future, so there is no way to
measure the response time for this portion of a
Write_Raw command.

Without any direct acknowledgment of these SMBs,
there is no way to measure response time for these
operations in their entirety from a passive, external
observation. (A TCP acknowledgment is generated,
perhaps as part of another response, but this has no
relationship to when the command actually com-
pleted.) These operations are therefore reported in two
parts, the initial portion, including its response time,
and the second, asynchronous portion.

6. Response Time Reporting

Appendix A is an example report, taken from the 80-
client data point of a NetBench run against a Network
Appliance F630 filer (file server appliance) running an
early version of Data ONTAP 4.1. This is just one of
seven reports from one NetBench run—obviously a
more compact presentation is desirable for easy com-
parison and reference.

SPEC SFS combines response times into one number
for each data point. We were not comfortable with the
idea of collapsing the data that much for our work,
both because we weren’t sure if doing so would be
meaningful, and because we were trying to compare
two different dialects of the CIFS protocol—NetApp
software does not yet implement the NT dialect, which
has some extensions that offer significant performance
benefits. We chose to sort the SMBs observed in the
data into four groups of similar operations (detailed in
Table 1) and to report response times for each group.
Subsequent analysis was based on these groupings.

Minimum, maximum, and median response time are
included in the report, along with the average response
time. Except during debugging, the average has been
the most interesting statistic.

7. Comparing Two Real Servers

Figure 2 shows the throughput results from NetBench
against a NetApp F630 and a Compaq ProLiant 5000
with hardware RAID running Windows NT. The sys-
tem configurations are summarized in Table 2; further
details along with the complete benchmark results are
in [6].

The drop-off in throughput of NT beyond 20 clients
was expected—previous tests had shown that the per-
formance of the Compaq suffered greatly once the
working set exceeded memory size [5].

What was surprising was the improvement in through-
put for the Compaq once the working set exceeded the
server’s memory. This caused considerable conster-
nation for several weeks, until the response time
analysis software could be reworked to handle the
snoop output and the many packet drops it contained.

Server NetApp F630 Compaq
ProLiant 5000

Software Data ONTAP
4.1 beta

Windows NT
4.0 with SP3

Processor Alpha 21164A Pentium Pro
with 512KB
L2 cache

CPUs 1 4
Speed 500 MHz 200 MHz
Memory 512MB

plus 32MB
NVRAM

1GB

SCSI built-in (2 port) 2 SMART-2
Disks 26 F/W SCSI

Seagate
Barracuda

28 F/W SCSI
Seagate
Barracuda

RAID RAID-4 2 hardware
RAID-5, striped

Network 4 100Base-TX 4 100Base-TX

Table 2: Server Configurations

Read Read+X
Write Flush_File

Write_Bytes
Write_Raw
Write+X

Open/Close Close_File
NT_Create+X
Open+X

Other Check_Directory
Create_Directory
Delete_File
Find_Close2
Rename_File
Delete_Directory
Transaction2 - Find_First
Transaction2 - Find_First2
Transaction2 - Find_Next
Locking+X

Get_File_Attributes
Get_File_Attributes2
Get_Ext_Attribute
Get_Ext_Attrbute
Set_File_Attributes
Set_File_Attributes2
Transaction2 - Get_FS_Info
Transaction2 - Get_Path_Info
Transaction2 - Get_File_Info
Transaction2 - Set_File_Info

Table 1: Categories of SMB operations

0

2

4

6

8

10

12

20 40 80 12
0

16
0

20
0

Clients

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

F630
Compaq

Figure 2: NetBench results for 10-200 clients

The response time data finally helped explain this
seemingly bizarre behavior. Figure 3 shows the re-
sponse time for the Read group of SMBs for both of
the servers tested. (Response times for the other SMB
groups in Table 1 are presented in [6].) When the
Compaq’s throughput began to increase, the slope of
the response time curve increases significantly—a
steep price for the increased throughput. One plausi-
ble explanation is that NT switches algorithms as the
load increases, from one tuned to provide clients with
the best performance to one tuned for the convenience
of the server. (Anecdotal evidence suggests that this
sort of non-linear behavior is not unprecedented in NT
benchmarking.)

The Network Appliance F630, in contrast to the Com-
paq running NT, degraded gracefully under increased
load. Response time began low and stayed relatively
low, an expected (and intended) benefit of NetApp’s
micro-kernel software architecture [12,13].

8. Conclusions

Studying file server response time is an interesting and
enlightening exercise. Ideally, response time meas-
urement is built into the benchmark. Lacking that,
passively monitoring network traffic while running an
existing benchmark and analyzing the packet traces
off-line, despite being a crude hack, can produce use-
ful response time data.

9. Availability

To encourage further studies in this area, the tools de-
scribed in this paper will be made available in the free
software section of Network Appliance’s web site,

http://www.netapp.com/technology/free.html. Please
send any enhancements or fixes to this software to the
author at kls@netapp.com.

References

1. Andy Watson, Bruce Nelson, “LADDIS: A Multi-
Vendor and Vendor-Neutral SPEC NFS Bench-
mark,” Proceedings of the 6th USENIX Large In-
stallation System Administration Conference
(LISA VI), pp. 33-38, Long Beach, California,
October 1992.

2. Mark Wittle, Bruce E. Keith, “LADDIS: The Next
Generation In NFS File Server Benchmarking,”
Proceedings of the 1993 Summer USENIX Techni-
cal Conference, pp. 111-128, Cincinnati, June
1993.

3. Microsoft Networks SMB File Sharing Protocol
(Document Version 6.0p), Microsoft Corporation,
Redmond, Washington.

4. ZDBOp—NetBench, http://www.zdnet.com/zdbop/
netbench/netbench.html, Ziff-Davis Publishing
Company.

5. Karl L. Swartz, Andy Watson, CIFS Filer Per-
formance Measured with NetBench (TR-3015),
Network Appliance, Santa Clara, California, 1997.

6. Karl L. Swartz, Andy Watson, F630 Filer Per-
formance Measured with NetBench (TR-3019),
Network Appliance, Santa Clara, California, 1997.

7. Andy Watson, NFS Performance with NetApp
Filers (TR-3008), Appendix A, Network Appli-
ance, Mountain View, March 1996.

8. SYSmark for File Servers,
http://www.bapco.com/sysfs.htm, BAPCo, Santa
Clara, California.

9. Cinco Networks, http://www.cinco.com/.
10. SPECweb private distribution list, January-

February 1997.
11. Sniffer Network Analyzer, http://www.ngc.com/

product_info/sna/sna_dir.html, Network General
Corp., 1997.

12. Dave Hitz, An NFS File Server Appliance (TR-
3001), Network Appliance, Mountain View, Cali-
fornia, January 1997.

13. Andy Watson, Multiprotocol Data Access: NFS,
CIFS, and HTTP (TR-3014), Network Appliance,
Mountain View, California, December 1996.

0

20

40

60

80

100

120

140

160

180

200

20 40 80 12
0

16
0

20
0

Clients

R
es

po
ns

e
T

im
e

(m
ill

is
ec

on
ds

)
F630

Compaq

Figure 3: Response times for Read SMB group

Appendix A: Response Time Analysis Report for NetApp F630 (80 clients)

* f630 - 80 clients *

Packets: 91748
 IP/TCP: 74112 80.8%
 IP/TCP Ack: 17623 19.2%
 IP/TCP UAk: 13 0.0%

 retrans: 6 0.0%
 dropped: 7065 (or more)

Continue: 26787 29.2%

Commands: 44510 48.5%

 SMB: 23665 53.2%
 continue: 12614 28.3%
 sync: 5907 46.8%
 async: 6707 53.2%
 TCP ack: 8219 18.5%
 TCP retry: 13 0.0%

Elapsed time: 000:10:51.79540 (651.79540 seconds)

 Avg.
SMB Command Count % Tot Pkts Fastest Slowest Median Average StdDev
----------- ----- ----- ---- ------- ------- ------ ------- ------
Check_Directory 235 1.0% 2 0.00032 0.03820 0.00724 0.00890 0.0049
Close_File 1412 6.0% 2 0.00021 0.04957 0.00729 0.00869 0.0049
Delete_File 269 1.1% 2.0 0.00096 1.64518 0.00811 0.04184 0.1945
Find_Close2 474 2.0% 2 0.00016 0.03768 0.00722 0.00869 0.0047
Flush_File 65 0.3% 2.0 0.00234 0.02620 0.00707 0.00865 0.0046
Get_File_Attributes 2062 8.7% 2.0 0.00026 0.15250 0.00753 0.00914 0.0055
Get_File_Attributes2 1264 5.3% 2 0.00034 0.04445 0.00686 0.00777 0.0043
Locking+X 289 1.2% 2 0.00048 0.03927 0.00702 0.00842 0.0046
Open+X 1863 7.9% 2 0.00029 0.04770 0.00751 0.00911 0.0047
Read+X 8735 36.9% 3.6 0.00020 0.17699 0.00732 0.01063 0.0126
Rename_File 41 0.2% 2 0.00143 0.02945 0.00771 0.00969 0.0049
Set_File_Attributes 1 0.0% 2 0.01390 0.01390 0.01390 0.01390
Transaction2 820 3.5% 2.0 0.00032 0.09482 0.00779 0.00967 0.0060
 Find_First 469 2.0% 2 0.00073 0.09482 0.00755 0.00943 0.0063
 Find_Next 266 1.1% 2 0.00032 0.04912 0.00848 0.01000 0.0055
 Get_FS_Info 85 0.4% 2 0.00390 0.03716 0.00792 0.00997 0.0056
Write_Bytes 5716 24.2% 2.8 0.00034 0.77066 0.00774 0.01010 0.0179
Write_Raw 261 1.1% 7.1 0.00699 0.20911 0.02325 0.02672 0.0157
 async portion 25.5

Groups:
 Open/Close 3275 13.8% 2.0 0.00021 0.04957 0.00739 0.00893 0.0048
 Other 5455 23.1% 2 0.00016 1.64518 0.00727 0.01043 0.0441
 Attributes 3412 14.4% 2 0.00026 0.15250 0.00719 0.00866 0.0052
 Directory 1754 7.4% 2 0.00016 1.64518 0.00751 0.01422 0.0773
 Locking 289 1.2% 2.0 0.00048 0.03927 0.00702 0.00842 0.0046
 Read 8735 36.9% 3.6 0.00020 0.17699 0.00732 0.01063 0.0126
 Write 6042 25.5% 3.0 0.00034 0.77066 0.00789 0.01080 0.0181

Response time distributions per command:

 Check_Directory:
 <0.001 4 1.7% 1.7%
 <0.01 155 66.0% 67.7% *********************
 <0.1 76 32.3% 100.0% **********

 Close_File:
 <0.001 31 2.2% 2.2%
 <0.01 981 69.5% 71.7% ***********************
 <0.1 400 28.3% 100.0% *********

 Delete_File:
 <0.001 1 0.4% 0.4%
 <0.01 159 59.1% 59.5% *******************
 <0.1 101 37.5% 97.0% ************
 <1 4 1.5% 98.5%
 <10 4 1.5% 100.0%

 Find_Close2:
 <0.001 8 1.7% 1.7%
 <0.01 334 70.5% 72.2% ***********************
 <0.1 132 27.8% 100.0% *********

 Flush_File:
 <0.01 51 78.5% 78.5% **************************
 <0.1 14 21.5% 100.0% *******

 Get_File_Attributes:
 <0.001 25 1.2% 1.2%
 <0.01 1310 63.5% 64.7% *********************
 <0.1 726 35.2% 100.0% ***********
 <1 1 0.0% 100.0%

 Get_File_Attributes2:
 <0.001 35 2.8% 2.8%
 <0.01 980 77.5% 80.3% *************************
 <0.1 249 19.7% 100.0% ******

 Locking+X:
 <0.001 4 1.4% 1.4%
 <0.01 219 75.8% 77.2% *************************
 <0.1 66 22.8% 100.0% *******

 Open+X:
 <0.001 15 0.8% 0.8%
 <0.01 1225 65.8% 66.6% *********************
 <0.1 623 33.4% 100.0% ***********

 Read+X:
 <0.001 105 1.2% 1.2%
 <0.01 6031 69.0% 70.2% ***********************
 <0.1 2562 29.3% 99.6% *********
 <1 37 0.4% 100.0%

 Rename_File:
 <0.01 26 63.4% 63.4% *********************
 <0.1 15 36.6% 100.0% ************

 Set_File_Attributes:
 <0.1 1 100.0% 100.0% *********************************

 Transaction2:
 <0.001 3 0.4% 0.4%
 <0.01 519 63.3% 63.7% *********************
 <0.1 298 36.3% 100.0% ************

 Transaction2 (Find_First):
 <0.001 1 0.2% 0.2%
 <0.01 320 68.2% 68.4% **********************
 <0.1 148 31.6% 100.0% **********

 Transaction2 (Find_Next):
 <0.001 2 0.8% 0.8%
 <0.01 146 54.9% 55.6% ******************
 <0.1 118 44.4% 100.0% **************

 Transaction2 (Get_FS_Info):
 <0.01 53 62.4% 62.4% ********************
 <0.1 32 37.6% 100.0% ************

 Write_Bytes:
 <0.001 54 0.9% 0.9%
 <0.01 3702 64.8% 65.7% *********************
 <0.1 1954 34.2% 99.9% ***********
 <1 6 0.1% 100.0%

 Write_Raw (synchronous portion only):
 <0.01 3 1.1% 1.1%
 <0.1 257 98.5% 99.6% ********************************
 <1 1 0.4% 100.0%

 Group - Open/Close:
 <0.001 46 1.4% 1.4%
 <0.01 2206 67.4% 68.8% **********************
 <0.1 1023 31.2% 100.0% **********

 Group - Other:
 <0.001 80 1.5% 1.5%
 <0.01 3702 67.9% 69.3% **********************
 <0.1 1664 30.5% 99.8% **********
 <1 5 0.1% 99.9%
 <10 4 0.1% 100.0%

 Group - Other.Attributes:
 <0.001 60 1.8% 1.8%
 <0.01 2343 68.7% 70.4% **********************
 <0.1 1008 29.5% 100.0% *********
 <1 1 0.0% 100.0%

 Group - Other.Directory:
 <0.001 16 0.9% 0.9%
 <0.01 1140 65.0% 65.9% *********************
 <0.1 590 33.6% 99.5% ***********
 <1 4 0.2% 99.8%
 <10 4 0.2% 100.0%

 Group - Other.Locking:
 <0.001 4 1.4% 1.4%
 <0.01 219 75.8% 77.2% *************************
 <0.1 66 22.8% 100.0% *******

 Group - Read:
 <0.001 105 1.2% 1.2%
 <0.01 6031 69.0% 70.2% ***********************
 <0.1 2562 29.3% 99.6% *********
 <1 37 0.4% 100.0%

 Group - Write:
 <0.001 54 0.9% 0.9%
 <0.01 3756 62.2% 63.1% ********************
 <0.1 2225 36.8% 99.9% ************
 <1 7 0.1% 100.0%

Warnings:
 final packet of SMB missing: 24 0.0%
 final packet of response missing: 21 0.0%
 preceding packet(s) dropped: 7065 7.7%
 response MID mismatch; looking ahead: 137 0.1%
 response MID not matched after 4 attempts: 137 0.1%
 retransmitted or out-of-order packet: 6 0.0%

