i

The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop
Seattle, Washington, August 1997

A Scheduling Scheme for Network Saturated NT Multiprocessors

Jargen Sveerke Hansen and Eric Jul
Department of Computer Science, University of Copenhagen (DIKU)
Copenhagen, Denmark

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

A Scheduling Schenefor Network Saturated NT
Multip rocessors

Jargen Sveerke Hansen

Eric Jul

Departmenof Compute Sciene, University of Copenhage (DIKU)
Universitetspaken 1, 2100 CopenhageyDenmark

E-mail: {cyller,eric

Abstract

The use of high performane networking tech-
nologies e.g, ATM neworks demand muc from
both operatimy systens and processorsDuring high
network loads use threads may be starvel because
the processospendall its time handlirg interrupts.

To alleviate this problem we propo® using
a two level netwvork interface servicirg schene that
uses interrups during low network loads to provide
low latercy, and polling thread during high network
loads to avoid use threal stawvation.

In this pape, we examire the use of sud a
schene on dual-processovorkstatiors running Win-
dows NT connectd by an ATM nework. Pa-
formane evaluation of our multiprocesso proto-
type implementatio shows tha using our two level
schene can improve performane when usal care-
fully.

1 Introduction

High performane netwvorks base on, e.g.,
ATM often demanl substantib processo time; so
much that processa can becone saturatd with net-
work traffic leaving littl e or no time for actualy pro-
cessig data.

As pat of a projed concernig ATM net-
work striping', we have considerd how to efficiently
hande multiple network interfaces Processig the
dattha arrives on just a single high-sped network
interface is a problan even for fairly high perfa-
mane workstations using severd high-sped net-
work interfaces (as we will be doing when perform-
ing nework striping will only aggevate the situa-
tion. Sud processo overloal can be handlal by

IFor more information visit the projed homepag at
http://mww.diku.dk/distlab/Research/CIT/SPAN/spanhtml.

}@diku.dk

using extremely powerful processorsHowever, there
are both economicaand physica limits on how fast
aprocesspthat it is possibk to use As an alterna-
tivewe propog using multiprocessasto provide suf-
ficient processig power.

Previous work in the area of multiprocessor
nework performanehas concentratd mainly onim-
proving the performane of highe level protocols
([1], [4] and [5]), ard furthermore thes approaches
use asingle netwvork interface We conside the sche-
duling issues related to handlirg one or multiple net-
work interfaces on multiprocessors.

In the foll owing, wefirst descrike the problems
of threal stawvation, then we presemhatwo level net-
work interfae servicirg schene tha uses interrupt-
driven servicirg at low network loads and polling
thread at high network loads Lastly we evaluaethe
performane of the two level scheme.

We have implementd this schene on dual-
processo workstatiors running Windows NT con-
nectel by an ATM netvork. As netvork interfaces,
we use Olicom ATM nework interfacesand Olicom
A/S has provided us with acces to the soure code
for the ATM network interfac drivers.

2 Usea Thread Starvation

In interrupt-diven kernek the totd processor
usagp of a netwvork application can be split into two
parts a patt usal by the use threads and a part
usal by the interrupt-routine Ideally, the partition-
ing shoubl be sud that the interrupt-routire defivers
packes at the rate in which the use threal consumes
them To avoid packe loss in ca of timing mis-
matd betwee use threal and interrupt-routine a
limited numbe of packes may be buffered in the I/O
subsyste untill the use threal collecs them As
long as the totd demaml for processig power does

not exceed what is available, this should cause ng

problem. user threads Processor 1

When processing power is a problem during[~—— - "X~~~ " "~ =
heavy network loads, the threads on the system are Processor 2
starved due to the fact that interrupt-routines have ab
solute priority over any other thread in the system,
and thus the bulk of processing time is used processtow network load high
ing interrupts from the network interfaces receivin
data. The actual consumers of the received data

E}gure 1: Processor usage as a function of network load

not allowed to process the data, and this may Ca_uosnea two processor machine in the case with suboptimal

. erformance during high load due to interrupt-handling.
upper layer buffers in the network subsystem to ové)— ghg P g
flow. The result can be that a large amount of pro-

cessing power is used on receiving data that is subr Processor 1
sequently discarded. Mogul and Ramakrishnan [3] user threads

identified this problem and propose to avoid this sit-- - - - -\ - -------—=>

uation (which they callreceive livelock by using Processor 2
interrupt-initiated polling. When a network interface interrupt routine

issues an interrupt, its handler merely starts a pollin

thread. This thread is scheduled together with any,,, network load high

other threads in the system, thus reducing the live- _
lock problem. Another benefit from using a polling/gure 2: Processor usage as a function of network load
thread is that the number of interrupts and conte¥} & two processor machine illustrating the performance

switches per received network data unit is lowered Ers?gradation caused by user threads waiting on locks held
stress situations y an interrupted thread.

The thread starvation problem is not neces-
sarily removed by adding more processors to #mthat threads running on the other processor must
interrupt-driven system. Because an interrupt steatgit for a lock held by the interrupted thread. In the
processing time from the thread that it is interrupfigure the idle time resulting from this is marked with
ing, there is the danger of starving a thread durifgcking

heavy network load. On a multiprocessor, a situa- 1 5jjeviate these problems, the scheduling of
tion (which we callthread pinning may arise where \oyor handling on multiprocessors needs to be

SOME processors are almost '(_ﬂ?' while another P&nsidered. One possible solution to the thread pin-
cessor is heavily loaded servicing the network ingng hroblem is that the interrupt-handling routine at
terfaces and starving the thread that was to Process,|ar intervals yields the processor, thus allowing
the incoming data. Furthermore, in the case Whege, \ser thread to be rescheduled—possibly on a less
a multithreaded user application is used, the u§ghyeq processor. Another solution is to utilize that
thread.worklo709 V. 1438 7.08 V 1441 707 V 144457&ﬁev Br&ggs\éé'r‘lg‘r%ﬂl?e%%ﬁrje@(%@,%Nelﬁér%a% V 1459 701V
of the interrupt-routine. This may produce subopts, gy have support for controlling which processor is
mal performance as illustrated in figure 1. The figs 1o ceive a given interrupt on the basis of a prior-
ure shows how the processor usage is divided hig; 4sqigned to each processor. As long as there is
tween user threads, interrupt-routine a_nd idle time Py one active thread handling network data, and as
gtwo processor machine. A_S full load is reaphed, t'ﬂ?ng as there are fewer network interfaces than pro-
interrupt-routine starts stealing processor time fropa.cqq s this would alleviate the thread pinning prob-
the user threads. This continues until the processgr, - ajternatively, one might consider simply dis-
usage of the interrupt-routine reaches the capacity 4fji, jnterrupts from the network interface(s) caus-

how data transmission and reception is handled by

Processor 1 this model.

user threads
******************* On data transmission, the transport driver
Processor 2 passes an IRP to the device driver, where the IRP is
polling routine either processed by a device driver dispatch routine,
or—in the case where the device is busy—queued for
low network load high later processing. When the transmit operation is com-
pleted, the IRP is returned to the transport driver. This
uses an I/O completion routine to be called in the
?ra‘{"nsport driver. This I/O completion routine is of-
ten just a queuing of the IRP for further processing.
In the case, where the completion of the transmit op-

able to solve the problems regarding thread pinnirﬁ{,ation reli'es on a hardware interrupt from the de-
interrupt-routines stealing processor time from us¥{ce, the dispatch routine would return, and rely on
threads and locking. This is illustrated in figure 30 interrupt handler to complete the transmit opera-
Here the polling routine does not steal cycles froffPn- The NT interrupt handling consists of two steps

the user thread, and thus the processor time is usdtiSt the hardware interrupt causes the execution of
in a way that maximizes throughput. Furthermore, &8 Interrupt Service Routine (ISR) running at device
there are no interrupts, threads holding a lock canrlgterruptReQuest Level (IRQL), which does minimal

Figure 3: Processor usage as a function of network lo
on a two processor machine in the case where the use
polling thread prevents performance degradation.

be interrupted. work (e.g., disabling interrupts). This causes a De-
ferred Procedure Call (DPC) to be queued. This DPC
3 Our Two Level Scheme is executed by a software interrupt when the IRQL

_ _ _ drops below Dispatch/DPC Level (this is below de-
The problems described in the previous segice IRQL, but above normal thread execution level).

tions lead us to abandon pure interrupt-driven nethis DPC handles the bulk of the processing.
work interface handling. The network handling based

on interrupt-initiated threads seems attractive when ~ When data is received on a device, the data is
the network load is high, but it would be nice td@SSeéd on to the transport driver in an IRP as de-
avoid the delay caused by both issuing an interrufftibed above.

and making a context switch in order to process a The IRP queues can either be managed by the
packet when the network load is low. We therefoigavice driver or the /O manager. Transmit opera-
use a two level scheme where interrupt-driven sejons are handled by a set of device driver dispatch
vicing of the network interfaces is used until a Certa%utines_ These may re|y on interrupts to Signa| the
level of network traffic, and above that level, a pollingompletion of a transmit operation, and thus a part of
thread scheme is used. the transmit handling is placed in the DPC.

4 Windows NT Implementation 4.2 Detecting User Thread Starvation

This section provides a closer look at how we The main problem is to detect user thread star-
have implemented this scheme in Windows NT. Firghtion, i.e., when to make the transition between
we give a brief description of the relevant parts Ghterrupt-driven and polled 1/0. We consider the fol-
Windows NT I/O management as this provides thewing possibilities:
basis for the further discussion. Then we look at how

to detect livelock in Windows NT, and finally we dls—L%ngth of network data queues By monitoring the

cuss how support for this scheme could be integrate length of the network data queues (possibly IRP
with the current Windows NT I/O subsystem. X .
gueues) that are emptied by the user thread, it
should be possible to detect when user thread
starvation occurs. The problem is that these
In our description, we use a simplified modelof queues are often internal to the transport driver
a network protocol stack, where we have a transport requiring that the device driver has access to in-
driver placed on top of a device driver. In Windows formation about the size of the queues in the
NT, the layers interact by passing I/O Request Pack- transport driver. As a transport driver may be
ets (IRPs) from one layer to the other. This is done bound to several devices, it should only be the
via an I/O manager. In the following we describe IRPs belonging to the device that are reported

4.1 Windows NT I/O Management

back. Olicom driver configured to use Classical IP with a
L . PVC between each pair of network adapters. As net-
Interrupt rate By monitoring the interrupt rate of a
. : work load generator we use the network performance
device, aninterrupt rate threshold value could be 2 :
: . . Mmeasurementtooletperf <. Again, to overload the
used to decide when the network load is high. ™
: . . > receiver, we use the UDP protocol. In our two level
The problem is that many device drivers use in- : .
Lo . cheme we used a threshold of 50%, i.e., the transi-
terrupt batching, i.e., processes multiple pack%%s . .) .
or interrunt I0n to polling was made, if an interrupt-routine used
P Pt more than 50% of the processing time on a single pro-
Amount of time spent processing interrupts By cessor for a period of more than two seconds.
measuring the percentage of processor time
used by the DPC of the device driver, it shoul8.2 Latency

also be possible to detect user thread starvation. To compare the overhead introduced by usin
The measurement of the processing time | P y 9

complicated by the fact that a DPC may bteﬁe polling r_outlne, we compare the latency of a pure
) : o nterrupt-driven system, our two level scheme, and
interrupted, but as the interrupts primarily are

hardware related interrupts the impact shoufdl! interrupt-initiated polling routine. The interrupt-
be negligible Initiated polling routine is obtained by modifying the

two level scheme implementation, so that all the DPC

We have based our implementation on meas@2€s is to signal the polling thread. The measure-
ing the interrupt processing time as this is simple fyents are illustrated in figure 4, and show that the two

implement. The transition from polled to interruptvel and pure interrupt-driven schemes have about

driven 1/O is made when the polling thread lack{® same latency, which is between 25 and.5@c
work to do. higher than the interrupt-initiated polling scheme.

Thus, the overhead of monitoring the execution time
of the interrupt-routine is negligible, and low latency

is achieved at low network load.
As the work done by the polling thread and the

interrupt handlers is almost the same, it would b®3 Thread Pinning

beneficial to integrate support for both interrupt hand- o

ling and polling in the operating system. By lettinga ~ When thread pinning occurs, we expect to see
device driver register routines explicitly for pollingo different levels on the rate of received data, one
threads and interrupt handlers, the 1/0 Manager caigh level corresponding to the case where the user
take active part in the decisions on what type of I/&réad and interrupt-routine execute on different pro-

handling to use , e.g., by monitor the execution tinf&SS0rs, and a low level in the case where they are
of interrupt handlers and initiate polling. executing on the same processor. We look at user

threads running both at normal and real-time priority.
5 Results User threads at real-time priority should be more vul-
nerable to interrupt-routines stealing cycles, as they

In the following, we compare our two levelcan only be preempted by threads with higher real-
scheme with a standard purely interrupt-driven dgme priority.

vice driver. In order to evaluate the viability of the] o
two level scheme, we look at network latency, thread !N figure 5 we show how thread pinning occurs

pinning, and finally we examine the effects of usé@” the receiving machine during a throughput mea-
thread starvation on multithreaded applications. ~ Surement using 1024 bytes UDP packets at various
send rates. In order to show the instability and vari-

5.1 Methodology ation in t_hroughput, we conducted 1Q measurements
o for a series of send rates for each priority, and show
~ Toproduce an overload situation on the receiéach of these measurements as a single dot in the
ing machine, a Dual Pentium Pro 200 MHz host wagiaph. As can be seen from the figure, the received
used as the transmitting side, and a Dual Pentiygte of the normal priority threads only split into two
133 MHz machine as the receiver. Both machingsels during extremely heavy load. This is due to
were running Windows NT 4.0 with service pack 3he fact that only during maximum network load does
The two machines were each equipped with two Olie interrupt-routine run continuously and thus pre-
com RapidFire 155 Mbps ATM adapters. All perfor-
mance tests have be?n m""‘de using the TCP/IP ProzNetperf can be obtained from The Public Netperf Homepage
tocol stack shipped with Windows NT on top of thet http://www.cup.hp.com/netperf/NetperfPage.html.

4.3 Operating System Support

600

550
500
Lat
atency 450
(nsec)

400

itiated polling -e—

350 | INt@Ekipigcl 0%t -e—
% Locking 1608b —<—
300 1 1 1 1 1
0 200 400 600 800 1000

Packet size (bytes)

Figure 9: The effects of locking on throughput with constant workload. Each dot in the graph represents the average
throughput of a series of measurements with 2048 bytes UDP packets.

In the Windows NT Kernel-Mode Driver Refe-
rence Guide [2] it is suggested, that periodic pollin
should be used to complete sends, when the total |
on the processor, on which the interrupt-routine is ex-

pages 74-83, September 1993.

b Kernel-Mode Drivers Reference Guide. Part of

the Windows NT 4.0 Device Driver Kit, 1996.

ecuting, exceeds a certain level. This would also 8] Jeffrey Mogul and K. K. Ramakrishnan. Elim-

duce user thread starvation, but does not address the

problems of unevenly balanced load on multiproces-
sors.

7 Conclusion

[4]

We propose a two level device servicing sys-
tem that uses interrupt handling during low network
loads in order to provide low latency and polling dur-
ing high network loads in order to prevent user thredd]
starvation. This can be integrated in the 1/0O system
of Windows NT.

Our current prototype on a couple of dual pro-

inating Receive Livelock in an Interrupt-driven
Kernel. InProceedings of the USENIX 1996 An-
nual Technical Conferengdanuary 1996.

Erich M. Nahum, David J. Yates, James F.
Kurose, and Don Towsley. Performance Issues in
Parallelized Network Protocols. roceedings

of OSDI '94 November 1994,

Gerald W. Neufeld, Mabo Robert Ito, Mur-
ray Goldberg, Mark J. McCutcheon, and Stuart
Ritchie. Parallel Host Interface for an ATM Net-
work. IEEE Network pages 24—-34, July 1993.

cessor workstations running Windows NT 4.0 showys] Jonathan M. Smith and C. Brendan S. Traw.

that the scheme is able to improve performance on
network saturated multiprocessors.

Acknowledgments

We wish to thank Olicom A/S, in particular
Tomasz Goldman and Kim R. Pedersen, for provid-
ing the necessary ATM hardware, for giving us access
to their driver source codes, and for providing sup-
port in general. The project is funded in part by The
Danish Natural Science Foundation and The Danish
National Centre for IT Research.

References

[1] Mats Bjérkman and Per Gunningberg. Lock-
ing Effects in Multiprocessor Implementations of
Protocols. InProceedings of SIGCOMM '93

Giving Applications Access to Gb/s Networking.
IEEE Network pages 44-52, July 1993.

