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Abstract

Modern computer systems are becoming more powerful and are using larger memories. However, except for very
high end systems, little attention is being paid to high availability. This is particularly true for transient memory
errors, which typically cause the entire system to fail. We believe that this situation can be improved by addressing
memory errors at all levels of the system, bring commodity systems closer to mainframe-class availability.

In this paper, we use fault injection experiments to investigate memory error susceptibility at the highest level using a
JVM and four Java benchmark applications. We then consider JVM data structure checksums to increase detection of
silent data corruption affecting the JVM and applications. Our results indicate that the JVM’s heap area has a higher
memory error susceptibility than its static data area and that we can detect up to 39% of all memory errors in the JVM
and application. We believe that such techniques will allow commodity systems to be made much more robust and
less error-prone to transient errors.
1 Introduction

The demand for high performance and availability in
commodity computers is increasing with the ubiquitous
use of computers and Internet services. While commod-
ity systems are tackling the performance issues, avail-
ability has received less attention. It is a common belief
that software errors and administration down-time are,
and will continue to be, the most probable cause of loss
of availability. While such failures are clearly common-
place, especially in desktop environments, the probabil-
ity of certain hardware errors is increasing.

Hardware errors can be classified as hard errors and
transient (soft) errors. Hard errors are those that require
replacement (or otherwise relinquished use) of the com-
ponent. They are typically caused by physical damage to
a component, e.g. by damage to connectors. Transient
errors are those that result in an invalid state that can be
corrected, for example, by overwriting a corrupt mem-
ory location. Ziegler et al. [21, 22] have shown that fac-
tors such as increased semiconductor technology
density and reduced supply voltage will lead to
increased transient errors in CMOS memory because of
the effects of cosmic rays. Tandem [19] indicates that
such errors also apply to processor cores and on-chip
caches at modern die sizes andvoltage levels.

Although the increased use of Error Correction Codes
(ECC) can significantly reduce the probability of these

transient errors, greater speeds, denser technology, and
lower voltages increase the likelihood of these errors
becoming significant in future systems. Even if ECC
protection is used, multiple bit errors may still escape
the scope of the hardware protection and corrupt values
in random memory locations. Applications can then
potentially use incorrect value on their next access, this
is called “silent data corruption.” Typical examples are
transient errors in the processor registers, in the ALU,
multiple-bit memory errors, and so forth. As a result,
when these errors escape hardware protection, it is only
possible for software to detect them.

In some of the most promising applications of Java tech-
nologies, such as in embedded systems, no parity or
ECC protection is used, allowing more of these errors to
be exposed to the system. In current commodity sys-
tems, there is little consideration for transient memory
errors. For example, in most systems based on the IA-32
architecture [9], when a transient memory error occurs,
the CPU simply enters a Machine Check Abort (MCA)
exception from which the OS can only panic or reboot.

However, in the new IA-64 architecture [8], there is
increased scope for useful MCA handling. At the time
of the MCA exception, the CPU can provide much more
information about the current CPU status and can notify
the operating system to handle the exception. This abil-
ity provides new opportunities for future systems to
recover more gracefully from memory errors.



Existing research [12] has outlined the opportunity for
memory error recovery with increased hardware sup-
port. This research proposes that the operating system
can be extended to increase recoverability when it
receives a memory error exception. However, recover-
ability of the whole system is complex and involves par-
ticipation at all levels from the hardware to the
application software. We propose that if the OS deter-
mines that a memory error occurred in an application, it
can deliver the error exception to the application for fur-
ther processing. In this paper we focus on Java Virtual
Machines (JVM) and Java applications for exception
handling at this level (see Figure 1).

At the application level, JVMs and Java applications are
of particular interest because of their large garbage-col-
lected heaps, the virtual machine abstraction presented,
and the integrated exception mechanism. Large gar-
bage-collected heaps present a sweet-spot for this
research, because the garbage collector itself may
uncover many errors as part of the heap sweep during
collection. These heaps are also usually larger than
explicitly allocated heaps, thereby increasing the proba-
bility of a memory error during a sweep.

By presenting an abstraction between the operating sys-
tem and the applications, the virtual machine makes
application-level recovery simpler. Since, the JVM has
increased information about the application’s status and
semantics, such as memory usage, there is an improved
chance of recovery.

Java’s integrated exception handling could allow appli-
cations to be written that are memory error aware [12]
by trapping new exceptions. If the virtual machine can
isolate the error solely to the application, it can generate
these exceptions and allow the application to handle the
memory error gracefully.

However, memory failure recoverability is a complex
problem. This paper tries to identify the memory error
susceptibility in the Java virtual machine and Java appli-
cations as a first step towards tackling this potential
problem. The major contributions in this paper include:
quantifying the memory error consumption and suscep-
tibility rate in the Kaffe JVM and sample Java applica-
tions; and, evaluation of extensions to the Kaffe JVM to
detect silent data corruption.

The rest of the paper is organized as follows. In Section
2, the paper outlines work related to the problem. Sec-
tion 3 describes the problems that we are addressing.
The methodology of the fault injection experiment and
the method for detecting silent data corruption are
described in Section 4. Section 5 presents the experi-
mental results. Lessons learned are presented in Section
6. The paper ends with recommendations for future
work in Section 7 and conclusions for this work in Sec-
tion 8.

2 Related Work

The effects of and trends for soft-errors were first
reported by Ziegler et al. [21, 22], based on field and
experimental evidence that alpha particles and cosmic
rays were the source of several random system failures.
Since then, soft errors have become a greater concern
because semiconductor susceptibility to these particles
increases with technology density and voltage drops.

Availability in computer systems is determined by hard-
ware and software reliability. A high level of hardware
reliability has traditionally existed only in proprietary
servers, with specialized, redundantly configured hard-
ware and critical software components, possibly with
support for processor pairs [2], e.g., IBM’s S/390 Paral-
lel Sysplex [15] and Tandem’s NonStop Himalaya [5].

Reliability has been more difficult to achieve in com-
modity software even with extensive testing and quality
assurance [13, 14]. Commodity software fault recovery
has not evolved too far at this time. Most operating sys-
tems support some form of memory protection between
units of execution to detect and prevent wild read/
writes. But most commodity operating systems have not
addressed problems of memory errors themselves or
taken up software reliability research in general. Exam-
ples include Windows 2000 and Linux. They typically
rely on fail-over solutions, such as Wolfpack by
Microsoft [16] and High-Availability Linux projects
[20].

Figure 1 Propagating Memory Errors. Memory errors are
detected by lower layers and either corrected or propagated to
higher levels of the system, up to applications
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A lot of work has been undertaken in the fault-tolerant
community regarding the problem of reliability and
software recovery [3, 7, 11]. These include techniques
such as check-pointing [7] and backward error recovery
[3]. Much of this work has been conducted in the con-
text of distributed systems rather than in single systems.
There are also techniques for efficient recoverable soft-
ware components, e.g., RIO file cache [4] and Recover-
able Virtual Memory (RVM) [17].

The Fine [10] project uses fault injection techniques to
study the fault tolerance of UNIX systems. Fine is a set
of experimental tools capable of injecting hardware- and
software-induced errors into the UNIX kernel and trac-
ing the execution flow and kernel’s key variables. Our
fault injection work operates at the application level and
uses the debugger tool ptrace to trace the application’s
behavior.

Some research has attempted to quantify the absolute
number of errors that would be seen in particular config-
urations [21, 19, 6]. For example, it is estimated that a
1Gb memory system based on 64Mbit DRAMs still has
a combined visible error rate of 3435 Failures In Time
(FIT – errors in one billion hours) when using Single
Error Correct-Double Error Detect (SEC-DED) ECC
[6]. This is equivalent to around 900 errors in 10,000
machines in 3 years. Tandem [19] estimates that a typi-
cal processor’s silicon can have a soft-error rate of 4,000
FIT, of which approximately 50% will affect processor
logic and 50% will affect the large on-chip cache. Due
to increasing speeds, denser technology, and lower volt-
ages, such errors are likely to become more probable
than other single hardware component failures.

Most recently, HP Labs has studied the future trends of
these error rates, their repercussions on processor error
handling support, operating system handling/recovery,
and application recoverability [12]. This paper reports
part of this.

3 Memory Error Susceptibility

Memory errors present themselves in a computer system
as either serious exceptions, when detected, or silent
data corruption in memory, if undetected. However, in
many current Java environments, memory errors will be
discovered as silent data corruption since no memory
detection or correction hardware is used. In this paper,
we concentrate on the analysis and recovery of those
corruptions that occur in the application's data area.
Errors in the native instruction sequence and errors in
the kernel area are beyond the scope of this study and
are addressed elsewhere [12].

Suppose a transient error happens on a word inside an
application's data area, the error may or may not be con-
sumed (accessed) by the application. If the error is con-
sumed, the error may or may not eventually lead to an
application error. For example, suppose an error occurs
on an ID string array so that one ID is changed unex-
pectedly. If this ID is never matched in searches, the
error won't lead to any application errors.

Studying the affect of transient memory errors on JVMs
and Java applications has many valuable benefits. Most
of all, it lets us understand the application behavior
under silent data corruption so that we can design effi-
cient software methods to detect silent data corruption.
Since it's infeasible to detect all of the errors, our study
focuses on data areas most susceptible to memory
errors. The rest of this section defines the terms we used
in the paper and describes the experimental environment
used.

3.1 Memory Error Definitions

We refer to the act of an application accessing a memory
location containing a soft error as error consumption.
We define the memory error consumption rate
(Rconsumption_rate) as the ratio of the number of errors

consumed (Nerror_consumed) versus the number of mem-
ory errors (Nmemory_errors), i.e.,

Rconsumption_rate = Nerror_consumed / Nmemory_errors

This equates to the portion of the total error rate that is
actually seen by the application, because only errors in
those memory locations that are accessed are noticed.
The consumption rate is always smaller than one. Thus,
our definition of consumption rate is the upper bound on
errors seen by the execution in a real situation. For sim-
plification, in this paper, we assume a memory error per-
sists until it is consumed or the application exits. This is
necessary because some high-end operating systems use
a memory scrubber to pass over physical memory
removing any correctable errors it finds. In the presence
of ECC memory, the memory scrubber can clear all cor-
rectable errors that exist in memory.

If the error consumption eventually causes the applica-
tion to crash or to return an erroneous result, we say that
it has caused an application error. Verification of the
latter is performed by comparing the result against a
known correct result. Lastly, we refer to the error sus-
ceptibility of a memory region as the likelihood of an
application error being caused on error consumption.
The memory susceptibility (Ssusceptibility) for a memory



area is defined as the ratio of actual application errors
(Nerrors_in_application) divided by the number of memory
errors (as in the previous formula), i.e.,

Ssusceptibility = Nerrors_in_application / Nmemory_errors

We assume that memory errors are distributed uniformly
in the application’s total virtual memory area. Since
memory errors affect physical memory, this is similar to
assuming that the working set fits into physical memory.

3.2 JVM Memory Error Susceptibility

In a JVM, the data area can be divided roughly into two
partitions, those allocated statically for the virtual
machine (VM) and those allocated on the heap for Java
objects. We want to identify the error susceptibility of
these two different memory areas to guide future recov-
ery studies. For errors in the heap, we also want to know
how the susceptibility varies with different heap object
types.

One feature of the JVM is that unused Java objects are
not freed explicitly by the application; rather, they are
collected and freed by the garbage collector. How the
garbage collector (GC) consumes memory errors is also
interesting.

Since all silent data corruption is not detected by hard-
ware solutions, we need to design a software solution to
detect these errors. We propose a simple detection
scheme using checksumming of heap objects. Fault
injection will be used to evalulate the efficiency of this
approach.

3.3 Experimental Setup

We chose Kaffe for experimentation because it is an
open source package that allows us to get its source
code and extend it freely. Having its source code allows
us to examine its memory usage, to instrument it for
fault injection experiments, and to extend it to detect
silent data corruption. It is also a mature system, has
reasonable performance, and is widely used.

For our experiments, we used Redhat Linux 6.2, running
Kaffe 1.0.5 with the “interpreter mode.” Since we
assume an IA-64 error handling architecture and Kaffe
has not been ported to IA-64 yet, we used a IA-32 archi-
tecture Pentium-III processor based system instead.
Where appropriate, we will point out the different mem-
ory error implications of using each type of processor.

4 Experiment Methodology

In this section, we first explain the method and setup of
the fault injection experiments. Next we describe our
prototype implementation for detecting silent data cor-
ruptions.

4.1 Fault Injection Experiment Method

Our basic experiment method is to inject errors into the
application data area, track the error consumption, and
monitor the application behavior after any consumption.
We use the ptrace system call to trace the JVM execu-
tion, and manipulate the debug registers to set a data
breakpoint to track the error data consumption.

Data Breakpoints

In the IA-32 architecture, there are eight debugging reg-
isters that can be used to set data breakpoints. They are
identified as DR0 – DR7. DR6 is the breakpoint status
register, DR7 is the debug control register, and DR0 –
DR3 are used to set the addresses of breakpoints.

For each breakpoint address, the IA-32 architecture
allows the user to set it for breaking on execution,
breaking on writes, or breaking on read-write. In this
experiment, we set the CPU to break on read-write of
the injected-error address. At each time, we set only one
address. This method has the limitation that we cannot
figure out whether the access is a read or a write. We can
overcome this limitation by duplicating the breakpoint
and setting one for read-write and the another for write.
But we are unable to get the correct debugging status
register value from the Linux system. Therefore, we do
not know which breakpoint fires. It may be possible to
overcome this limitation in the future.

Using ptrace

Debug registers are privileged CPU resources and a user
application cannot read and write them directly. Fortu-
nately Linux provides the ptrace system call for access-
ing these registers from user processes.

Normally, a ptrace system call is used in the following
way. The debug process uses fork to create a child pro-
cess. On return from the fork, the child process calls
ptrace with the parameter TRACEME to inform the par-
ent process that it wants to be traced. The child process
then calls execl or other similar functions to execute the
debugged application. On the other side, the parent pro-
cess calls a wait on the return from the fork. When the



child process first calls execl, or generates some
uncaught signals, the parent process wakes up from the
previous wait. After waking the parent process can
examine and set the status of the child process with the
ptrace call.

The way we use ptrace is illustrated in Figure 2. We
modified the Kaffe executive to start the watch (moni-
tor) process first. The watch process uses fork to create
and run the VM. At certain points of the VM’s execu-
tion, a memory error is generated and a SIGTRAP is
raised to inform the parent – the watch process – to set a
data breakpoint on the error address. On receiving this
signal, the watch process peeks at the child process data
(because they have the same address space layout, we
can obtain the child’s data address easily) and sets the
appropriate data breakpoint.

After the child process resumes, it may or may not con-
sume the injected error. If the error is consumed, the
child process traps and the parent wakes from this trap
signal. The consumption is recorded and the breakpoint
is cleared. Whenever the child process exits normally or
incorrectly, the watch process is signaled and the status
is recorded. If the child process exits normally, we fur-
ther check whether its output is correct.

Generating and Recording Memory Errors

We instrumented the Kaffe virtual machine to inject
memory errors into the data memory area and to record
the memory status. Since we are using the interpreter
mode, the virtual machine executes a loop interpreting
each byte code. Code is instrumented so that after a cer-
tain number of byte codes have been executed, the loop
calls our error injection procedure to generate a memory
error.

Each memory error is injected into one of two data
memory areas:

• the static memory area of the VM, and

• the object heap.

In each test set, errors are injected into one of the above
areas. Each time, a byte is randomly chosen from the
specified area and the location’s bits are flipped. If the
error is injected into the object heap, we record the type
information of the object where the byte is located. For
our purpose, the information we record includes the
object type, size, and base address.

Next, the VM stores the error address into a global vari-
able and raises a SYSTRAP signal to inform the watch
process that a memory error has been generated. After
receiving this signal, the watch process peeks at the glo-
bal variable to get the error address and set a data break-
point at the address. Then the VM is allowed to
continue.

When the error is consumed, we also inspect the VM
status to see whether it is consumed by the garbage col-
lector. Kaffe uses the mark and sweep algorithm, which
makes this inspection fairly easy because when the GC
is running all of the other user threads are stopped.

4.2 Detecting Silent Data Corruption

Based on our experimental results on error consump-
tion, we have implemented a prototype solution for
detecting silent data corruption for the Kaffe virtual
machine. We believe the method can be applied to other
virtual machine implementations as well.

The basic idea is that in a pure Java application every
Java object or array is accessed through a specific group
of bytecode operations, such as getfield and put-

field. For each of these operations, we add code to do
a checksum computation. The heap object management
can be modified to store the checksum results.

Space For Checksums

Instead of directly extending Kaffe’s object data struc-
ture to have extra fields for storing checksum data, we
extended the heap memory management data structure
to have more bytes for each memory block. This con-
forms to the way that Kaffe manages the object status.

watch process starts

fork()

continue

set watch point

receive trap signal

record and clear data

record exit status and return

set trace_me flags

start Kaffe

randomly generate error
raise a signal

consume data

exit

Figure 2 Tracing error consumption using ptrace.



In the Kaffe heap memory management module, objects
are classified into small objects and big objects. Small
objects are generally objects with sizes smaller than the
system page size. Large objects are objects needing
more than one page.

Small objects are grouped into pages. Each page is
divided into many same-size blocks. Each block is
assigned to one object. At the head of the page, there is a
meta-data structure for blocks inside the page. It con-
tains information such as block size, garbage collection
status, and object type. Two bytes are added for each
small object, using one byte for a bit pattern checksum
and another for checksum validity. The checksum must
be invalidated after native calls because native accesses
are not checksummed in our implementation.

For big objects and arrays, it is not efficient to have only
one checksum across the whole structure. When one
byte in a one-megabyte array is accessed, we do not
want to compute a checksum for the whole array. Thus,
we divide the object into fixed-size small blocks and the
checksum is computed on these small blocks. Although
we add extra memory overhead, the checksum is com-
puted much more efficiently for large objects or arrays.

Checksum Computation

When a Java application is running, objects are accessed
when:

• it is created using the new operator,

• one of its fields is read or written by the bytecodes
get/putfield, get/putstatic,

• an entry in an array is read by one of the bytecodes:
iaload, laload, faload, daload, caload,

saload, baload and aaload,

• an entry in an array is written by one of the bytecodes:
iastore, lastore, fastore, dastore, cas-

tore, sastore, bastore and aastore,

• one part of an array is copied by Sys-

tem.array_copy,

• the object or array is operated on by some native func-
tions,

• the object is walked by the garbage collector.

In Kaffe, because static fields are class related they are
stored within the class objects rather than the data
objects. Due to time limitations, we were unable to
instrument Kaffe to add checksum protection to the

static areas of class objects. Therefore, our results are
based only on instrumenting data object accesses.

Using our instrumentation when an object field or an
array entry is read by some bytecode, we compute the
checksum of the read value with the rest of the object or
array and compare it with the checksum we have previ-
ously stored in the object’s block meta data structure.
When an object is updated by a bytecode, we update its
checksum value. For simplicity, in our implementation
the checksum is computed by XORing all bytes in the
object rather than by a polynomial checksum as used in
TCP/IP.

5 Experiment Results

In this section, we present our experimental results for
error consumption and silent data corruption detection.
In our experiments, we assume a uniform memory error
probability over the whole memory area. For the conve-
nience of the experiments, we inject the same number of
errors in the two experiment sets.

The benchmark applications we used in the experiments
are extracted from the SPEC JVM98 benchmark suites
[18]. We selected four applications from this suite:

• _202_jess, a Java expert system,

• _209_db, a Java database,

• _213_javac, a Java compiler, and

• _228_jack, a Java parser generator.

In all of the experiments we conducted, we used the
medium data configuration – ten percent. With this data
size, the experiments finish in a reasonable time, and are
large enough to cause the garbage collector to run.

For both static and dynamic areas, we inject 1,000 mem-
ory errors for the four benchmarks. For the dynamic
area experiments, the benchmarks are run with the error
detection mechanism so that we can record which error
consumptions have been detected. The total running
time for the experiments took about 70 hours on a Pen-
tium III 500MHz platform. The total code size for error
injection and tracing is about 470 lines with about 780
lines for memory error detection.

5.1 Memory Error Consumption

This experiment is divided into two parts. In one part,
we inject memory errors into the VM’s static memory
area; in the other part, we inject errors into the object



heap. These two areas are used differently by Kaffe. The
static data area includes the global variables and con-
stants. Intuitively, errors in this area are much more
likely to cause real problems in the Java application
once they are consumed. On the other hand, a Java
application’s data objects are stored on the heap which
is walked by the garbage collector when it is started.
The heap can have a higher error consumption rate than
the static data area because of garbage collection.

Static Memory

The results from injecting errors into the static data area
are summarized in Figure 3. In the graph, the mid-gray
part comprises those errors that are not consumed by the
application even though they are injected; the dark-gray
part comprises errors that are consumed by the applica-
tion but don't cause any application errors, i.e., the
application accessed the erroneous data but it still exe-
cuted correctly; the light-gray part illustrates the number
of application errors, in this case, the application either
crashes or gives a wrong result.

The susceptibility rates are listed in Table 1. The size of
this data area is about 350KB. We can see from the
graph that all of the benchmark applications exhibit sim-
ilar behavior. Their error consumption rate is about 6%
to 7% with an average of 6.7%. The average memory
susceptibility rate is about 5.5%. Among all of the errors
consumed, 81% of them cause errors in the applications.

Object Heap

In the next experiment, we inject errors into the object
heap. In Kaffe, the heap size grows dynamically as the

application’s need grows. In our experiment, we
injected errors into the range of virtual addresses the
heap occupies. In these experiments, the application
heap sizes varied from 5,243KB to 8,397KB (see Table
2).

The results from our heap injection experiements are
summarized in Figure 4 with the appropriate suscepti-
bility rates listed in Table 3. The three cases (application
error, consumed but no error, and injected but not con-
sumed) have the same meaning as in Figure 3.

Our first observation is that the heap has a much higher
error consumption rate. For example, Jack has a 75%
error consumption rate in the heap versus 6.7% in the
static data area. But a closer look reveals that most con-
sumption comes from the garbage collector. Kaffe uses
mark and sweep strategies for garbage collection. When
collection is started, it touches almost every object in the
heap. It is no wonder that it consumes so many errors. If
we do not count the errors consumed in the GC, the
error consumption rate is about 9% to 22%, which is
still higher than in the static data area.

Static Data Jess DB Javac Jack Avrg

Susceptibility 6.2% 5.4% 5.4% 5.1% 5.5%

Table 1 Susceptibility in Static Data
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Figure 3 Error consumption in the JVM’s static data.

Heap Size Jess DB Javac Jack

Minimum
Heap Size

5243KB 7348KB 5243KB 5243KB

Maximum
Heap Size

5243KB 8397KB 7000KB 7000KB

Table 2 Heap Size Used in Error Injection

Object Heap Jess DB Javac Jack Avrg

Susceptibility 8.3% 7.1% 13.2% 11.9% 10.1%

Table 3 Susceptibility in the Heap
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Figure 4 Error Consumption in the JVM’s heap region.



It should also be noted that the susceptibility also
depends on memory region size. However, if we assume
a uniform error probability in the memory area, because
the heap size is much bigger than the static area, we can
conclude that the heap is still much more susceptible of
than the static data.

Although most of the consumption takes place in the
garbage collector, relatively few errors actually cause
real problems. The first reason is that the garbage col-
lector only cares about an object’s reference field. It
would not use other types of fields for computations.
For an object reference, it first checks whether it is
valid, which masks out most of the possible errors. On
average, only 7% of the error consumption in the GC
caused application errors. In comparison, 56% of static
data error consumption caused application errors.

To further understand the source of application errors,
we also collect the object types for the object into which
each error is injected. In Figure 5, we show the result for
Javac. We distinguish objects, primitive arrays, refer-
ence arrays, and areas that are not used. An example of
the latter, are areas that do not belong to any JVM
object, such as an object that has been freed by the gar-
bage collector, or a block inside a page that has not been
allocated to any object. These results indicate that errors
injected into unused parts never caused application
errors. However, they may be consumed by overwriting.

From the graph we can see that although only less than
20% of the errors injected are in normal objects (i.e.,
objects created with new), they are much more likely to
be consumed and cause application errors – more than
60% of application errors are caused by these objects.

We can also see that many errors are injected into primi-
tive arrays. This is understandable because user applica-
tions tend to store large data sets in arrays. However,

because these are large structures containing particular
single errors, these errors are less likely to be consumed
because array accesses may rarely use the erroneous
data. Therefore, depending on application data usage,
errors in primitive arrays may cause less application
errors than these error consumption rates indicate. On
the other hand, reference arrays are much more likely to
cause application errors, because a false pointer can eas-
ily cause a segmentation fault in the JVM.

Due to the space limitations, details on other error data
types is not included here. Briefly, constant fixed objects
occupy a large percentage of the “other heap object”
part in Figure 5. These objects include data such as
bytecodes and the constant pool. In total, these objects
occupy between 8% and 30% of the objects types. Since
they are read-only objects recovery of these objects
types should be straightforward.

5.2 Checksum Silent Data Corruption Detection

To demonstrate the effectiveness of our scheme for
detecting silent data corruption, we implemented a pro-
totype in Kaffe. Compared to the proposal, the prototype
implementation has several limitations. First, when
native functions or System.array_copy is called, we
simply clear the object’s or array’s checksum validity
rather than update the checksum result, although in the
future we will do so.

Another limitation is that we do not compute checksums
for large objects, although we do deal with large arrays.
We assume that we will not see many large objects in
Java applications because in a Java object, embedded
objects are stored as a reference.

We ran the fault injection experiments on our prototype
implementation with the four benchmarks. We recorded
the cases when consumed errors are detected. Figure 6
shows the percentage of application errors that can be

Figure 5 Error Consumption by Object Type.
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detected when the error is consumed. The light-gray
areas represent errors detected. The dark-gray areas rep-
resent those errors that we know took place in objects
and arrays and that we could have corrected if we
applied checksumming. It has not been applied because
the object is too big or was operated on by some native
functions that are not easily checksummed. Finally, the
mid-gray area comprises the cases where the memory
error was not detected and corrected, and caused an
application error.

The effectiveness of the detection depends on the nature
of the application. If objects and arrays account for most
of the actual errors occurring, the technique is more
effective. For example, for Javac, errors in objects and
arrays account for nearly 80% of all error occurrences.
Our technique can detect up to 39% of all errors in our
experiments.

The percentage of errors detected by only the current
implementation was limited by time constraints. In the
future, the implementation can by improved by updating
checksums during native function calls and array copies.
The technique can also be extended by including more
heap objects into the checksum detection, such as con-
stant pools and bytecode sections. Since these heap
objects are never changed after they are loaded, the
extra checksumming overhead would be small because
only checks on read access would be required.

We also compared the relative slowdown of the proto-
type implementation with the original Kaffe implemen-
tation. It is interesting to see the performance overhead
induced by the checksum process. We measured the
total execution time of the original Kaffe implementa-
tion and our prototype implementation. The relative
slowdown compared to the original version is shown in
Table 4 for each benchmark used.

6 Lessons Learned

We found that ptrace is a good tool for fault injection
experiments. It lets us generate data breakpoints in the
Kaffe VM and track the consumption of the injected
errors. At the time of error consumption, the breakpoint
allows us to stop the VM and examine its internal state.
Originally we had thought of collecting execution traces
to study the error consumption rate, but it would be

extremely difficult for us to derive the VM’s status at the
time of error consumption from the traces. Of course,
ptrace has limitations. It is not clear to us whether we
can use it successfully to study kernel mode errors.

From the experiment data and analysis, the following
interesting observations can be derived:

• For the Kaffe virtual machine and the Java applica-
tions running in it, the memory errors in the object
heap have a higher error consumption rate and suscep-
tibility rate than those in the static data area. The heap
size is also much larger than the static data size. If we
assume a uniform error distribution, we can draw the
conclusion that the heap memory will be the dominant
part in memory susceptibility.

• A large portion of error consumption in the heap is
caused by the garbage collector (up to 75% in the case
of Jack). But this consumption leads to less applica-
tion errors than other consumption (7% vs. 56%).

• For memory errors occurring in the object heap, errors
injected in normal objects (created with new) and
arrays caused 70% of the application errors.

• By adding simple checksums, normally undetected
errors can be detected, increasing error coverage by
30-40%.

• Adding checksums clearly comes at a performance
cost. Our unoptimized checksum routine adds this
functionality for an increase in run time of 32-57%.
Optimizing the checksum computation for the plat-
form (maximizing explicit parallelism) or using hard-
ware support for block checksums should help make
this more acceptable for comtemporary JIT run-times.

• The coverage of silent data corruption detection
should be easy to increase by placing checksums over
more object types (e.g., static objects). The overhead
could be further reduced by limiting additional unnec-
essary checks.

• Several objects in the Java heap can be relatively large
and were not covered by our checksums. This assump-
tion should be relaxed for future experimentation.

7 Future Work

Some further work is needed to complete our study of
memory failure recoverability at the application level.
First, we need to extend and optimize our prototype
silent data error corruption implementation to handle
other heap objects, including large objects, the constant
pool, byte code, etc. Using these extensions, we can
expect to achieve a higher error detection rate.

Jess DB Javac Jack

Slowdown 57% 43% 47% 32%

Table 4 VM Slowdown with Detection



Second, to further reduce the effect of the garbage col-
lector on detecting errors, it would be possible to modify
it to use memory defensively to expect memory errors
and recover from them. This is very similar to the con-
struction of the memory scrubber task in high-availabil-
ity operating systems.

Third, it would be interesting to investigate further the
relationship between consumption rates and susceptibil-
ity. While both factors depend largely on the application
workload and its input, we would like to understand fur-
ther any correlations or classifications of susceptibility
to consumption rates.

7.1 Handling Memory Errors With Java

Java provides an elegant exception programming model
through the use of try/catch blocks [1]. One future
path for investigation would be to consider supporting
this exception mechanism to signal memory errors to
applications interested in providing error recovery or
application state tidy-up on exit. Such support may be of
great interest to fault tolerant Java applications, Java
databases and Java persistent systems.

When a memory error occurs it can either affect the
JVM’s or the application’s integrity. Determining
whether the error affected the JVM or the Java applica-
tion is fairly complex because the JVM’s state is stored
both inside and outside of the heap. We propose that it
would be possible that when errors occur in the JVM’s
data areas outside the heap, the JVM could throw an
asynchronous UnrecoverableMemoryError excep-
tion. This is similar to the existing VirtualMa-

chineError exception. This could allow for cleaner
fail-over handling between redundant machines.

Errors in the VM’s heap structures are much more seri-
ous and difficult to detect. While the sensitive memory
is small, errors can seriously affect both the VM and
application. To achieve a suitable level of coverage all
heap structures would need to be fully checksummed
and updated on modifications. However, a similar
UnrecoverableMemoryError exception could be
raised with sufficient detection support.

The majority of memory errors are likely to occur in the
state of an object. We propose that in these circum-
stances it may be possible to raise a MemoryErrorEx-

ception. However, a large question with this approach
is limiting the scope for handling which the exception
has the execution. The depreciated Thread.stop()

method highlights some of the concerns. Raising a Mem-
oryErrorException should not allow the system to

leave the state of objects in an undefined state. Nor
should it generate an exception the target cannot be pre-
pared to handle.

We believe one possible solutions to overcome these
problems would be to dispatch MemoryErrorExcep-

tions to all dependent threads to allow for informed
and safer clean-up from the exception. Since this is an
internal VM exception, all threads should be prepared to
handle it if they so desire.

However, handling such an exception mechanism is
probably too complex to use throughout an application.
So it is proposed that to limit the scope to where it is
most useful, application programmers could wrap only
critical code with such exception handling. Critical sec-
tions such as outgoing RPC/RMI access or database
accesses would make good candidates since they may
hold reproducable transactions and could benefit in
improved reliability from this approach. Exceptions
occuring at other times can resort to using such excep-
tions for application clean-up to improve graceful exit/
restart when state is lost.

Clearly support for this exception handling is very com-
plex and poses interesting challenges in performance,
coverage, and support. We would like to see research
undertaken to investigate this aspect further.

8 Summary

In this paper, we have described our work in studying
the memory error susceptibility of the Kaffe virtual
machine using fault injection. We found that for the
Kaffe VM and the benchmark applications we ran, that
heap objects comprise most of the memory error con-
sumption. We also presented our prototype implementa-
tion for detecting silent data corruptions by object
checksum. We found that this simple technique can
detect up to nearly 40% of all application errors caused
by silent data corruption.

All experiments were executed in Kaffe’s interpretive
mode. In order to use Kaffe with its superior perfor-
mance JIT compiler, the JIT would need to be modified
to generate the checksum routine inline with object
accesses. Given that errors can occur in any memory, it
would also be possible to consider checksumming the
generated code, if its size proves this to be necessary.
Apart from this, Kaffe using its JIT should have the
same overall behavior as has been has reported here,
because the same heap management system is used.



While introducing extra overhead of between 32-57%
might seem counter to today’s JIT research, this over-
head represents an upper-bound on performance loss.
On the IA-64 architecture, performance can be
improved by perhaps four times, because of the ability
to use multiple arithmetic units explicitly to parallelize
the computation compared to IA-32 architecture proces-
sors.
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