
USENIX Association

Proceedings of the
Java™ Virtual Machine Research and

Technology Symposium
(JVM '01)

Monterey, California, USA
April 23–24, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Abstract
A shape analysis is a whole-program analysis that can
identify run-time objects that do not need to be placed in
the global heap and do not require any locking. Previous
research has shown that these two optimizations can
speed up some applications significantly. Unfortunately,
since a shape analysis—like any whole-program
analysis—requiresa priori knowledge of the complete
call graph, it has not been implemented in a JVM, which
essentially builds the call graph as a program executes.
In this paper, we adapt an efficient shape analysis to be
incremental so that it can analyze an executing program.
We investigate trade-offs regarding three approaches to
performing the analysis inside a JVM and report results
on a number of applications. Our measurements suggest
that such an analysis may be viable if it uses results of
previous executions and if it delays the initial analysis
until the end of the first execution.

1. Introduction
A shape analysis [17] is a static whole-program analysis
that conservatively predicts the connectivity of heap
objects. It proves useful for escape analyses because it
identifies objects that may “escape” a method and that
may be accessible to more than one thread. Such
knowledge steers optimizations such as synchronization
elimination and stack allocation.

Unfortunately, shape analysis, as described heretofore,
ignores the true flavor of Java programs. The Java
programming language prides itself on its dynamic
loading and binding, yet a shape analysis requiresa
priori knowledge of all classes. This requirement stems
from the fact that it must know all potential targets of a
call site. Without the knowledge of potential targets, it is
forced to be overly conservative. The many programs
that use dynamic loading or that rely on dynamic
program attributes—such as theclasspath variable—
will not benefit from optimizations dependent on the
results of a whole-program shape analysis.

Even without Java’s dynamic features, an optimizer
faces a difficulty. It cannot express, in bytecode, the
removal of lock operations or the stack allocation of

objects—exactly those optimizations that the shape
analysis enables. Researchers sidestep this problem
either by annotating the bytecode with suggestions to
the JVM or by translating the program into a language
in which these optimizations are expressible.

The only true solution to these limitations is to perform
the shape analysis at run-time. By operating while the
analyzed program executes, the analysis canobserve(as
opposed to calculate) the classes the JVM dynamically
loads. More importantly, it can observe the targets of a
call site, yielding more precise results than an off-line
analysis would. Last, it is not restricted to optimizations
expressible in bytecode and can perform optimizations
in a JVM-dependent manner.

Despite these advantages, a dynamic shape analysis
faces several difficulties. It incurs a run-time cost and
must work with incomplete information. Since it is by
nature a whole-program analysis, it must build upon and
modify previous results as new information arrives.
Consequently, a previously optimized object may no
longer be optimizable, requiring the optimizer to undo
optimizations before an erroneous execution results.

To address these difficulties and trade-offs, we present
and evaluate three ways to perform a shape analysis at
run-time. The first approach begins the interprocedural
analysis as soon as a program starts to run. The second
delays the interprocedural analysis until the run-time
system has seen a portion of a program’s execution.
Finally, the third approach reuses analysis results from
previous executions. We discuss the advantages and
disadvantages of each strategy.

In short, this paper offers:
• An incremental version of an efficient shape analy-

sis;

• Experimental results illustrating the inherent diffi-
culties of employing a shape analysis dynamically;

• A comparison of three approaches to performing the
incremental analysis; and

• Insight into making the analysis viable.

Can a Shape Analysis Work at Run-time?

Jeff Bogda and Ambuj Singh
Department of Computer Science

University of California
Santa Barbara

{bogda,ambuj}@cs.ucsb.edu

After outlining an efficient whole-program shape
analysis (Section 2), we adapt it to be incremental
(Section 3). In doing so, we recognize that the analysis
can classify objects with varying degrees of locality. In
some cases, it can guarantee that an object will be local
to a thread regardless of future program paths and class
loadings. In Section 4 we show the results of an
empirical study that compares the aforementioned ways
to perform the analysis. Last, Section 5 presents related
work, and Section 6 presents conclusions, two related
open problems, and future work.

2. Whole-Program Shape Analysis
This section sketches a conservative, but efficient,
version of a whole-program shape analysis based on the
analyses described in [4] and [10]. Section 3 adapts the
algorithm presented here to be incremental. Since the
emphasis of this paper is on performing a shape analysis
at run-time, not on the efficacy of the analysis itself, we
omit strategies one can use to improve precision. For a
complete description of the problem, we refer the reader
to [1,3,4,5,6,10,16].

A shape analysis is an interprocedural data-flow
analysis that approximates the run-time structure of
heap objects and identifies objects potentially reachable
from a static field. Figure 1 presents the algorithm at a
high level. The results of this analysis dictate when it is
safe to perform certain optimizations.

We view the results of a shape analysis as a graph. A
node in the graph is an abstraction of one or more run-
time objects. An edge in the graph represents an
instance field dereference and is labeled with the name
of the field. The analysis associates each program
variable with a node in the graph and connects nodes to
reflect the structure of the heap. In the end, if the
analysis has associated two variables within a method
with distinct nodes, it guarantees that these variables can
never reference the same object at run-time.
Furthermore, if the analysis has associated a variable
with a node that is markedshared, the analysis believes

the variable may reference an object reachable from a
static field. It guarantees that a node not markedshared
represents thread-local objects. Such objects cannot be
accessed by multiple threads and are subject to thread-
local optimizations.

Consider the example in Figure 2. As input to the small
program, the user specifies a class that implements the
List interface as well as the type of an element (either
integer or null). The program instantiates the specified
class and repeatedly inserts elements of the specified
type into the container. One may write such a program
in order to compare the efficiency of variousList data
structures.

An intraprocedural phase analyzes each method by
performing a data-flow analysis on the stack-based
bytecode, unifying corresponding nodes at control-flow
merges. The intraprocedural analysis oftest reveals a
very simple picture of the heap (see Table 1). All of
test’s variables refer to distinct nodes, and the method
does not reveal the structure of these nodes. The nodes
labeled list and element statically encapsulate the two
formal parameters, the node labeledexception
corresponds to the exception object that the method may
throw, the“int” node denotes the globalString constant
“int”, and the node labeledinteger corresponds to the
Integer objects appended to the list. A thick border

for each strongly connected component (SCC) in rev. top. order
for each method m in the SCC

analyze m intraprocedurally
for each call site s in m

for each target t of s
if t and m are in the same SCC

unify actuals of s and formals of t
else

propagate from t to s

Figure 1. Static shape analysis algorithm.

import java.util.*;

public class Example
{

public static void main(String[] args)
throws ClassNotFoundException, InstantiationException,

IllegalAccessException
{

String className = args[0];
Class theClass = Class.forName(className);
List listImpl = (List)theClass.newInstance();
String type = args[1];
test(listImpl, type);

}

private static void test(List list, String element)
{

if (element.equals("int"))
for (int i=0; i<10; i++)

list.add(new Integer(i));
else

for (int i=0; i<10; i++)
list.add(null);

}
}

Figure 2. Example program with explicit dynamic loading.

signals that the“int” node issharedand hence may be
accessible to multiple threads. Similarly, the
intraprocedural analysis ofmain (also Table 1) reveals
five nodes—one for the exception object, one for the
listImpl object, one for theClass object, one for the
incoming array, and one for the contents of the incoming
array. Since a static analysis generally cannot
distinguish elements of an array, the variables
className and type map to the same node. These
subgraphs serve as summaries for the interprocedural
portion of the analysis.

The context-sensitive interprocedural phase connects
call sites to target methods by mapping the structure of
the formal parameters to the corresponding actual
parameters. If the caller and callee are in the same
strongly connected component (SCC)1 of the call graph,
the analysis merges the node of an actual parameter with
the node of the corresponding formal parameter. This
unification obviates the need to iterate over the SCC
until a fixed point is reached, but it introduces some
conservatism. If the caller and callee are in separate
SCCs, the analysis imposes the structure of the formal
parameters on the actual parameters. However, if the
analysis has marked a node in the callee asshared, it
merges the node with the corresponding node in the
caller. This ensures that all methods work with the same
sharednodes.

The shape analysis is a backward analysis in that it
examines a target method before examining a caller
method. To accomplish this, it constructs a static call
graph and examines each SCC in reverse topological
order. Within an SCC, it examines methods arbitrarily.

Without additional information, it is impossible to
construct a complete static call graph for our example
since the class implementing theList interface is not
known statically. This is due to theforName method,
which dynamically loads the type of the list, and to the

1 A strongly connected componentis a maximal set of nodes in which
there is a path from any node in the set to every other node in the set.

classpath variable, which gets defined only at run-time.
Figure 3 shows an incomplete call graph for our
example. The targets of theadd invocations cannot be
deduced from the program’s text. In this case the
analysis can give up, can conservatively assume that all
objects passed toadd becomeshared, or can somehow
guess the target methods. The last option may lead to
incorrect results.

By performing the analysis at run-time, we can solve the
problem of not knowing the call graph because a
dynamic analysis can observe the target of theadd
method. The next section presents an adapted version of
the analysis, which can operate dynamically in a JVM.

3. Incremental Shape Analysis
We adapt the above shape analysis to work while the
program executes. To be effective, it must work with an
incomplete call graph and, as the call graph expands,
build upon and modify previous results.

A dynamic analysis avoids the problems caused by
dynamic loading and binding because it can observe the
targets of call sites. At the same time, this enables it to
be more precise than a static analysis for two reasons.
First, it knows the exact target(s) of a call site, whereas a
static analysis generally amasses a conservative set of
potential targets.2 Second, it only propagates
information to call sites that the program executes. For
instance, in our example, the dynamic analysis does not
need to analyze both calls toadd. The next section will
explain why this is the case.

2 The degree of conservatism depends on the method resolution
scheme that the static analysis employs.[14]

Table 1. Portions of the graph corresponding to the
methodstest and main.

test

“int”

list element exception

integer

main

className
type

args exception theClass

listImpl

array

main

Example

newInstance

Class

forName

Class

test

Example

<init>

Integer

equals

String

add

?

Figure 3. Incomplete call graph of our example.

3.1 General Approach
The general algorithm for the incremental analysis
appears in Figure 4. Because it is incremental, it does
not know the entire call graph at the time of analysis. It
consequently works with what it does know and
modifies the results as the call graph grows.

The binding of a method to a call site drives the
analysis. When a new binding occurs, it performs three
steps (seeAnalyzeInvocation in Figure 4). First, if it has
not already analyzed the target method
intraprocedurally, it does so at this time. Second, it
identifies any changes to the SCCs as a result of this
binding. Third, it propagates the summary of the target
method up the call graph. We describe each of these
steps in more detail below.

Just as it does in the whole-program version, the
analysis first analyzes a method intraprocedurally. The
structure of the nodes of the formal parameters will
serve as a method summary when the analysis
propagates information across call sites. In general, we
must maintain information regarding nodes not
reachable from the nodes of formal parameters since
they may become reachable at a later time. The cost of
analyzing a method is a one-time cost; the analysis
never needs to analyze it again. Therefore, this cost
resembles the cost of bytecode verification and will be
nearly negligible for most applications.

To conveniently find the callers of a target method that
are outside the target’s SCC, the analysis maintains an
abbreviated call graph, in which edges between methods
within the same SCC are omitted. As the analysis adds
edges to this call graph, the SCCs may change. Starting
at the new target method, the analysis does a reverse
depth-first traversal of the abbreviated call graph. If it

AnalyzeInvocation(CallSite s, Method t)—

// step 1
if <s,t> already analyzed, return
if t has not been analyzed, analyze t intraprocedurally

// step 2
if caller and t are currently in the same SCC

unify actuals of s and formals of t
else

record <s, t>
DetermineChangesToSCCs(s, t)

// step 3
if caller and t are in the same SCC

PropagateChangesUpCallGraph(t)
else

PropagateChangesAlongBinding(s, t)

DetermineChangesToSCCs(CallSite s, Method t)—

// collapse cycles in call graph involving binding <s,t>
if RecursivePathExists(method containing s, t, set)

unify actuals of s and formals of t
add SCC of t to set

union all SCCs in set

RecursivePathExists(Method m, Method t, Set set)—

// recursively collapse cycles in call graph
if m equals t return true

sameSCC = false
for each binding <s,g> such that g and m are in the same SCC

if RecursivePathExists(method containing s, t, set)
unify actuals of s and formals of g
add SCC of m to set
sameSCC = true

return sameSCC

PropagateChangesUpCallGraph(Method t)—

// push changes to all call sites targeting t’s SCC
for each binding <s,g> such that g and t are in the same SCC

propagate from g to s
if change occurred to formals of method containing s

add method containing s to set

for each m in set
propagateChangesUpCallGraph(m)

PropagateChangesAlongBinding(CallSite s, Method t)—

// push summary information from t to s
propagate from t to s
if change occurred to formals of method containing s

propagateChangesUpCallGraph(method containing s)

Figure 4. Incremental shape analysis algorithm.

?

SCC
B

SCC
C

SCC
A

<s,t>

t

gm
s

Figure 5. The detection of cycles in the call graph involv-
ing the new binding <s,t> (DetermineChangesToSCCs).

returns to the target method, indicating that recursion
may occur, it unions all SCCs of the methods along this
path and collapses the involved call sites. Figure 5
attempts to illustrate this step. Beginning with the edge
<s,t>, the short arrows indicate the traversal of edges
between SCCs. Depending on the connectivity of the
abbreviated call graph, this may be an expensive
operation. In the worst case, the analysis inspects every
edge.

The third step propagates the summary of the target
method up the call graph. If the caller and the callee are
in the same SCC, the analysis must propagate along all
call sites that invoke any method in the target’s SCC;
otherwise, it only needs to propagate along the new
binding. Figure 6 depicts the former case, and Figure 7
the latter. Note that the analysis does not propagate
along edgee since no changes can occur withint’s SCC
as a result of the new binding. In either case, the caller
then acts as the callee, and its summary flows to its
callers. This process continues until either the analysis
reaches a root method of the call graph or the structure
of the formal parameters of the method containing the
call site does not change. In the worst case, the number
of propagations is equal to the number of bindings,
although we have observed that the test for a change in
the formals greatly reduces the number of propagations.
Nonetheless, the number of propagations can be several
times the number of bindings, as we will see in the next
section.

Consider our example in Figure 2 and suppose the
program instantiates the classjava.util.Vector and adds
null references to the list. Figure 8 shows the order in
which the incremental analysis constructs and examines
the call graph. For clarity, we ignore methods not shown

in the diagram. Each step is numbered, where a number
inside a box denotes an intraprocedural analysis and a
number outside a box indicates a propagation to a call
site.

The analysis starts by analyzingmain. When the
program invokes theforName method, the analysis
examinesforName in class Class and propagates the
information to the call site inmain. Next, when the
program invokesnewInstance, the analysis examines
the method and propagates its summary tomain. The
method newInstance, in turn, calls the constructor of
class Vector, <init>. The analysis intraprocedurally
analyzes<init>, propagates the summary of<init> to
newInstance, and propagates the changes in
newInstance to main. The process continues until no
changes to the call graph occur.

SCC
B

SCC
A

∆

∆ ∆ ∆

∆

t s

Figure 6. The recursive propagation of summary infor-
mation along all edges enteringt’s SCC

(PropagateChangesUpCallGraph).

SCC
B

SCC
A

s

t

∆

∆ ∆ ∆

<s,t> e

Figure 7. The recursive propagation of summary infor-
mation starting with the binding <s,t>
(PropagateChangesAlongBinding).

1 main

Example

4 newInstance

Class

2 forName

Class

9 test

Example 11 equals

String

14 add

Vector

3

5,8 7
6 <init>

Vector

12

15

10,13,16

Figure 8. Steps taken by the incremental analysis on our
example.

Since the program never takes the first path of the if-
test, the analysis never analyzes theInteger constructor
and never propagates information to the first call toadd.
An off-line whole-program analysis would
conservatively do both because it cannot predict the run-
time flow of control.

3.2 Classification of Objects
The whole-program version characterizes a node as
either local or shared. A node is initially local and
becomessharedif the analysis merges it with ashared
node or if it becomes reachable from asharednode (see
the first column of Table 2). The incremental version
introduces two more classifications in order to
determine if an object isguaranteedto be thread-local,
regardless of future classes loaded into the system. We
describe all classifications below.

Local—A node is local if, no matter what path the
program takes and what new classes the system loads, it
can never be reachable from asharednode.

Nonvirtually Local —A node isnonvirtually local if it
is not reachable from a node of a variable that is passed
into or returned from a virtual method (i.e., it flows into
no virtual methods). This node is currently thread-local
but may become shared as new methods execute.

Virtually Local —A node isvirtually local if it flows
into a virtual method. In general, avirtually local node
is not guaranteed to be thread-local because the target of
a virtual call site may change in future executions.
Therefore, the analysis never knows if it has seen the
entire scope of the node.

Shared—A node is shared if it is reachable from a
shared node. The analysis initially marks a node
associated with a static field asshared.

The relationship of these classifications can be viewed
as the second lattice in Table 2. Initially a node is
nonvirtually local. If it flows into a virtual method, it

becomesvirtually local. If it is stored into or read from a
static field, it becomesshared. The unification of two
nodes takes the meet of the classifications, as defined by
the lattice. Additionally, the analysis upholds the rule
that a node is at least the lowest type of any of its
parents in the resulting graph. Therefore, any node
reachable from asharednode must also beshared, and
no node reachable from avirtually local node may be
nonvirtually local.

The classification oflocal is a special case. A node
changes fromnonvirtually local to local if, for every
method to which the node flows, the method’s
corresponding node islocal. This guarantees thatlocal
nodes can be optimized without later being deoptimized.
In our implementation, eachnonvirtually local node
maintains a list of nonvirtual methods to which it flows.
After analyzing the binding to one of these methods, we
remove the method from the list if the corresponding
node in the target is markedlocal. When no methods
remain in the list, we promote the node tolocal.

In our example, the node associated withelement is
virtually local because it flows (as the receiver) into the
virtual methodequals. Similarly, the node associated
with variablelist is virtually local because it flows into
the virtual methodadd. During the initial propagation
from test to main, the analysis marks the node
associated withlistImpl asvirtually local.

4. Evaluation
An on-the-fly analysis will only be worthwhile if the
speed-up resulting from optimizations offsets the time
required to carry out the analysis. We assume that an
optimization—such as synchronization elimination or
stack allocation—depends on the identification of a
thread-local object. Thus, in general, the more thread-
local objects the analysis identifies, the better.

The optimizer’s strategy greatly influences the number
of these objects. We label an optimizationpessimisticif
it optimizes an object only when the analysis guarantees
that multiple threads cannot access the object. This
corresponds to optimizing only objects represented by
nodes markedlocal.

In contrast, we label an optimizationoptimistic if it
assumes that an object is thread-local before the analysis
has analyzed the entire scope of the object. This
corresponds to optimizing objects represented by nodes
markedlocal, nonvirtually local, or virtually local.

Table 2. Lattices describing the hierarchy of object
classifications for the whole-program and incremental

approaches.

Whole-Program

Local

Shared

Incremental

Virtually Local

LocalNonvirtually Local

Shared

This distinction affects not only the number of
optimizations but also the number of deoptimizations.
Consider the following code:

x = new
lock x
foo(x)
unlock x

static void foo(p)
{

X.global = p;
}

Supposefoo has not been analyzed at the time of the
allocation of x. An optimistic approach immediately
optimizes the new object and probably removes the
subsequent lock operation. However, after analyzing
foo, which makes the new object escape the thread, the
optimizer must undo the optimization ofx before the
body of foo executes. On the other hand, a pessimistic
approach waits until it sees the entire scope ofx. In this
case, it does not optimizex because it has not seen the
methodfoo at the time of the allocation. Iffoo were not
to make x visible to other threads, the pessimistic
approach would miss out on the optimization.

The number of optimizable objects also depends on
when the dynamic analysis begins. If it starts when the
program starts, the optimizer has the potential to capture
all optimizable objects. On the other hand, if it starts in
the middle of program execution, the optimizer may
miss some optimizations. The overall cost of the
analysis is smaller the later the analysis begins, thereby
encouraging the run-time system to postpone
commencement.

We investigate this trade-off by evaluating three
approaches. The first begins the analysis immediately in
order to capture all optimizable objects. The second
delays the analysis a predetermined amount of time, in
the hope of reducing the overhead. Finally, the third
approach reuses the propagation results of previous
analyses to counter the high run-time cost without
sacrificing optimizable objects. Before we elaborate on
these approaches, we describe our experimental
framework and benchmark applications.

4.1 Experimental Framework
We implemented an incremental shape analysis in Java.
To allow the analysis to operate on an executing
application, we instrument the application to invoke the
analysis before key points in its execution. These points
are method entry, method exit, call sites, allocation sites,

and monitorenter instructions.1 This instrumentation
enables us to identify previously unseen call site/target
pairs and to monitor object allocation. We do not trace
the execution of system threads; hence all
measurements ignore start-up. We ran all tests on a
400MHz Pentium II, using Sun’s Java 2 (build 1.3.0-C)
for Windows.

Since the JVM disallows both instrumented and
uninstrumented versions of core JDK classes, the
analysis code is also instrumented. This makes it
impossible to determine the running time of our
implementation. Notwithstanding, by counting the
propagations, we can still sense the overhead of the
analysis.

4.2 Benchmarks
Our benchmark suite consists ofjess, db, andmtrt from
the SPECjvm98 benchmarks [12];JLex; java_cup;
slice; and volano. For completeness we include our
example program in the first two tables. The multi-
threadedslice applet, obtained from [10], visualizes
radiology data.Volano, a multi-threaded chat room
simulation, is the client side of VolanoMark 2.1.2.[15]

Table 3 lists the executions we used in our experiment.
Some results varied slightly from one run to another,
depending on the behavior of the threads. We ranJLex
on sample.lex, which was included in its distribution,
and on a homework solution for a compilers class.
Similarly, we ran java_cup on Java 1.1’s grammar,
which came with its distribution, and on a homework
solution.2 Due to the significant slowdown caused by
our instrumentation, we ran the SPECjvm98
applications with the smallest size input (-s1).

The third column in the table is the number of method
invocations during execution of the instrumented
program and is indicative of the running time. The
number of distinct methods executed, the fourth
column, ranges from 18 for our small example to over
1400 for slice. This number equals the number of
intraprocedural analyses needed. The column “# SCCs”
lists the counts of strongly connected components,
which are close to the figures of the previous column.
This means that few call chains form recursive paths
and suggests that the unification of call sites may not
lose much, if any, precision. The second-to-last column

1 The bytecodesinvokevirtual, invokespecial, invokeinterface, and
invokestatic call methods, andnew, newarray, anewarray, andmulti-
newarray allocate heap objects.

2 The homework input files are available on the first author’s home-
page (http://www.cs.ucsb.edu/~bogda).

is the number of bindings that trigger the
interprocedural propagations. We include the last
column, which gives the number of lock acquisitions of
each program,1 to suggest the effectiveness of
synchronization elimination. We found no
straightforward measure of the effectiveness of stack
allocation, other than the count of optimizable objects.

Ruf demonstrated that a number of applications can be
analyzed off-line in a matter of seconds.[10] For
example, his analysis ofjava_cup finished in 1.01
seconds andJLex in 0.56 seconds. Extremely large
applications took about twenty seconds to inspect. An
on-line analysis has the advantages of seeing a more
precise call graph but has the disadvantage of being
incremental.

4.3 Immediate Propagations
The first strategy we discuss is one that starts the
analysis when the program starts and analyzes all call
site/target bindings immediately. By analyzing the target
method before it executes, the analysis has the potential
to optimize all objects created by the program. Before
an allocation site executes, the analysis will have
already analyzed the context of the instruction. Once the
run-time system has performed an optimization, the
analysis must continue to analyze new targets
immediately; otherwise, an unanalyzed binding may
cause optimized code to execute incorrectly.

The ability to catch new call site targets is
straightforward. If the JVM interprets the call site, it
triggers the analysis when the target is previously
unseen. If native code is executing the call site, the code
triggers the analysis after determining the target but
before branching to it. To avoid triggering the analysis

1 We did not count entry into synchronized static methods.

on every invocation, one may use a polymorphic inline
cache and move the triggering to the fallback of the
conditional, as follows:

if target is A
jump directly to A

else if target is B
jump directly to B

else
execute method lookup code
trigger the analysis
jump directly to correct method

This example, which assumes that the analysis has
already seen targetsA andB, activates the analysis only
when the uncommon target arises.

Table 4 illustrates the cost and effectiveness of starting
the interprocedural analysis immediately. The second
column gives the number of times the analysis
propagates a method’s summary to a call site. It does not
include the unification of arguments for methods within
an SCC. This number, which ranges between 2.0 and 3.3
times greater than the number of distinct call site/target
bindings, ultimately governs the overhead of the
analysis.

The next five columns reveal the types of objects
allocated. To determine the type, we look up the
classification of the node corresponding to the
allocation site and find the most recent method on the
call stack in which the corresponding node cannot
escape. This allows us to characterize objects that leave
factory-type methods with respect to the calling
contexts. Of the potential thread-local objects, nearly all
objects are classified asvirtually local. This corresponds
to a typical object-oriented program’s high use of virtual
methods. The most frequently allocatedlocal object is
the 12-byte array intoString of classInteger. Because of

Benchmark Description
Method

Invocations
Methods # SCCs

Call Site/
Target Pairs

Lock
Operations

db Database application. 85277 449 439 1744 22141

Example Vector int Example in paper. 63 18 18 17 10

java_cup on hwk Parser generator. 551768 761 761 2948 57774

java_cup on java11 Parser generator. 9353838 753 753 2885 574686

jess Expert system. 599477 850 830 2900 86947

JLex on hwk Lexical scanner generator. 9191528 243 240 1115 2271197

JLex on sample Lexical scanner generator. 3807044 242 239 1104 1839304

mtrt Two-threaded ray tracer. 5721456 582 572 2712 350574

slice Radiology data viewer. 1847615 1468 1468 3643 26395

volano Chat room simulation. 9394365 433 433 841 5021842

Table 3. Characteristics of ten executions.

our implementation, we were unable to determine the
types of a handful of objects injess.

The remaining columns compare the optimistic and
pessimistic optimization approaches, commencing with
the number of optimizable objects. For all benchmarks,
the number of objects in the pessimistic case is
significantly smaller than in the optimistic case. This
follows because the analysis does not classify many
objects as local. Objects tend to flow into virtual
methods, and programs do not always execute every call
site.

The next comparison is on the number of objects that
would need to be deoptimized as a result of marking a
nodeshared. The pessimistic approach never needs to
deoptimize since, by definition, it does not optimize an
object unless it is guaranteed to be thread-local. The
optimistic approach, on the other hand, will need to
deoptimize, although the figures are much lower than
the number of objects optimized. Aside fromdb, it
needs to undo between 0% and 1% of its optimizations.
Db is the exception. Even though the analysis demotes
only 27 nodes (1%) tosharedstatus, these demotions
invalidate 901 optimized objects (34%).

The last comparison is on the number of lock
acquisitions that can be removed. The optimistic
approach has mixed success; it can remove nearly all
lock acquisitions inJLexbut less than half injava_cup.

In comparison, the pessimistic approach tends not to
optimize objects that are later locked. Only forslice
does the pessimistic approach remove any locking.
Because the pessimistic approach does not prove
effective for synchronization elimination on these
applications, we disregard it in future tables.

4.4 Delayed Propagations
The efficiency of the static whole-program analysis
stems from the fact that it analyzes a binding only once.
The incremental version, on the other hand, analyzes a
binding repeatedly, as the call graph grows and call sites
need updating. This behavior fights the natural
progression of program execution.

Nothing requires the analysis to start immediately. To
counter the high number of propagations, we can defer
the analysis until the program has established a
sufficiently large call graph. At this point, the analysis
can analyze the SCCs of the current call graph in reverse
topological order, thereby reducing the initial number of
propagations. After an optimization occurs, however,
the analysis must begin an immediate style in order to
identify shared nodes before the program incorrectly
executes.

Since the run-time system may start the analysis at any
time, it may be able to hide the analysis behind I/O,
time-consuming memory accesses, or garbage
collection. The initial interprocedural phase does not

Benchmark
#

Propa-
gations

Objs. Allocated
Objs.

Optimized
Objs.

Deoptimized
Lock Ops
Eliminated

Local
Nonvirt
Local

Virt.
Local

Shared
Un-

known
Opt. Pes. Opt. Pes. Opt. Pes.

db 4828 51

(1%)

59

(1%)

2532

(53%)

2133

(45%)

0 2642

(55%)

51

(1%)

901

(34%)

0 12816

(58%)

0

Example 34 0 0 11

(100%)

0 0 11

(100%)

0 0 0 10

(100%)

0

java_cup on java11 9384 32007

(5%)

65

(0%)

127521

(20%)

487226

(75%)

0 159593

(25%)

32007

(5%)

654

(0%)

0 228227

(40%)

0

jess 9667 207

(0%)

404

(1%)

17025

(36%)

19065

(40%)

10914

(23%)

17636

(37%)

207

(0%)

210

(1%)

0 50556

(58%)

0

JLex on sample 3465 440

(1%)

178

(0%)

46165

(97%)

980

(2%)

0 46783

(98%)

440

(1%)

10

(0%)

0 1838356

(100%)

0

mtrt 7326 11038

(4%)

125

(0%)

273561

(91%)

14625

(5%)

0 284724

(95%)

11038

(4%)

100

(0%)

0 349412

(100%)

0

slice 10174 2366

(1%)

578

(0%)

452615

(96%)

13890

(3%)

0 455559

(97%)

2366

(1%)

700

(0%)

0 16626

(63%)

28

(0%)

volano 2269 45727

(5%)

625

(0%)

781332

(93%)

8469

(1%)

0 827684

(99%)

45727

(5%)

71

(0%)

0 5015018

(100%)

0

Table 4. Results of an analysis that begins immediately.

need to complete before the program resumes; it may be
interspersed.

When should a delayed analysis start? If it waits too
long, it will miss chances for optimization. In the worst
case, an application allocates all optimizable objects
before the analysis begins. If it starts too early, it will
face the same number of propagations as the immediate
approach. As a compromise, a delayed analysis could
start when the rate of class loading slows, when the rate
at which new methods execute slows, or when the run-
time system detects a frequently executed portion of the
application. In any case, one can devise an application
that countermines the chosen delay strategy.

We ran an experiment in which the analysis started after
50,000 instrumentation ticks had occurred without
causing a new method to be executed. We felt that this
number would give a program ample time to settle
down. The results appear in Table 5.

The second column of the table lists the number of
methods executed before the analysis starts. The number
of propagations, listed in the third column, is smaller
than in the immediate case, reducing it on average by
37%. In general, however, additions to the call graph at
the end of the program often require more propagations
than additions at the beginning, causing the bulk of the
propagations to remain in the delayed approach.

The distribution of the types of objects allocated is
nearly identical to the previous approach. Unknowns
result when programs allocate objects before the initial

analysis has run. These potentially translate into missed
opportunities for optimization. For example, the delayed
analysis eliminates about 50% fewer lock acquisitions
for jess.

4.5 Persistent Propagations
A viable strategy must have, in the common case, a low
run-time overhead and a high potential for optimization.
We have seen that an immediate analysis has the
potential to discover all optimizable objects but may
incur high propagation costs. We have also seen that
delaying an initial analysis can reduce the number of
propagations but may miss optimizations.

We ran a third experiment in which the analysis utilized
previous results on a given application. Table 6 shows
measurements of two scenarios. The first analyzesJLex
on hwk, using the call graph and results ofJLex on
sample. Even though thehwk input file is much larger
than sample, the analysis only analyzes 2 additional
methods and 18 additional bindings. This causes 63
propagations—a huge drop from 3465 of the first input.
Moreover, the run-time system can optimize a high
percentage of objects and does not need to undo any of
the optimizations.

The second scenario analyzesjava_cupon hwk using
the results ofjava_cupon java11. This time hwk is a
much smaller input than the first input file. The number
of previously unseen methods and bindings again
decreases significantly, incurring fewer than 200
propagations.

Benchmark

#
Meth.
Before
Prop.

Propa-
gations

Objs. Allocated
Objs.

Opt.

#
Objs.

Deopt.

Lock
Ops

Elim.Local
Nonvirt

Local
Virtually

Local
Shared

Un-
known

db 430 732

(↓ 85%)

11

(0%)

9

(0%)

446

(9%)

33

(1%)

4276

(90%)

466

(9%)

14

(3%)

4197

(19%)

java_cup on java11 190 8046

(↓ 14%)

31907

(5%)

45

(0%)

117445

(18%)

485906

(75%)

11516

(2%)

149397

(23%)

353

(0%)

127737

(22%)

jess 708 5552

(↓ 43%)

177

(0%)

69

(0%)

10835

(23%)

8406

(18%)

28127

(59%)

11082

(23%)

61

(1%)

25498

(29%)

JLex on sample 193 2103

(↓ 39%)

439

(1%)

17

(0%)

44022

(92%)

963

(2%)

2322

(5%)

44478

(93%)

3

(0%)

1686615

(92%)

mtrt 391 4266

(↓ 42%)

10937

(4%)

34

(0%)

102274

(34%)

12777

(4%)

173327

(58%)

113245

(38%)

43

(0%)

3753

(1%)

slice 404 8660

(↓ 15%)

2344

(1%)

512

(0%)

450976

(96%)

13018

(3%)

2255

(0%)

453832

(97%)

153

(0%)

11606

(44%)

volano 318 1817

(↓ 20%)

54612

(6%)

591

(0%)

779255

(92%)

8058

(1%)

2637

(0%)

825458

(98%)

66

(0%)

5007397

(100%)

Table 5. Results of an analysis that begins after 50,000 instrumentation ticks of no new methods.

Call sites typically target the same methods on
subsequent executions. By reusing results, this approach
avoids analyzing a binding repeatedly and skirts
deoptimization. If the dynamic properties of an
execution change (for example, the input changes or the
classpath variable is modified, leading to a different
binding at a nonvirtual call site), the analysis will catch
the changes and take the union of the previous and new
scenarios. The result, although less precise, is still safe.

This approach still has several disadvantages. First, a
shared node will persist in all subsequent executions
even if these executions do not let the node escape the
thread. For example, suppose one execution of our
Example program uses aList data structure that places
itself in a static field. The analysis will mark the list
shared and on subsequent executions will never
consider optimizing the list. Second, the analysis may
miss the (possibly rare) situation where it is better to
optimize an object and later deoptimize it than to
disqualify it from optimization.

The results of Section 4 seem to suggest the following
optimization strategy. On the first execution of a
program, perform no analysis while the program
executes but record the binding of call sites to target
methods. This sacrifices optimizations in the current
execution but incurs little overhead. After the program
finishes, use an efficient whole-program version to
analyze the entire program and then save the results. On
subsequent executions use the saved results and an
optimistic strategy to optimize the program.

5. Related Work
Shape analysis has recently entered the scene to identify
optimizable objects in Java. Researchers aim to stack
allocate and to remove synchronization on thread-local
objects.[1,3,4,5,6,10,16] All of these analyses assume a

closed, known world and work in a static compiler.
Shape analysis is also being used to help program
verification and model checking.[7,9] At this time,
however, it is not clear if these latter uses will benefit
from a dynamic, incremental approach.

The field analysis by Ghemawat and Randall [8] avoids
having to know the entire program by looking at the
access flags of fields and methods. For example,
members withpackage scope can be accessed only
within the enclosing package. This idea, coupled with
the idea of package sealing [18], which restricts all
classes within a package to come from the same archive
file, may allow us to classify more objects aslocal. For
instance, avirtually local node may change tolocal if it
only flows to sealed call sites and if all potential targets
have been analyzed. Our current analysis examines
neither access flags nor type information.

The most common dynamic analysis for Java is just-in-
time compilation. It trades off compilation overhead for
increased execution. Since it is not a whole-program
analysis, it can be selective about what it compiles. For
example, it may choose to compile only frequently
executing methods. If the compilation becomes too
expensive, it can fall back to a naïve native code
translation or even to interpreted code. A dynamic shape
analysis faces a different battle because it cannot simply
quit if the analysis becomes too time consuming. If the
analysis fails to analyze a method, an incorrect
execution may ensue.

Two recent publications move toward dynamic
interprocedural analyses. The first, by Sreedharet al.
[13], presents a framework calledextant analysisthat,
during an off-line static analysis, characterizes all
references as eitherunconditionally extant or
conditionally extant. The former denotes a reference to

Benchmark

#
Meth.
Ana-
lyzed

Invoc.
Ana-
lyzed

#
Propa-
gations

Objs. Allocated
Objs.
Opti-
mized

Objs.
Deopti-
mized

Lock
Ops

Elim.Local
Nonvirt.

Local
Virtually

Local
Shared

1. JLex on sample 242 1104 3465 440

(1%)

178

(0%)

46165

(97%)

980

(2%)

46783

(98%)

10

(0%)

1838356

(100%)

2. JLex on hwk 2 18 63 2241

(0%)

313

(0%)

472609

(98%)

4713

(1%)

475163

(99%)

0

(0%)

2269005

(100%)

1. java_cup on java11 753 2885 9384 32007

(5%)

65

(0%)

127521

(20%)

487726

(75%)

159593

(25%)

654

(0%)

228227

(40%)

2. java_cup on hwk 8 89 190 4318

(9%)

29

(0%)

10992

(22%)

34402

(69%)

15339

(31%)

1

(0%)

39809

(69%)

Table 6. Results of an analysis that utilizes previous results.

an object whose type is guaranteed to be in a specified
closed world, and the latter captures the remaining
references. In our work, our notion of a closed world
gets defined as the program executes. If a reference
flows into a virtual method (i.e., its node isvirtually
local), it exits the closed world. Only fully analyzed
nodes that remain in the closed world can be guaranteed
to be thread-local.

The second, by Serranoet al. [11], introduces a quasi-
static analysis, named Quicksilver, that saves compiled
code between program executions. Before execution, it
validates the existing code images and “stitches” them
to reflect the current run-time properties. Their approach
is effective for the SPECjvm98 benchmarks, once it has
processed an initial “learning” execution. This approach
is similar to our persistent strategy, although we do not
require stitching; we take the union over all previous
executions.

6. Conclusions
We adapted an efficient whole-program shape analysis
to operate incrementally and on-the-fly. Its dynamic
property enables it to observe the dynamic call graph, to
analyze only the executing methods, and to propagate
information only to executing call sites. Also, the
dynamic behavior allows it to perform optimizations not
expressible in bytecode.

In general, when a call site targets a new method, the
shape analysis propagates information from the target
method to all affected parts of the call graph. Table 7
and Table 8 summarize various approaches to
performing the analysis and a related optimization. Our
results suggest that an optimizer must optimistically
select objects to optimize in order to identify a large
number of optimization points. For the applications we
studied, an optimizer that takes this approach will need
to undo only a small fraction of its optimizations. A

strategy that propagates immediately is able to optimize
objects as soon as possible but incurs a large cost for
propagations. To alleviate the propagation cost, we can
delay the initial analysis. Doing so, however, does not
significantly reduce the number of propagations. We can
eliminate most of the propagations if we reuse the
analysis results from previous executions.

This paper does not attempt to close the book on the
dynamic shape analysis problem; it provides some
empirical evidence of the difficulty of performing it
dynamically and suggests an approach that may be both
effective and attainable. Two related issues must be
resolved before it can be used in practice.

First, because any thread of the program may trigger the
analysis, it must be thread-safe. Moreover, it must
handle concurrent activation without sacrificing
efficiency. If the analysis uses union-find data structures
to efficiently merge nodes and SCCs, as suggested in
[10], work done by Anderson and Woll regarding
parallel union-find algorithms [2] may prove helpful.

Second, optimization and deoptimization techniques
must be explored. Deoptimization is especially difficult.
When the analysis marks a nodeshared, it must
deoptimize all objects that are represented by this node.
This requires the run-time system to identify all objects
allocated as a result of the optimization and possibly to
recompile optimized code. In the case of lock
elimination, the process not only needs to enable all
future lock operations on the deoptimized object but
also needs to grant the owning thread the current
number of nested lock acquisitions that would have
been held had the object not been optimized. In the case
of stack allocation, it may need to move an optimized
object from the stack to the heap.

Optimization Approach Benefits Drawbacks

Optimistic Has the potential to optimize all objects May need to deoptimize

Pessimistic Precludes deoptimization Guarantees few thread-local objects

May miss optimizations

Table 7. Trade-offs regarding the optimization strategy.

Analysis Approach Benefits Drawbacks

Immediate Has the potential to optimize all objects Faces numerous propagations

Delayed Reduces the number of propagations May miss optimizations

Persistent Infrequently propagates after the first execution Requires additional start-up and exit costs

Inherits worst case over all executions

Table 8. Trade-offs regarding the start of the interprocedural analysis.

We hope that this study encourages JVM implementors
to consider whole-program analyses that aid in dynamic
optimizations. We are currently looking into a dynamic
shape analysis that can be driven by frequently accessed
objects instead of by changes to the call graph. Such an
approach may be able to eliminate the requirement that
the analysis examine the entire program.

Acknowledgments
This work was funded in part by the NSF grant CCR-
9972571.

References
[1] Jonathan Aldrich, Craig Chambers, Emin Gun Sirer, and

Susan Eggers. Static Analyses for Eliminating Unneces-
sary Synchronization from Java Programs. InProceed-
ings of the Sixth International Static Analysis Symposium,
Venezia, Italy, September 1999.

[2] Richard J. Anderson and Heather Woll. Wait-free Parallel
Algorithms for the Union-Find Problem. InProceedings
of the Twenty Third Annual ACM Symposium on Theory
of Computing, pages 370-380, New Orleans, Louisiana,
5-8 May 1991.

[3] Jeff Bogda. Detecting Read-Only Methods in Java. In
Proceedings of the Fifth International Workshop on Lan-
guages, Compilers, and Run-time Systems for Scalable
Computers (LCR ‘00), pages 143-154, Rochester, New
York, 25-27 May 2000.

[4] Jeff Bogda and Ambuj Singh.Critical Section, Be Gone!
Technical Report TRCS00-18, Department of Computer
Science, University of California, Santa Barbara, August
2000.

[5] Jeff Bogda and Urs Hölzle. Removing Unnecessary Syn-
chronization in Java. InProceedings of Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ‘99), pages 35-46, Denver, Colorado, 1-5
November 1999.

[6] Jong-Deok Choi, Manish Gupta, Mauricio Serrano,
Vugranam C. Sreedhar, and Sam Midkiff. Escape Analy-
sis for Java. InProceedings of Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA
‘99), pages 1-19, Denver, Colorado, 1-5 November 1999.

[7] James C. Corbett.Using Shape Analysis to Reduce
Finite-State Models of Concurrent Java Programs. Tech-
nical Report ICS-TR-98-20, Department of Information
and Computer Science, University of Hawaii, 14 October
1998.

[8] Sanjay Ghemawat, Keith H. Randall, and Daniel J.
Scales. Field Analysis: Getting Useful and Low-Cost

Interprocedural Information. InProceedings of Program-
ming Languages, Design, and Implementation (PLDI
‘00), pages 334-344, Vancouver, Canada, 18-21 June
2000.

[9] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard
Wilhelm. Putting Static Analysis to Work for Verifica-
tion: A Case Study. InProceedings of the International
Symposium on Software Testing and Analysis (ISSTA
‘00), pages 26-38, Portland, Oregon, 21-24 August 2000.

[10] Erik Ruf. Effective Synchronization Removal for Java. In
Proceedings of Programming Languages, Design, and
Implementation (PLDI ‘00), pages 208-218, Vancouver,
Canada, 18-21 June 2000.

[11] Mauricio Serrano, Rajesh Bordawekar, Sam Midkiff, and
Manish Gupta. Quicksilver: A Quasi-Static Compiler for
Java. InProceedings of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ‘00),
pages 66-82, Minneapolis, Minnesota, 15-19 October
2000.

[12] SPEC Java virtual machine benchmark suite. Standard
Performance Evaluation Corporation.SPECjvm98 Docu-
mentation, Release 1.0. August 1998. http://
www.spec.org/osq/jvm98/jvm98/doc/index.html.

[13] Vugranam C. Sreedhar, Michael Burke, and Jong-Deok
Choi. A Framework for Interprocedural Optimization in
the Presence of Dynamic Class Loading. InProceedings
of Programming Languages, Design, and Implementation
(PLDI ‘00), pages 196-207, Vancouver, Canada, 18-21
June 2000.

[14] Frank Tip and Jens Palsberg. Scalable Propagation-Based
Call Graph Construction Algorithms. InProceedings of
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ‘00), pages 281-293, Minne-
apolis, Minnesota, 15-19 October 2000.

[15] Volano benchmark application. http://www.volano.com/
benchmarks.html.

[16] John Whaley and Martin Rinard. Compositional Pointer
and Escape Analysis for Java Programs. InProceedings
of Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ‘99), pages 187-206, Denver,
Colorado, 1-5 November 1999.

[17] Reinhard Wilhelm, Mooly Sagiv, and Thomas Reps.
Shape Analysis. InProceedings of Conference on Com-
piler Construction, Berlin, Germany, 27 March - 2 April
2000.

[18] Ayal Zaks, Vitaly Feldman, and Nava Aizikowitz. Sealed
Calls in Java Packages. InProceedings of Object-Ori-
ented Programming, Systems, Languages, and Applica-
tions (OOPSLA ‘00), pages 83-92, Minneapolis,
Minnesota, 15-19 October 2000.

