
A Java Compiler for Many Memory Models { extended abstract

Samuel P. Midki�

IBM TJ Watson Research

Jaejin Lee

Dept. of Computer Science and Engineering, Michigan State University

David A. Padua

Dept. of Computer Science, University of Illinois at Urbana-Champaign

1 Introduction

The issue of memory models for languages like Java is both extremely important and poorly understood.
The memory model is important because the set of legal outcomes of the program is intimately tied to the
de�nition of the memory model. That these issues have been poorly understood is initially surprising, but
less so when one considers that Java is the �rst widely used language that both supports explicit parallelism,
and attempts to de�ne the allowable outcomes of a program, even in the presence of data races. Moreover,
because Java attempts to support a simple programming model, and to aid the development of correct,
secure programs, the memory model itself should be easy to understand and as transparent as possible to
the implications of programming idioms. It is widely believed that the current Java Memory Model has
failed to deliver on these promises and has been called fatally 
awed [5].

Prof. Pugh, with the cooperation of the many contributors on the memory model mailing list [6],
is developing a new memory model for Java. It is hoped that this memory model, along with various
programming idioms, will overcome the many de�ciencies of the current memory model. This approach
has the key bene�t that it �ts in well with both the current structure of JVM's and compilers, wherein
the memory model is a �xed attribute of the programming language; and with the current Java standards
process; and is therefore the only practical way to overcome the current problems in the current environment.
It has the defect that by specifying a �xed memory model as part of the language standard, it requires the
de�nition of the language and JVM to be changed in order to implement it. Just as importantly, it requires
the de�nition of the language and JVM to be changed whenever a severe problem in the latest memory
model is encountered { is an expensive and time consuming process.

The approach we will discuss in our presentation, and in the remainder of this abstract, is radically
di�erent. Rather than having a �xed memory model for the language, we allow the memory model to be
a property of a class. This has two distinct bene�ts: First, prototyping new memory models to �nd those
with good, overall properties is possible using a common compiler and JVM infrastructure; and second, the
memory model can be changed to meet the needs of a particular application without rede�ning the language.
For example, for some applications it might be desirable to facilitate ease of programming at the expense of
performance by picking a sequentially consistent memory model.

2 The Architecture of our Compiler

The compiler, which extends the the Jalape~no system [1], accepts a .class �le annotated with a memory
model speci�cation, and produces an optimized form of the program annotated with information about
the orderings of memory operations that must be preserved for the execution to conform to the speci�ed

1



memory model. The compiler then produces an executable that maps this intermediate representation onto
a (possibly relaxed) underlying hardware consistency model.

Our compiler represents the program using the Concurrent Static Single Assignment (CSSA) form[4].
When the .class �le is put into an intermediate language form, the CSSA graph will have all orderings
implied by the consistency model for that class. Escape analysis[3] can be applied to the program to
determine what variables are actually shared by two or more threads, and whose accesses must be ordered
by the requirements of the memory model. An incremental critical cycle analysis will be used to re�ne the
CSSA graph so that orderings implied by the consistency model, but not required in the current execution,
can be relaxed. As was shown in [7], the memory model implied orderings that must be preserved in a thread
are a�ected by the order of accesses of shared variables in other threads, and the relaxing of orders that are
implied by the memory model that are not necessary to be enforced will be (conservatively) uncovered by
our incremental critical cycle analysis. Next, the program represented by the CSSA graph will be optimized
using techniques similar to those in [4], which describes the application of classical optimizations to explicitly
parallel programs. Finally, an e�cient mapping of orderings still imposed by the memory model onto the
underlying hardware consistency model will be done, using extensions of the results presented in [2].

The new aspects of this work are 1) the development of a compilation system that supports programmable
memory models; 2) internal representations of programs within a compiler that accommodate di�erent
memory models; 3) the application of delay set analysis to non-sequentially consistent programs; 4) an
implementation and development of classical optimizations targeting explicitly parallel programs; and 5) the
implementation within a Java compiler, and development of new optimizations for mapping a programming
language consistency model onto a hardware consistency model. The outcome of this work will be 1) a tool for
the prototyping of memory models; 2) a tool for developing languages with programmable memory models;
3) research into the relative e�ciency of di�erent memory models using a common suite of optimizations
and a common hardware targets.

References

[1] Bowen Alpern, C. R. Attanasio, John J. Barton, Michael G. Burke, Perry Cheng, Jong-Deok Choi,
Anthony Cocchi, Stephen J. Fink, David Grove, Michael Hind, Susan Flynn-Hummel, Derek Lieber,
Vassily Litvinov, Mark F. Mergen, Ton Ngo, James R. Russell, Vivek Sarkar, Mauricio J. Serrano,
Janice C. Shepherd, Stephen E. Smith, V. C. Sreedhar, Harini Srinivasan, and John Whaley. The
jalape~no virtual machine. IBM Systems Journal, 39(1):211{238, 2000.

[2] Jaejin Lee David Padua. Hiding relaxed memory consistency with compilers. In The IEEE Conference
on Parallel Architectures and Compilation Techniques (PACT), Oct. 2000.

[3] J.-D. Choi, M. Gupta, M. Serrano, V.C. Sreedhar, and S. Midki�. Escape analysis for Java. In Proceedings
ACM 1999 Conference on Object-Oriented Programming Systems (OOPSLA '99), pages 1{19, Nov. 1999.

[4] J. Lee, D. Padua, and S.P. Midki�. Basic compiler algorithms for parallel programs. In Proceedings of the
seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 1{12,
May 1999.

[5] William Pugh. The Java memory model is fatally 
awed. Concurrency: Practice and Experience, 12(1):1{
11, 2000.

[6] Java memory model mailing list archive, October 1999. http://www.cs.umd.edu/ pugh/java/memoryModel/archive.

[7] D. Shasha and M. Snir. E�cient and correct execution of parallel programs that share memory. ACM
Transactions on Programming Languages and Systems, 10(2):282{312, April 1988.

2


