®
® O Il. THE MAGAZINE OF USENIX & SAGE
’ . August 2002 volume 27 « number 5

Inside:
CONFERENCE REPORTS
Java™ VM 2002

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild



92

2nd Java™ Virtual Machine
Research and Technology
Symposium

SAN FraNcisco, CA
AucusTt 1-2, 2002

Summarized by Jose F. Osorio

OPENING REMARKS

JVM ’02 Program Chair Sam Midkiff of
IBM’s T.J. Watson Research Center wel-
comed symposium attendees and pro-
vided an overview of the topics that
were going to be presented in the inten-
sive two-day event. These included
research work in the areas of JVM mem-
ory management, advanced JVM archi-
tectures, just-in-time compilers, method
inlining, realtime JVMs, embedded
JVMs for portable, personal, mobile
devices, and hardware-based Java
machines for stack-based microproces-
sors.

The Best Student Paper Award went to
“Supporting Binary Compatibility with
Static Compilation,” by Dachuan Yu,
Zhong Shao, and Valery Trifonov, Yale
University. The project’s Web site is
http://flint.cs.yale.edu/flint/publications/
bincomp.html. The Best Paper Award was
given to “An Empirical Study of Method
In-lining for a Java Just-in-Time Com-
piler,” by Toshio Suganama, Toshinki
Yasue, and Toshio Nakatani, IBM Tokyo
Research Laboratory.

KEYNOTE ADDRESS: STOP THINKING OUTSIDE
THE Box. THERE Is No Box.

Robert Berry, Distinguished Engineer,
IBM Centre for Java Technology
“Virtual Machine technology is here to
stay as a fundamental technology sup-
porting real business computing,” said
Robert Berry during his remarks.

As an absolute core of much of IBM’s
software and hardware business, JVMs
are a proven technology for real com-
puting: they form an essential compo-
nent of WebSphere’s Application Server
runtime environment, are integrated
with the DB2 database management sys-
tem, and are a key enabler for Web ser-

vices infrastructure. Proof of this is also
Microsoft’s NET framework and its
common language runtime (CLR) for
managed code, which is a VM-based
technology. Furthermore, JVMs are at
the core of business computing. Java
researchers are also evaluating CLR and
looking into performance compared to
JVMs,

Customer requirements such as viability
and legacy expectation, competitive
pressure such as functionality and per-
formance, hardware evolution, technol-
ogy changes, and new ideas are some of
the principal motivating drivers for JVM
innovation, explained Berry.

IBM’s focus on innovation reflects the
growing maturity of JVMs, evolving
from an inward client-first, server-next
focus to virtual machines in the context
of middleware such as database, transac-
tion, and applications servers.

Berry presented a history trail of IBM’s
innovations in such key areas as JVM
architecture, just-in-time compilation,
middleware, and autonomic systems.

Innovations in JVM memory allocation
and garbage collection were explained.
Different garbage collection strategies
were compared, including mark-sweep-
compact, compaction avoidance, parallel
marking, parallel marking plus sweep-
ing, and concurrent marking. The
impact of full vs. incremental com-
paction was discussed.

In the area of JIT compilation, Berry
explained method inlining and escape
analysis strategies (where the detection
of objects that do not survive a particu-
lar method invocation scope is done to
allocate them on the stack so as to
reduce heap and memory synchroniza-
tion overhead).

The high-performing JVMs’ need for
execution of short and repetitive trans-
actions and strict isolation requirements
between transactions, plus the con-
straints of a 31-bit addressing mode,
were key factors that led to the invention

of IBM’s Persistent Reusable JVMs,
which reduce initializing and startup
JVM overhead, are equipped with effi-
cient garbage collectors, and support
transaction isolation among multiple
JVMs,

In autonomic computing, the drive to
increase reliability, availability, service-
ability (RAS) resulted in the creation of
two well-known Java specification
requests (JSRs): JSR 174 — jvmmi for
monitoring, and JSR 163 — jvmsi/ti for
performance.

IBM has innovated successfully with
JVM for four reasons: (1) they listen to
their customers (whether external or
internal) and to their users; (2) they pro-
vide significant investment in research
and development for key JVM infra-
structures; (3) they deploy novel tech-
nology in the field and in the community
early enough for experimentation; and
(4) they do not give up on any ideas.

Berry explained that work and innova-
tion is needed in various areas, including
JVM footprint, very large heaps (VLH)
on the order of 500GB and beyond,
object pooling, object sharing, decimal
arithmetic, RAS, Web services, JVM exe-
cution performance, simplification and
integration of resources monitoring,
control and management, and the
impact on JVM technology from aspect-
oriented software development (the next
generation of modularity beyond the
object-oriented paradigm). Visit
http://www.aosd.org for more informa-
tion on aspect-oriented software devel-
opment.

ADAPTIVE GARBAGE COLLECTION FOR BAT-
TERY-OPERATED ENVIRONMENTS

G. Chen, M. Kandemir, N. Vijaykrishnan
and M.J. Irwin, The Pennsylvania State
University, M. Wolczko, Sun Microsys-
tems

Narayanan presented an adaptive
garbage collection strategy for embed-
ded devices in which object creation and
memory allocation history on a time
interval is used to tune the frequency at
which the garbage collector is invoked to

Vol. 27, No. 5 ;login:


http://flint.cs.yale.edu/flint/publications/
http://www.aosd.org

reduce energy consumption from Java
applications. He also showed how
energy leakage is reduced by exploiting
supply-gated power management mech-
anisms which shut down energy supply
to memory banks that do not hold use-
ful data. Using KVM — Sun Microsys-
tems’ JVM designed for embedded and
battery-operated environments — and a
set of nine applications typical for hand-
held devices, the adaptive garbage collec-
tion strategy incurred fewer performance
penalties than other approaches.

CONCURRENT REMEMBERED SET REFINEMENT
IN GENERATIONAL GARBAGE COLLECTION
David Detlefs and Ross Knippel, Sun
Microsystems; William D. Clinger,
Northeastern University; Matthias
Jacob, Princeton University

With generational garbage collection,
garbage collection latency can be
decreased, increasing throughput and
reducing execution pauses. It divides the
heap memory into multiple layers of
allocation generations. In this strategy
the youngest generation is the one most
frequently collected, and a complex data
structure is used to represent the genera-
tion layers as remembered sets in order
to identify links from older generations
to younger ones.

The refined strategy focuses on the chal-
lenge of efficiently maintaining the
accuracy of remembered sets in a con-
current environment in a way that
reduces the cost penalties from write/
update barriers involved in maintenance
of the complex data structure and that
scales well as the size of the old genera-
tion increases. The strategy uses a write
barrier implementation whose cost is
not significantly greater than card mark-
ing techniques.

Two remembered-set organizations were
considered in the implementation of the
proposed strategy: a card table aug-
mented with a summary table, and a
refined version of the first as a two-level
card table (a coarse-grained summary
table, and a fine-grained detail table

October 2002 ;login:

with a 2N ratio between each table for
some large N). Two write-barrier refine-
ment techniques were considered as
well: direct refinement on one-level and
two-level card tables, and log-base
refinement with mutator and refinement
threads.

An attendee asked why hashtables were
not used in the strategy implementation.
Detlefs responded that separate bench-
marks had shown that their two-level
card table approach is as good as
hashtable direct access during scanning
of the coarse-grained table.

To CoLLecT orR NoT 1O COLLECT?
MACHINE LEARNING FOR MEMORY MAN-
AGEMENT

Eva Andreasson, BEA/Appeal Virtual
Machines; Frank Hoffmann, Royal Insti-
tute of Technology; Olof Lindholm,
BEA/Appeal Virtual Machines
Andreasson explained how reinforce-
ment learning contributes to JVM
autonomous decision-making to per-
form garbage collection. Given the ele-
ments of system environment — State,
Action, Reward, new State, new Action
(SARSA) — Eva explained how after an
iterative and systematic process of deci-
sion-making exploration and prediction,
the SARSA approach yields an optimal
learning scheme for adaptive garbage
collection. Benchmarks demonstrated
how the RLS (reinforcement learning
system)-based JVM outperformed
JRockit, a conventional JVM, in a
dynamic environment in which memory
allocation behavior changes more rap-
idly.

OPTIMIZING PRECISION OVERHEAD FOR X86
PROCESSORS

Takeshi Ogasawara, Hideaki Komatsu,
and Toshio Nakatani, IBM Japan

A novel approach to optimize floating-
point operations in JVMs for x86 target
processors was presented by Takeshi
Ogasawara. The strategy involves track-
ing floating-point precision-type code
blocks in a Java program, performing
region analysis, and also tracking preci-
sion-aware method invocations.

JAVA™ VM ‘02

By transforming the original bytecode
and generating code blocks with the
appropriate floating-point precision, the
default precision mode can be ignored.
Region analysis investigates code blocks
to find strategic points where single- and
double-precision mode-switch instruc-
tions can be inlined to reduce rounding
and store-reloads overhead. After trans-
formation, the just-in-time compiled
code calls the native target code with the
same floating-point precision type,
therefore eliminating any redundant
mode switches across method bound-
aries of precision-aware invocations.

Ogasawara emphasized that their strat-
egy does not sacrifice strictness of float-
ing-point precision; it actually reduces
the x86-specific overhead of preserving
strictness.

A MODULAR AND EXTENSIBLE JVM
INFRASTRUCTURE

Patrick Doyle and Tarek S. Abdelrah-
man, University of Toronto

The design of Jupiter, a modular scalable
JVM framework, was outlined by Patrick
Doyle. The Jupiter project investigates
JVM architectures for high performance
on large-scale parallel systems with 128+
microprocessor clusters and facilitates
research and future enhancements to
their JVM. Jupiter has been constructed
out of a multitude of discrete units with
small and simple interfaces in a manner
similar to how shells in UNIX build
complex command pipelines out of dis-
crete programs. Numerous aspects of
JVM system architecture (memory allo-
cation, metadata, method dispatching,
object manipulation, call stack, bytecode
interpretation, just-in-time compilation
multithreading, synchronization, and
many others) are covered in this paper
in a clear and simple manner.

A LIGHTWEIGHT JAVA VIRTUAL MACHINE
FOR A STACK-BASED MICROPROCESSOR

Mirko Raner, PTSC

The Symposium ended with a presenta-
tion of a hybrid implementation of a
JVM. The Ignite microprocessor is a
stack-based bytecode processor with a

CONFERENCE REPORTS

93



94

32-bit dual-stack architecture, an 18-
word operand stack, and a separate 16-
word stack for call-stack frames. It was
originally designed as an embedded
computing platform for efficient execu-
tion of C and Fortran. Ignite is not a
Java technology-enabled microproces-
sor, but its architecture is very similar to
the JVM, and Java bytecode translation
is easy and efficient. Ported from the
original LVM (Lightweight Virtual
Machine), the main challenges were the
separation from the underlying operat-
ing system by means of JELLO, an
abstraction layer; optimization of ahead-
of-time (ATO) compilation; lazy class
resolution; and optimization of method
invocation.

Raner gave a detailed explanation of the
operand stack, local stack, and global/
general register-set structure, the differ-
ences between the stack model of a typi-
cal JVM and Ignite’s stack model, and
Ignite’s instruction-set format.

Raner also explained that the differences
between the argument-passing mecha-
nisms of a standard JVM and Ignite’s
made it necessary to move method argu-
ments from the Ignite’s operand stack to
Ignite’s local variable stack.

The LVM is still a work in progress.
Plans for its future include placement in
very small devices, cellular phones, and
mobile devices.

To view the presentation slides, visit
http://java.sh/lvm.html.

Vol. 27, No. 5 ;login:


http://java.sh/lvm.html

