
A Tbol for Building
F irew all - Rout e r C onfi g ur ati on s

Christopher J. Calabrese

Novell Information Services

and Technology

ABSTRACT: Several commercial firewall solutions
are currently available, but they may not be appropriate
for all situations because of their expense, lack of
flexibility, or lack of scalability. Instead, many firewalls
are built using packet-filtering routers.

One big impediment to building router-based fire-
walls is how poorly the configuration languages used
to describe the proper operation of the routers are
suited to the job of building and maintaining robust
ûrewalls. These languages are overly terse and do not
support software-engineering techniques such as code-
reuse and datahiding.

This paper describes a tool that overcomes these
limitations by generating a configuration in the
router's native configuration language from a high-
level description of the flrewall that is embedded in
KoRNsnrrr, a popular computer language supporting
code-reuse and data-hiding.

O 1996 The USENIX Association, Computing Systems, Vol. 9 . No. 3 . Summer 1996 239

l. Introduction

This paper describes router-conf ig, a software tool that translates a high-level

description of a router's functions into the native configuration-language of that

router. The input is a langUage that provides software-engineering capabilities such

as code-reuse and information-hiding. These capabilities allow for signiflcant time-

savings in router configuration and maintenance, especially when used in flrewall

applications. Actually, the input to router-conf ig is a KonNsrIELr, (ksh) pro-

gram that sets variables defining the parameters of the router. This allows network

administrators to describe complex configurations using a powerful and flexible

language they're already familiar with. router-conf ig itself is built from KonN-

sHELL scripts.

Using variable-settings controlled by a scripting language may seem a strange

way to to control something as complex as a router, but this idea is grounded in

the way the KonNsrmrr itself is configured (and its predecessor the Bourne Shell),

and has also been used in other successful software systems, such as EMACS

tBolsþ & Korn 1989, Bourne 1994, Stallman 19951. router-conf ig can gener-

ate router conûgurations for the following situations:

. A non-firewall router connecting multiple inside netwotks.

. A simple firewall-router connecting one or more inside networks to one or

more
.outsi.de

networks.

. A more complex firewall-router with inside network connections, outside

netWork connectionS, and One Or more screened-Subnets, or DMZ's.1

. A two-router screened-subnet firewall architecture, where the outer router

has one or more outside network connections, the inner router has one or

morc inside network connections, and the two routers are connected by one

or more DMZ's.

l. DMZ is short for De-Militarized Zone, a temr originating from the U.N.-controlled buffer between North

Korea and South Korea- In this case, it refers to a screened-subnet where semi-trusted net-visible servers are

placed.

240 Christopher J. Calabrese

The current software can generate configurations only for Cisco routers, but could
be extended to handle other router types.

2. Background and Motivation

Back in the days when the Internet was a small, safe place, the people in Novell
responsible for building firewalls "hand-built" each of our few firewalls using a

packerfiltering-router architecture. Designs were based on past experiences and

information available from places like Brent Chapman's f irewalls mailing list.
By mid-1994, however, several factors caused us to reconsider our approach:

. The number of IP-aware computers (especially servers) in the company was

mushrooming. Originally, most non-Uwur computers in Novell used only
IPX-based network protocols, but today almost all computers in Novell use

both IPX and IP.

. The number of Internet and partner-net2 connections to the company net-
work was also mushrooming. At that time, we had tlree Internet connec-
tions and about five partner-net connections. Today we have six Internet

connections and over adozen partner-nets.

. The number of Internet break-ins being reported was also mushrooming.

. Finally, Cheswick and Bellovin published Firewalls and Internet Security

lCheswick & Bellovin 1994], allowing us to systematically compare our
firewalls to the ones described in their book.

In response, we began a major project that eventually changed the whole way
we approached firewall-construction. It started with re-thinking the underþing
reasons for our firewalls, leading to a policy document specifying the exact level
of security we expected when connecting our company network to any foreign
network, be it the Internet, a partner-net, or the telephone network. Next we pub-

lished an interpretation of how the policy applied to the details of constructing
IP-firewalls. Some of the things specified in the interpretation document are:

. The type of firewall architecture to use (a one- or two-router DMZ configu-
ration).

. What services can be accessed securely from inside the firewall.

2. A partner-net is a private network connection to another organization, usually a business partner.

A Tool for Building Firewall-Router Configurations 241

. How to proxy inbound data (such as e-mail and net news)'

. How to setup packet-filters to meet our requirements'

The next logical step was to encode these policy decisions into software so

that engineers constructing firewalls could concentrate on the situation at hand

rather than re-inventing the wheel each time. IVheel re-invention was a cornmon

problem because the router conflguration languages didn't allow for code-reuse'

3. Software Implementation

From a language-centric standpoint, this system takes a simple input language

wrapped in a powerful macro-language (KonNsmlr) and compiles it into an

equally simple output language. Since the KonNsuBrr software is doing the

parsing and lexing, the compiler has no ffue front-end and operates directly from

internal data representations of the language (the values in the significant shell

variables). Since both the input and output languages afe entirely non-procedural,

the compiler also does not have many of the traditional back-end compiler features

like a block-optimizer or register-allocator. Instead, it operates as follows:

. A data-driven front-end (the router-config script) takes the input lan-

guage (which is similar in concept to the data-structures used in the back-

end of a traditional compiler) and makes calls into a language-independent

code-generator (router . ksh. 1ib).

. The language-independent code-generator, in turn, makes calls into a lower-

level device-dependent code-generator (c i sco' ksh' lib)'

. The low-level device-dependent code-generator tnally outputs the actual

configuration information in the target device's own configuration language.

If you don't like the compiler analogy, router-conf ig can be thought of as

a pfogram driven by a simple input language (like dc), router. ksh. Iib as the C

libraries and system calls used by that high-level program, and cisco . ksh ' lib as

the underlying operating-system and device-drivers.

4. Description of the Input Language

As stated earlier router-conf ig's input language lives in the values of a set of

KonNsmr,r variables. This section describes these variables and how they behave.

242 Christopher J. Calabrese

4.1. Variables Describing the Physical Router Configuration

. routerType The type of router this is. This determines which library is
used for device-dependent code-generation. The only value currently sup-

ported is cisco.

. routerHardwareModel The version of the router hardware (e.g.,251"4,

7500).

i . routerSoftwareVersion The version of the software running on the
I router. The Cisco driver will turn off certain features if running Cisco In-

ternetwork Operating System (Cisco IOS) versions before release 10.3.

Also, it cannot handle Cisco IOS versions before release 9.21 because of
their lack of support for inbound access-lists.

. routerBootMethod How the router boots. The Cisco driver understands

def ault (flash-EPROM or ROM depending on the model router) and

netrnrork (tftp).
. routerConf igMethod How to configure the router on boot-up. The Cisco

driver understands none, which uses the conûguration in flash-ROM if it's
there, and network, which uses tftp.

4.2. Variables Describing the Setup of the Router's Interfaces

There is only one variable that describes the setup of the router's interfaces,

routerlnterf aces, but its value is a complex table. Each line of the table de-

scribes one interface, and each white-space-separated fleld describes one aspect of
the interface. The fields are as follows:

. interf aceFunction Specifies what the interface is used for, which deter-

mines what type of default firewall-filtering will be setup for this interface.

Recognized values are:

-shutdown
The interface is not in use.

-exteriorFirer¡a1l-
An outer-most (exterior) interface of a firewall-

router.

-dmz
An inner-most (DMZ-facing) interface on an outer-router of a two-

router DMZ firewall configuration.

-dmzFirewall-
An outer-most (DMZ-facing) interface on an inner-router

of a two-router DMZ firewall configuration.

A Tool for Building Firewøll-Router Configurations 243

- int erior An inner-most (protected-network-facing) interface on the

inner-most router of any firewall configuration, of any interface on a

non-firewall router.

-combinedDnzFirewall
A DNIZinterface in a one-routerDI|J/1IZ firewall

configuration.

interface The physical interface being referred to. The Cisco driver

passes this value directly to the 'interface' command, with any un-

derscores ('-') converted to spaces. Thus, it understands ethernet-M,
serialÏ, fddi-"N, etc.

nediaType What type of physical media is attached to this interface.

Valid values for the Cisco driver are anything acceptable to the Cisco

nedia-type command (e.g., 1oBaseT, aui, fddi, serial). This data is

unused for cisco models below 4000, which have fixed media-types. This,

and other subsequent fields, are optional for shutdown interfaces.

, address [/netMask] The IP address [and optional net-mask] bound to the

interface.

, broadcastAddress The broadcast address for the directly-attached net-

work.

, ipHelpers List of lP-Helper addresses for doing fancy things with IP

broadcasts. Use none or noHelpers to specify an emptyJist' List elements

are separated with ' ,'s.

, reachableNetworks The name of a variable containing the list of net-

works reachable through this interface. Use none or noReachableNetr.rorks

to specify interfaces with no reachable networks that are not direct-attached.

The use of reachableNetworks variables is described below.

. inboundFilteringRules The name of a variable containing rules about

how to setup inbound packet filtering for this interface. Use none or

nolnboundFilteringRules to specify no additional rules. The use of

inboundFilt eringRules variables is described below.

. outboundFilteringRules Similar to inboundFilteringRules, but for

outbound packet filtering. use none or no0utboundFilteringRules to
specify no additional rules. The use of outboundFilteringRules vari-

ables is described below.

244 Christopher J. Calabrese

4.3. Variøbles Describing Routing

. routingProtocols Blank-separated list ofprotocols supported by
the router. The Cisco driver passes this value directly to the 'router'
command, with any underscores ('-') converted to spaces. Thus, it un-

derstands bgp -aulonomous-system, egp -autonomous-sy stem, egp -0,
í grp -nutonomou s - sy s t em, i s i s -ta g, i s o - i grp -ta g, o spf -o spf-p ro c e s s -

id, andrip.

i . routingNetworks Blank-separated list of networks to exchange routing
I

data with.

. reachableNetworks variables. These are the variables defined by the

reachableNetr,rorks fields of the routerlnterf aces table. This infor-
mation is used both for routing and default packetfiltering. These variables

contain a list of network addresses and masks, as well as routing informa-
tion for these networks. Like routerlnterf aces itself, this data is in the

form of a table. In this case, each line refers to one network, and the fields

afe:

-netAddress
[/netmask] Network address [and mask] for this network.

-routerAddress
Name/address of the router to which to pass data for

this network.

-routingCost
The cost of getting there. In hops, or OSPF cost if using

OSPF.

4.4. Variables Describing Packet Filtering Rules

By default, the software generates a configuration that denies any packets coming
from or going to illegal places (e.g., packets coming from the outside with inside

source-addresses) and otherwise allows:

. All outbound3 packets.

. All inbounda TCP packets from established connections (i.e., the TCP ACK

bit is set).

3. Outbound packets are those traveling from inside the firewall to the DMZ, from inside the firewall to outside
the firewall, or from the DMZ to outside the firewall.

4. Inbound packets are those traveling from outside the firewall to the DMZ, from outside the firewall to inside
the firewall, or from the DlvIZlo inside the firewall.

A Tool for Building Firewall-Router Configurations 245

These defaults can be supplanted and/or superseded through the variables

specified by the inboundF i lt eringRul e s and outboundFi lt eringRul e s

fields of the routerlnterf aces table. The values of these variables are tables

with one line per rule, each of which contains the following fields:

. type Whether this rule defines packets that will be allowed (pernit) or

disallowed (deny).

. f ronAddress [/f romMask] IP address/maskl of the machine/network the

rule allows/denies access from (e.g., Inet-Mail . nyconpany . con).

. toAddress [/toMask] IP address/maskl of the machine/network the rule I

allows/denies access to (e.g., nail.mycompany ' com)'

. protocol The protocol of the packets the rule refers to. Valid values are

ip, icmP, tcP, and udP.

. operator Optional port-number operator for tcp and udp rules. Valid val-

ues are It, gt, le, ge, eq, and ne. If Supplied, the port field must also be

supplied.

o port Optional port-number for tcp and udp rules' If supplied, the

operator teld must also be supplied.

. established Optional keyword-flag to indicate that tcp packets are for an

established connection (i.e., they have the ACK bit set)'

. ICMP-Message-Type The message type for ICMP messages. Valid values

are shown in Table 1.

4. 5. Variable s D e s cribing Router Administration

. hostName Name of the router (e.g., Inet-Router)'

. routerPassword Password used for console/telnet access (e.g.,

ThlslsTh3Passwd).

. routerEnablePassword Password enabling access to privileged com-

mands (e.g., Th1 s 1 sTh3SUPas swd).

. domainNa-me DNS domain (e.g., nyconpany. com).

. dnsServers Blank-separated list of DNS servers (e.9., 'ns . mycompany. con

ns2.nyconPanY. com').

246 Christopher J. Calabrese

Table 1.

Valid ICMP Message Types and their Representations
Message Type Number Tþxt

Echo Reply 0 echo:eply
Destination Unreachable 3 destination-unreachable
Source Quench 4 source-quench
Redirect 5 redirect
Echo Request 8 echorequest

J Router Advertisement 9 router-advertisement

I Router Solicitation 10 router-solicitation
Time Exceeded LI time-exceeded
Parameter Problem 12 parameter-problem

Timestamp Request 13 timestamprequest
Timestamp Reply 14 timestampreply
Address Mask Request l7 address-rnaskrequest
Address Mask Reply 18 address:nask:eply

. trust edAdninMachine s Blank-separated list of addresses/masksl that
will be trusted for adminisfrative access to the router (i.e., through teJ-net).

. loghost Host to send syslog output to (e.g., loghost . mycompany. con).

. snmpContact Contact string for SNMP (e.g., security-ad.nin@mycompany. com).

. snmplocation Location string for SNMP (e.g., 'My Conpany, Anytown,
usA').

. snnpRwConnunity Community string for read/write SNMP access (e.g.,

router-conmunity).

. snmpRoCommunity Community string for read-only SNMP access.

. snmpTrapConnunity Community string to send when raising SNMP traps.

. snmpRwMachines Blank-separated list of addressesUnetsl to allow
read/write SNMP access from (e.g., 'snnpl.mycompany. com,/host
snnp2 . mycompany. com').

. snmpRoMachines Blank-separated list of addresses/nets] to allow read-

only SNMP access from.

. snmpTrapMachines Machines to send SNMP traps to.

A Tool for Building Firewall-Router Configurations 247

Table 2.

Network Mask Equivalents
Dotted-Decimal Hex bits Other

O.O.O.O 00000000 0-bits exactMask

128.0.0.0 80000000 l-bit

192.0.0.0 C0000000 2-bits

255.0.0.0 FF000000 16-bits classA

255.255.0.0 FFþp0000 32-bits classB

255.255.255.0 FFFFFFOO 24-bits classC

255.255.255.255 FFFFFFpF 32-bits allMask, anyMask

4.6. Notes on Net-Masks, Machine Names/Addresses, and

Case-SensítivitY

Although the software stores all net-masks natively as dotted-decimal nota-

tion (e.g. 255.255.0.0), the equivalents shown in Table 2 are also fecog-

nized.

The software will freely convert machine names into IP addresses.

The software generally makes case-insensitive comparisons of variable

values. Examples in this paper are shown in mixed case for improved read-

ability.

5. An Example Configuration

The best way to understand this tool is to use it, so let's build a router configura-

tion script from the ground up to see what it's made of'

In our example, we'll be building an Internet firewall router for snall. com's

primary site. The architecture will be a single router with a screened-subnetlDMZ

for the Internet-visible machines. We will give them a single Internet-visible e-

mail gateway, a couple of internal mail-hubs, and a single DNS server inside the

firewall.

248 Christopher J. Calabrese

#
Description of the Physical Router
#
routerType=cisco
routerSof twareVers ion=10 . 3

routerHardwareMode 1=25 14

routerBootMethod=def ault
#
tfhat tbe router is doing for us
*
routerlnterfaces=rt

exteriorFire¡¡all Serial-O serial \
snall. nyisp. npt,/FFFFFFFC \
L97.4.42.173 noHelpers \
externalNetworks \
inbou¡dFirewallRules \
no0utboundFi lt er ingRules

Shutdo¡¡n Serial-1
interior Ethernet-O aui \

inet-fw. snaIl. con/FFFFFFE0 \
t49.2.127 .255 noHelpers \
internalNet¡¡orks \
nolnboundFilteringRules \
no0utboundF i lt er ingRule s

combinedDnzFirevall Ethernet-l aui \
iuet-dnz. snall. con/cl-assC \
192.27.1.255 noHelpers \
internalNetworks \
dnzFirewallRu1es \
no0utboundFilteringRules "

#
How packet routing is acconplished
#
routingProtocols= tt rip tt

routingNetworks=" 149 .2.O.A t92,27 .1.0n
internalNet¡¡orks=tt

149.2.0.0 749.2.L.1.2
178.18.0.0 t49.2.1. 1 4"

externaLNetworks= 1r allNets nygate . nyisp . net 255 "
#
Firewall Policy
o A11o¡¡ the Internet nail- gateway to send nail
f to the internal- nail hubs.
o Allow access to the DNS server (we don't have
a split DNS).
inbormdFirewallRule s= "

A Toolfor Bailding Firewøll-Roater Configurations 249

pernit allNets ns.sma11.con udp eq 53rl
dmzFirewallRules="

pernit inet-nail.snall.com mail.smal1.con tcp eq 25
permit inet-nail.snall.com rnail.sales.sma1l.con tcp eq 25
SinboundFirer¡allRules "

#
Misc. Adninistrative Information
#
hostName=Inet -Firewal1
rout erPas s¡¡ord=somePas sword
routerEnablePassword=otherPas sr¡d
domainName=small. con
dnsServers=ns . small . con
trustedAdninMachines="admin. snall. com admin. sales. snal1. com"
loghost=loghost . sna1l. con
sn-npCont act= rr admin@smaI1 . con'l
snmplocation="Sma11 Corp., Anytor,m, USA'I

snmpRwCommunity=s..t.t
snmpRoC omnunit y=publ i c
snmpTrapcomnun it y=s s ç¡s¡
snnpRwMachioss= " $trust edAdminMachine s tl

snmFRoMachines= " Í$trust edAdni.nMachine s t'

snnpTrapMachines= " $loghost il

5.1. More Complex Configuratíons

This simple example shows the ability of this tool to express a complex router
setup using fairly simple constmcts that should look familiar to most UNrx users,
but if an organization had several such configuration scripts lying around, they'd
have a lot of redundant information in them. Since these are scripts, we can solve
this problem, and others, using traditional software-development techniques like
code-reuse. A set of ready-for-prime-time example configuration scripts is in-
cluded with the router-conf ig software distribution.

6. Is the Tool Useful?

As mentioned earliq there are several routers out in the real world that have been
configured using this tool, so we know that the system produces reasonably-
correct results. But, there still is the question of whether the tool is actually a

time-saver. Anecdotal evidence suggests that:

250 Christopher J. Calabrese

Table 3.

Firewall Maintenance Productivity
Maintenance Activity Savings

Add a new network to the list of those assigned to the organizatton.

Add an entry to the list of machines to access the routers by telnet and SNMP.

Add peepholes for a new internal mail hub.

Add peepholes for a new external mail gateway.

Add a firewall for a new Internet or partner-net connection.

Add a simple partner-net connection to an existing firewall'

9IVo

677o

67Vo

50Vo

80Vo

977o

. It's easier for UNx admins to learn how to use this tool than to learn how

to conflgure a Cisco router from scratch.

. One big reason is the amount of documentation you need to read to ac-

quire each skill. The Cisco Router Products Command Summary is around

600 pages these days, and a full Cisco document set is several shelf-feet

[Cisco l995l.In contrast, the total documentation for this software is

around 20 pages. Even if you count the example scripts and source-code

to the tools, that still only adds about another 50 pages.

. Building a firewall-router confrguration that embodies an appropriate level

of paranoia is an exercise in redundancy and tearing your hair out worrying

if you forgot anything. By placing the burden of handling the redundancy

and detail-sweating onto a piece of software, the person using the software

can concentrate more on the problem being solved rather than worrying

about the implementation of the solution.

Finally, the simple example configuration script we developed in the last sec-

tion is only 51 non-blank non-coÍtment lines, while the Cisco configuration the

tool generates from it is 171 non-comment non-blank lines. That's a savings of
around 707o. Looktng at Novell's production usage of these tools, the savings is

more like 587o,but that's still a signiflcant productivity leverage.

Even more significant is the productivity leverage in maintaining existing fire-

walls. To illustrate this, Table 3 compares the code changes for various cofiìmon

firewall maintenance functions. In the fable, savings refers to the savings in lines-

of-code for performing the indicated operation using this tool (with the example

conûguration tles included with the software, not with Novell's production frles,

though they yield similar results) versus editing the Cisco conflguration frles by

hand.

A TboI for Buitding Firewall-Router Configurations 251

7. Future Work?

By now you probably think the system's great, but it could still be better. Here are

some ways it could be modified to make it even better:

. Tool portability. Although the tools are written in Konllsrfitt, they've only
been used on UnixWare 2.x and Solaris 2.x systems, so they probably need

some work to make them portable to other UNIX systems. They would be

difficult to port to non-UNIX systems.

. Drivers for more router types. The Livingston IRX would be the most natu-

ral fit.

. Automatic firewall auditing tools. Given that a program can "understand"

everything about these configurations, it should be possible to build another
program that test whether the routers behave as intended.

. Real-time firewall auditing tools. Taking this one step further, it should also

be possible to build a program that monitors a firewall in real-time to make

sure it hasn't been breached. Actually, there are akeady programs that do

such monitoring, so it's a question of writing a program that can take a

router-config configuration script and generate a configuration for one

of those existing programs.

. Expanded support for tweeking the low-level details of OSPF/IGRP/BGP

routing.

. Support for specifying strong authentication using Tlcncs and/or R¡.orus.

. IPv6 support.

. IPX support.

8. Conclusions

By applying the concepts of software-engineering and "little-languages" to the

problem of building firewalls, this tool has allowed us to turn what was a complex

software development and maintenance problem into a much simpler one. Also
helping our cause is the fact that our little-language is embedded in a powerful
and well-known macro-language (KonNsurr,l), allowing us to avoid building
a complex parser, lexer, or macro-expander, and allowing us to build our own
software in KonNsmr,r-.

252 Christopher J. Calabrese

This software has been used to configure several routers at Novell and at least

one router at Santa Cruz Operation.

Tbol Availability

The router-config software referenced in this paper, including documentation

and example scripts, is available from the author and from the Freebird Archive
(www. f reebird. org). The software is provided "as is" and without any expressed

or implied warranties, including, without limitation, the implied warranties of
merchantability and fitness for any particular purpose, though bug-reports and

enhancements may be forwarded to the author.

Acknowledgments

While the software described in this paper was primarily written by the author, he

could have not done it alone. The author gratefully acknowledges all the people

at Novell who contributed time and knowledge to building these tools. Especially,

Mike Convey (now at Teknekron Software Systems), Don DiPalma, Karl Tunnell-

Braun, Philip Branche (now at Santa Cruz Operation), and Martin Sohnius.

References

1. M. I. Bolsky and D. G. Korn, The Konnsnzu Command and Programming Lan-
guage, Prentice Hall, 1989.

2. S. R. Boume, "An Introduction to the UNIX Shell" in 4.4 BSD User's Supplemen-

tary Documenls, O'Reilly and Associates, 1994.

3. W. R. Cheswick and S. M. Bellovin, Firewalls and Intemet Security: Repelling the

Wily Hacker, Addison-Wesley, 1994.

4. Router Products Command Summary: Cisco Internet Operating System Release

10.3, Cisco Systems, 1995.

5. R. M. Stallman, GNU Emacs ManuøL, llth Edition, Free Software Foundation,
June 1995.

A Tool for Building Fírewall-Router Configurations 253

