
Pickling State in the JavarM
System

Roger Riggs, Jim TValdo,

Ann Wollrath, Krishna Bharat

JavaSoft

ABSTRACT: The JavarMlsystem (hereafter referred to
simply as "Java") inherently supports the transmission
of stateless computation in the form of object classes.
In this paper we address the related task of capturing
the state of a Java object in a serialized form for the
purposes of transmission or storage, to be used later
in reconstituting an equivalent object. This is accom-
plished by a mechanism known as pickling [Binel et
al. 1987; Binell et al. 1994; Herlihy & Liskov 19821.

Pickling is the process of creating a serialized rep-
resentation of objects. Pickling defines the serialized
form to include meta information that identifies the
type of each object and the relationships between ob-
jects within a stream. Values and types are serialized
with enough information to insure that the equivalent
typed object and the objects to which it refers can be
recreated. Unpickling is the complementary process of
recreating objects from the serialized representation.

Pickling and unpickling extract from the Java Vir-
tual machine, at runtime, any meta information needed
to pickle the fields of objects. Class specific methods
are only required to customize the pickling process.

l. Java and other Java-based names and logos are trademarks of Sun Mi-
crosystems, Inc., and refer to Sun's family of Java-branded products and
services-

@ 1997 The USEND(Association, Computing Systems, Vol. 9 . No. 4 . Fall 1996 291

l. Introduction

The JavarM system [Arnold & Gosling 1996; Gosling et al. 1996] supports the

transmission of stateless computation in the form of object classes. These can be

dynamically loaded into a Java Virtual Machine, for immediate linking and execu-

tion. This enables a computation to be "cold-started" at new hosts, always starting

with the same initial state and at the same point in the computation. However,

if we need to resume the computation with the state it had prior to transmission,

or need to communicate state between cooperating processes, we would need to

transmit objects as well.
Pickling is the process of creating a serialized representation of objects. Pick-

ling defines the serialized form to include the meta information that identifies the

type of each object and the relationships between objects within a stream. Val-

ues and types are serialized with enough information to insure that the equivalent

typed object and the objects to which it refers can be recreated.

Unpickling is the complementary process of recreating objects from the seri-

alized representation. The meta information needed for pickling and unpickling is
extracted directly from the Java Virtual machine at runtime. Class specific meth-

ods are only required to customize the pickling process.

There are many applications for pickling, including:

. Checkpointing of application state.

. Support for persistent objects.

. Marshalling of objects as arguments to and returns from remote-method

invocations.

. Serializing objects or object graphs so that they may be stored and retrieved
as blobs in databases.

1.1. Goals for Pickling

We identify the following goals for pickling:

292 Roger Riggs, Jim Waldo, Ann Wollrath, Krishna Bharat

. Build a simple yet extensible mechanism for serializing and deserializing
Java objects.

. Maintain the Java language's object semantics and extend the type and

safety properties guaranteed by the Java language and type system to the

serialized form.

. Be extensible to support, for example, marshalling and unmarshaling argu-

ments and returns as needed for distributed object systems.

. Provide simple persistence of Java objects and be extensible to allow more

sophisticated Java object storage.

In this paper we describe pickling in a Java system. Section 2 describes the

Java Object Model. Section 3 describes the implementation. Section 4 describes

type fingerprinting and Section 5 the structure of pickle streams. Sections 6 andT
look at the integrity of sensitive data. Section 8 describes future work.

2. The Java Object Model

The pickling of Java objects is based on the availability at runtime of descrip-

tions of Java objects. The Java Virtual Machine retains descriptions of Java object
classes for its own use in loading and verifying classes. Pickling uses this informa-
tion about objects to save and restore the state of objects.

The Java language is described in full elsewhere [Gosling et aI. 1996] so only
those aspects relevant to saving an object's state will be described here. The Java

language is a strongly typed object-oriented language with a syntax similar to C.

Java classes inherit implementations from at most ong other class. All classes

extend the base class java.lang.Object. Base classes are extended to define

subclasses and may add methods and fields. Classes are grouped together in pack-

ages. Packages form the basis for scoping class names.

The Java language defines an interface class as an abstract class declaration
that has no implementation. It contains only method and constant declarations.

Java classes may implement multiple interfaces.

To implement an interface the class must implement all of the methods speci-
fied by the interface. Pickling is only concerned with an object's state so the pres-

ence or absence of interfaces only contributes to the identification of the class, not
its state.

Each class may define zelo or more methods and fields. Methods are proce-

dures that apply to the class. There are two kinds of methods, those that operate

Pickling State in the JavarM System 293

on a specific object and class methods that do not operate on an instance when

they are invoked.
The fields of a class hold the state of the class. Each field is sffongly typed as

either a reference to an object or to one of the builçin primitives types including

integer, floating-point, character, and boolean. In the Java system strings and ar-

rays are object types and have support in the language. Fields can be of two kinds,

class and instance. Class fields are shared among all instances, instance fields are

stored for each object.

Access to the fields of an object is specified as public, package, protected, or
private. Public fields are accessible via any reference to the object. By default, the

fields of an object are accessible to any object within the same package. Protected

fields are accessible to subclasses of the class that deûne them as well as to other

classes in the same package. Private fields are only accessible to methods of the

class.

The only mechanism to manipulate objects is by means of sffongly typed ob-

ject references. All non-primitive fields of an object refer explicitly to some object

class, so the object is known to implement that class's behavior. A reference to an

object may be null, signifying that it does not refer to any object.

When a class is extended the subclass is given access to the superclass's pub-

lic, package, and protected fields, but not the private fields. Subclasses may use all
of the accessible ûelds of their superclasses.

The complete state of an object is held in its class and instance fields and in
the class and instance fields of all of its superclasses. Since the class fields are

shared among all instances, difficulties arise in transporting and restoring their
contents. It is the state of the instance fields that must be written and read from a

sffeam in order to reconstruct the complete object.

3. Simplified Pickling

'We present a simple and flexible approach to pickling Java objects. The approach

extends the support provided by the Java system for primitive data types. The

Data0utput and Datalnput interfaces define methods for writing and reading in-
teger types, floating point types, booleans, characters, strings, and a:rays of bytes.

The Data0utputstream and DatalnputStream classes implement these inter-

faces and perform the encoding and serialization of the primitive types.

For pickling, the ObjectOutput and Objectlnput interfaces extend

DataOutput and Datalnput interfaces respectively to include writeObject and

readObj ect methods. The classes Obj e ctOutputStrean and Obj ect InputStrea.m
extend Dat aOutput Stre am and Dat alnput St re am respectively to implement

294 Roger Riggs, Jim Waldo, Ann Wollrath, Krishna Bharat

// Picute today's date to a fi1e.
FileOutputStream out = ner¡ FileOutputStrean("tmp") ;
Object0utputStream p = new Object0utputStrean(out) ;

p.writeObject ("Today") ;

p.write0bject (new nateO) ;

p.flushO;
out. closeO ;

// lJnpLckLe a string and date fron a file.
FilelnputStream in = ner¡ FitelnputStream("tmp") ;

0bjectlnputStream q = new 0bjectlnputStrean(in) ;

String today = (String)q.readObjectO ;

Date date = (Date)g.readObjectO;
in.ctoseO;

Figure 1. Pickling and Unpickling Example.

pickling of all object types. Special handling is required for Strings, arrays, and

Class objects.

An example use of pickling and unpickling is shown in Figure 1.

The application sets up an output stream and writes a sequence of objects
or primitives types. Pickling serializes the objects and objects reachable from
them. The objects are written to the stream along with type information so that
they can be reinstantiated as equivalent objects by the complementary, unpickling
mechanism. Shared references within the set of objects are preserved and complex
data-graphs are restored with the structure intact.

3.1. Píckling Interfaces

The Pickling mechanism is implemented by extending the core Java support for
primitives types. Figure 2 shows the classes and interfaces that build on the core
Java classes. The pickling classes provide the client and subclass interfaces. The
specials interface cannot be represented in the type system since it requires privi-
leged access to private class methods.

. The client interface in Object0utputStream and ObjectlnputStream
drives the pickling process. It is called with individual objects or primitives
that are to be written or read.

Pickling State in the JavaM System 295

Object Output Object Input

Interfaces Intedaces

* extension

--Þ implementation

Figure 2. Pickling Output and Input Classes.

. The specials interface allows methods of the object to implement the serial-

ization and deserializatton for its own fields.
I

. The subclass interface of Object0utputStream and 0bjectlnputStrean
allows pickling to be extended to allow additional information about classes

and objects to be written to and read from the stream.

3.2. Pickling Clíent Interface

The client interface consists of ObjectOutput and Objectlnput interfaces which

are extensions of the basic Data0utpìrt and Datalnprrt interfaces. These pickling
interfaces are shown in Figure 3.

3.3. Pickling Process

To pickle an object, an ObjectOutputStrean is created with an OutputStrean
to which the serialized form is written. Then, for primitive values the methods of
the class DataOutputStream, such as writelnt or r.rriteUTF, can be used to

write to the stream. For objects, the write0bject method is called to wdte to the

stream.

The write0bject method pickles the specified object and traverses its ref-

erences to other objects in the graph recursively to create a complete serialized

representation of the graph. The pickle of each object consists of the pickle of the

class of the object followed by the object's fields.

296 Roger Riggs, Jim Waldo, Ann Wollrath, Krishna Bharat

package java.io;
public interface Object0utput extends java. io.Data0utput
{

// Wite an object, array, or String
public void r¿rite0bject(Object o)

throws l0Exception;
)

public interface Objectlnput extends java.io.Datalnput
{

// Reaa a:r object fron the stream.
public Object read0bjecto

throws l0Exceptj.on;
)

Figure 3. ObjectOutput and Objectfnput Interfaces.

\ilithin a pickle stream the first reference to any object results in the object
being serialized and the assignment of a handle. Subsequent references to that
object record only the handle. Using object handles preserves sharing and circular
references that occur naturally in object graphs. Repeat references to an object use
only the handle allowing a very compact representation. Each field of the object is
written appropriately depending on its type. Fields declared static or transient
are not pickled.

The state of the object is then saved class by class from the base class through
the most derived class. For each class the special methods are called, if they are
defined by the class, or the default mechanism is used to pickle the fields of the
object.

The client interfaces to write objects are implemented by the Object0utputStream
class shown in Figure 4.

3.4. Unpickling Process

To retrieve objects an instance of Objectrnputstream is primed with the sfream
containing the serialized representation. Primitives and objects must be read from
the stream in the same order as they were written. The readObject method oper-
ates recursively, retracing the sequence generated by writeObject, and following
references in a corresponding manner. It creates a new instance for every object in
the pickle and restores the object with inter-object references preserved.

Pickling State in the JavørM System 297

public class Object0utPutStream
extends j ava. io . Data0utputStream
inplenents Object0utPut

{
// Creates a nel^r context for an output stream.
publ i c Obj ect0utputStream (Output Strean out)

throws l0Exception

// Wríte an object' array, or String to the strean'

public void writeObject(Object o)
thro¡¡s l0ExcePtion

// Cat]-.eA for each class v¡ritten to the stream.
protected void annotateClass (Class)

throws lOException
// Cattea for each object written to the stream.
protected Object replace0bject(Object obj)

throws l0Exception
]

Figure 4. Obj ect0utputStream Interface.

When a new object is to be read from the stream, the objectlnputStream
feads the class of the object, creates a new instance of it and adds a mapping from

the handle in the pickle to the new object. If the same hand'le is encountered later

in the pickle, it returns a reference to the corresponding unpickled object.

The state of the object is then restored class by class from the base class

through the most derived class. For each class the special methods are called, if
they are defined by the class, or the default mechanism is used to unpickle the

fields of the object.

The client interfaces to read objects are implemented by thd ObjectlnputStream
class shown in Figure 5.

3.5. Pruníng Object GraPhs

There are two mechanisms for pruning the graph of objects to be pickled. In the

first, the tra¡sient keyword is used to mark flelds to indicate that they are not

part of the persistent state of an object. The default pickling mechanism will not

use transient fields.

298 Roger Riggs, Jim Waldo, Ann Vy'ollrath, Krishna Bharat

public class ObjectlnputStream
extends java. io.DatafnputStreân
inplenents Objectlnput

{
// Creates a new context for a input stream.
public Obj ectlnputStrean (InputStream in)

throws I0Exception

// Reads a:r object fron the streâm.
// "t¡e result should be cast to the desired type.
public final Object readObjecto

throws l0Exception

// Locate the loca1 class for the named class.
protected Class resolveClass(String classname)

throws l0Exception, ClassNotFoundException

// CaIl.ed ¡¡hen an object has been unpickled.
protected Object resolveObject(0bject obj)

throws l0Exception
)

Figure 5. Objectlnputstream Interface.

The second form uses the specials mechanism, in which the programmer ex-
plicitly saves only that part of the object's state that is important. This usage is
quite a bit more flexible and gives the programmer direct control over what is
saved. The programmer may conditionally prune the graph by writing only some
of the references to other objects. During unpickling the equivalent state can be
recreated.

3.6. Class Specific Picklíng

Special methods can be used to override the default pickling/unpickling mecha-
nism on a per-class basis. These special methods are needed in cases where the
class itself knows best how to save the persistent state or when the default mecha-
nism cannot or does not save the needed state. For example:

. A class that defines a large data structure having a more compact represen-
tation would be a good candidate for writing special pickling methods.

Pickling State in the JavarM System 299

class Exanple
{

// Write this classes fields to the strean.
private void writeObject(Object0utputStream out)
thro¡¡s l0Exception;

// neaA this classes fields fron the stream.
pri.vate void readObject(0bjectlnputStream in)

thror¡s ÏOExcept ion, ClassNotFoundException ;

// CalLed when unpickling is aborted.
private vo id readObj e ctCleanup (Obj ect InputStrea.n in)

throws Exception;
Ì

Figure 6. An Example Class with Special Method

Declarations.

. In the case of a native implementation with native state, the default pick-

ling mechanism cannot access the state and appropriate specials would be

needed to save the object's state.

. If the state of a class is a function of the local operating environment, then

it should pickle itself with the information that will allow the unpickling to

reestablish that state relative to the new local environment.

The specials interface is defined by three methods with the signatures shown

in Figure 6.

The special methods are private and can be called only by the pickling

run-time. If this were not so, it would be possible to call the ¡¡riteObj ect or

readObj ect methods to examine or modify the private state of objects. This

would be a serious threat to the integrity of objects.

A class takes over pickling for itself by implementing both the writeObject
and readObject methods. An exception is raised by the pickle sffeam if only one

is implemented. Having only one of these methods would not make sense because

the default mechanism cannot read data written by the special method.

The read0bjectCleanup method is useful if a read|bject method has

taken some action that would need to be reversed if the unpickle of the graph

fails. Usually when an unpickle fails, none of the objects are referenced (except

by the pickle stream) and these will be garbage collected when the stream it-
self is reclaimed. However, if a read0bject method has created references in

300 Roger Riggs, Jim Waldo, Ann rùy'ollrath, Krishna Bharat

the environment to an object in the incomplete graph, those references must be

removed. A read0bjectCleanup method is needed in this case to remove the

references to the object so that it may be garbage collected.

Specials have the following call semantics:

. Specials are invoked at each level in the inheritance hierarchy starting from
the base class and proceeding to the most derived class. If no special is

defined for a class, the default mechanism is used.

. The special for a class is only responsible for pickling and unpickling its
own fields. It cannot invoke specials in other classes and it cannot prevent

other classes from being pickled.

. As with constructors, a readObject method can assume the current object

has the type of its declared supertype. It should not, however, rely on the

behavior of dispatched methods that might access the fields of its (yet to
be unpickled) subclasses. This ordering allows the readObject method, if
necessary, to override the actions of its superclasses with respect to public
and protected fields.

. If a special raises an exception, the top-level operation is aborted with an

exception. Typically this is done by classes that do not wish to be pickled.

3.7. Abort Processing during Pickling/Unpickling

The pickling and unpickling process involves many objects and interactions with
the underlying system. Since many exceptional conditions may occur, some dis-
cipline is needed to handle them and define the state of the stream. The two usual
cases are exceptions caused by VO errors on the targelsource stream or excep-

tions raised by pickle specials to prevent themselves from being pickled. These

exceptions are caught by the pickle stream and mark the stream as aborted. Any
subsequent attempt to write to the stream will fail by throwing an exception.
Pickle special methods cannot override this behavior since the stream is marked

aborted on receipt of the first exception and the stream will check this condition
after every special terminates and rethrow the exception.

A pickle stream that has had an exception raised is not left in a usable state

since an unknown amount of the object and the referenced graph has been pickled
or unpickled. Due to the recursive and nested structure of the pickle, no statement

can be made about what data is in the pickle except that it is incomplete and unus-

able. It is up to the caller to determine how to continue.

Pickling State in the JavarM System 301

3.8. Extendíng Pickling via the Subclass Interface

object0utputStream and ObjectlnputStrean can be extended to allow per

class and per object data to be pickled.

As every object is pickled, its class must be identified in the stream. This is

done by pickling the class itself, using its name and fingerprint. 'When a class

object is pickled, it may be desirable to pickle additional information for the

class. For example, if a class was loaded from the network, saving the network

address of the code in the stream will allow the class to be loaded on demand dur-

ing unpickling. The annotateClass method is called after the class name and

fingerprint have been pickled. Within this method additional information can be

written to the stream.

During unpickling, the class name and ûngerprint are retrieved from the

stream and the resolveCl-ass method is invoked. The resolveClass method

needs to find the named class and return it. It should read any additional informa-

tion written by the corresponding annotateClass method from the stream and

load the class as needed. By default resolveClass just invokes Cl-ass . f orName.

The fingerprint, described in more detail later, is needed to confirm the semantic

and structural equivalence of the class used to pickle the object as compared to the

locally available class.

Another need that arises is to be able to substitute one object for another dur-

ing pickling. To make this substitution possible Object0utputStrean supports

a protected replaceObject method. A subclass can define this method to sub-

stitute an alternate object. The replaceObject method is called once for each

object; it may return either a substitute object or the original. Care must be taken

to replace the object with a compatible object or later unpickling will be aborted

with a ClassCastException when the incompatible object is assigned to a field

or affay element. Null may be returned by replace0bj ect but should be used

carefully since setting references to null in arbitrary classes may cause unexpected

exceptions in methods that act on the reconstructed graph.
'Whenever possible, the r¡riteObject and read0bject methods should

be used to pickle objects, in an appropriate form. However, in cases where

the objects' implementation is not available, subclasses of the pickling imple-

mentations can be created to substitute objects to do a dynamic substitution.

For example, objects that are instances of FontData could be replaced by the

write0bj ect method with instances of a FontName class. The corresponding

resolve0bject method could replace instances of FontName with the corre-

sponding local FontData class. Object substitution during pickling and unpickling

can be a very powerful tool for dynamic binding of objects that are part of the

environment.

302 Roger Riggs, Jim Waldo, Ann rily'ollrath, Krishna Bharat

3.9. Default Pickling of Objects

The pickling of objects is driven by the class of the object. Strings, Arrays, and
Class objects are handled with speciûc mechanisms, described below, either be-
cause they have specific representations or are of special significance to pickling.
For all other object types the default pickling mechanism is used.

The pickle stream implementations interpret the class information dynamically
to locate and access the fields of an object. Private native methods access the class
meta information and fields as follows:

. The fields of the object, except for static and transient fields, are put in
canonical order (sorted) so as to be insensitive to reordering of declarations.

. The sorted ûelds are then written to or read from the stream dispatched by
their signatures.

. Fields of primitive types invoke the corresponding Data0utput and
Datalnput methods.

. Arrays, Strings, and objects invoke the r¡riteObject method on
0b j e ct 0utput Stre am, effectively recursing.

. During unpickling, new objects are created and assignments to each field
are type checked.

3.10. Pickling and Unpickling of Class Objects

The integrity of the type system is maintained by treating objects of type Ctass
specially and putting information in the pickle to correctly match the type of the
object in the pickle with the class available during unpickling. This type matching
is done using secure fingerprinting. Whenever a Class object is pickled, only its
name and secure fingerprint are written to the stream. The details of the fingerprint
are described in Section 4 on Finger Printing Java types.

Correct identification of classes is crucial since the structure of the stream is
derived from the definition of the class. Any change of names or types of fields
in the class would cause the stream to be misinterpreted. Making the sfreams self
describing would greatly increase the overhead.

ObjectlnputStrean verifies that the structure implicit in the stream is the
same as that defined by the currently available class. This allows primitive fields
to be read without additional type checks. For fields that contain references, every
assignment of an unpickled object is type checked against the type of the ûeld and
for each assignment to an array element.

Pickling State in the JavarM System 303

3.11. Pickling of Arrays and Strings

Strings and arrays are treated specially in pickles in order to deal with ttreir spe-

cif,c representations. Both are objects so reference sharing must also be preserved.

Pickling of array objects writes the array signature, length and then iterates

over the contents of the array to pickle each element according to its type.

Reading affays is complementary to writing. First the array signature and

length are read, and the first level index is created. Each of the elements is then

read and assigned. If the elements are affays the process recurses naturally. For

affays of primitive types, the functions of DatalnputStream are used to read the

elements. For object types, Strings, sub-arrays and class objects, readObject
is used. This design mainfains any potential reference sharing to arrays and

subarrays.

Strings are pickled in their Universal Transfer Format (UTF) form but require

special handling since they have a native implementation.

3.12. Modøl Pickling

In practice there are many different situations in which pickling is required, and

a different scheme may be required in each. Although there is just a single set of
specials for each class, modal pickling can be supported by having the specials

switch on the type of the stream which invokes them. Whenever modal pickling is

necessary, appropriate subclasses of the pickling sffeams would be defined. This

allows for forward compatibility, as in any subtyping scheme.

An example of modal pickling is its use in a remote method invocation mech-

anism [Wollrath et al. 1996]. Remote objects are defined by Java interfaces. Ref-

erences to remote objects are declared using these remote object interfaces, not

the implementations that support the interfaces. In remote method invocation two

types of objects need special handling, the surrogate for a remote object and the

remote object itself. Pickling of the surrogate is handled using a writeObject
special to preserve the remote refetence information. However, a reference to the

remote object implementation should not be pickled as itself since that would in-

clude all of its implementation state. Instead, it should be pickled as a surrogate

object with the matching interfaces and the necessary remote reference infor-

mation. The marshaling subclass of the pickle output stream is responsible for

detecting the implementation object and finding or creating the appropriate surro-

gate. Both the surrogate and the remote object implementation support the remote

object interfaces, and as such both are type compatible with the field and array

elements of the defined remote object interfaces.

304 Roger Riggs, Jim Waldo, Ann W'ollrath, Krishna Bharat

4. Fingerprinting Java Types

A fingerprint is a concise representation of a piece of data, typically created by a
hashing scheme that satisfies the following:

. Low collision: Two pieces of data will hash to the same pattern with ex-

tremely low probability (low enough to be ignored).

. Rehashable: Hashes themselves can be input to the hash algorithm.

. Fixed length: The representation is of fixed length.

Java types are flngerprinted by computing a shallow frngerprint for the class

and each of its superclasses up to java.lang.Object. The shallow fingerprint
consists of:

. The class name encoded in Universal Transfer Format (UTF).

. The class access flags as an integer, (such as public, interface,...).

. The sorted list of interfaces supported by the object encoded as UTF.

. The sorted list of fields, including fleld name, signature, and access modes

(such as public, static, protected, private, transient,...).

. The sorted list of methods, including method name, signature, and access

modes (such as public, private, static,...).

The shallow fingerprints are computed using the NIST Secure Hash Algorithm
(SHA) [Schneier 1994]. The fingerprint is the rehash of the concatenation of the

hashes for each class up the supertype chain. The result is the secure hash ofthe
class. The hash will differ if any changes are made to any of the classes.

This "shallow" fingerprinting scheme provides more assurance than merely

hashing the name of the type. Types need to be equivalent in structure as well as

name. However, the cost associated with a scheme that hashes the entire hierar-

chy is not justified, given that the rest of the Java system environment uses name

equivalence, and that all classes are verified for consistency as they are loaded by

the class loader.

The shallow fingerprinting scheme provides the same assurances as a deep frn-

gerprinting scheme if the fingerprints of all referenced object types are matched

as well (transitively). Classes are type matched only when an object of that type

is pickled/unpickled. The type matching explicitly includes the signatures of all
of the supertypes. This insures the structural equivalence of the object and cor-

responding sequence ofbytes in the stream needed to unpickle the object. Other

Pickting State in the JavarM System 305

classes this object depends upon will be type matched when the first object of that

class appears in the pickle. Objects are polymorphic so the actual types must be

represented in the pickle as well as the declared type. The declared types are in-

cluded in the fingerprint as one of the supertypes of the actual type.

Pickling the null reference is interesting because it carries no type informa-

tion. However this does not present a problem for pickling. The usual interclass

dependency checking performed by the class verifier will validate the classes ef-

fectively so that they may operate correctly.

4.1. Secure Hash Algorithm (SHA)

The National Institute of Standards and Technology (NIST) designed the Secure

Hash Algorithm (SHA) for use in the Secure Hash Standard (SHS), to support

the Digital Signature Algorithm (DSA). SHA produces secure 160 bit hash values

from data of arbitrary length. SHA provides all the guarantees mentioned above.

SHA is described in detail in [Schneier L994].
'Vy'e use SHA Version 3.

4.2. Java þpe Specifiers

The strings and values that are input to the hash algorithm are all defined by the

formats and constants deûned by the Java Virtual Machine Specification ll-ind-
holm & Yellin 19961. Class names, method names, method signatures, teld names,

and signatures are strings. Method and field signatures use the same encoding as

defined by the type system in the Java Virtual Machine. The access flags for the

classes, methods, and telds use only the significant bits as defined in the Java Vir-
tual Machine Specifrcation.

5. Structure of Pickles

A pickle is a representation of the state of a sequence of values (objects, arays,

Strings, Classes, or primitives) corresponding to a sequence of writes. It begins

with a magic number of 16 bits and a version number of 16 bits representing the

version of the pickling run-timê which produced the pickle. The unpickling run-

time should ensure that it can process the pickle before it proceeds.

Primitive types are written to the pickle without any preamble or typechecking

information by the methods of j ava. io . Data0utputStream, a core class that

encodes primitive types into a stream in a portable fashion. Those methods are

306 Roger Riggs, Jim Waldo, Ann rù/ollrath, Krishna Bharat

also used to write out the fields and values of objects. Reads correspondingly

make direct use of the methods in the standard j ava. io . DatafnputStrean
class. Since such types have a fixed format which is common to all implemen-
tations of the Java System, there is no reason to add type checking information,
which helps keep pickles small. Since these are not reference types, the caller is
required to know the type of the value before reading it for the purposes of assign-

ment. Consequently a preamble containing type information is not needed.

Handles are assigned to objects written to the stream. They are assigned in
ascending order using 32 bits and have a base offset value to make them more

unique in the stream. However, these handles do not appeff in the stream except

when a reference is made to a previously pickled object. The write0bject and

readObject methods are assumed to be synchronous in assigning handles. This
saves space in the pickles, especially in the cases where there are no back refer-
ences (as occurs in argument marshaling).

Markers are inserted into the stream to validate the alignment of the stream.

Markers ne 16 bit counters that can wrap around as necessary. Markers are put
into the stream at the end of each object, Array, and Class. Markers are also in-
serted following each call to a special writeObject method. This improves the
probability that errors in class specific write0bject and read0bject combina-

tions will be detected as soon as possible.

The following description of the pickle format is not rigorous but will provide
a flavor for the layout of objects in the pickle. Objects, strings, ¿urays, and classes,

back references, and null references are formatted as shown in Figure 7.

6. IntegriQ Validations

Since the source of code commonly present in the Java runtime environment is
unknown and it may initiate or be involved in pickling, the pickling mechanism
needs to be made as tamper proof as possible.

In the attempt to make the pickling mechanism robust the Java language's

inherent safety features have helped maintain the integrity of classes.

. The pickling classes provide read and write methods which are de-

clared final and hence cannot be overridden. This allows the program-

mer of a class to be sure that the fact that Object0utputStrean and

ObjectlnputStream can be subclassed does not mean the specials will
behave differently in different circumstances.

Pickling State in the JavarM System 307

<OBJECT object>:= <CODE for OBJECT>
(Reference to C1ass of o)
<Inp1icit assignment of handle for o)
<State of the object's base class)
[Marker if state was not saved by default]

<State of the object's most derived class)
[Marker]

<String object>:= <CODE for String>
<Inp1icit assignment of handle f,or object>
<UïF of String>

<Array object>:= <C0DE for ARRAY>

<UTF of classnane of array)
<Implicit assignment of handle for object>

<Length of first index of array (32 bits)>
<length> objects
fMarkerJ

<C1ass object>:= <CODE for CLASS>
(Classname in UTF format)
<20 byte signature of class)

<Inp1icit assignment of handle for object>
<CalI to protected annotateClass nethod>
[Marker]

<Object object>:= <CODE for REFERENCE>

<Ha¡dle as previously assigned to the object>

<Object null):= <CODE for NULL>

Figure 7. Encoding of objects in the stream.

. Similarly the programmer of a class can be sure that subclasses of the class

will not be able to prevent their specials from being called when an in-
stance is being pickled/unpickled. This allows the special to raise an excep-

tion if it wishes, to enforce the class's right not to be pickled.

. The pickling run-time cannot be replaced with another implementation. This

308 Roger Riggs, Jim Waldo, Ann W'ollrath, Krishna Bharat

is prevented by the class loader and security manager. For the same reason,

the native code which provides internal access to objects is only accessible

privately to Object0utputStream and Objectlnputstrean classes and

cannot be accessed otherwise.

It is not possible to corrupt objects using the read0bject method, i.e. it
is not possible to get the unpickling run-time to reinitialize a pre-existing
object from a pickle-stream. This is because the special methods are pri-
vate and ObjectlnputStrea.m only calls special methods on objects it has

created.

7. Remaining Concerns about Data Integrity

Not all concerns have been eliminated however:

. Pickles have a publicly known format and can be tampered with. Just as

sensitive fields of the object must be marked private, those same fields must
not be pickled carelessly. Marking them transient is an easy mechanism to
keep them out of the pickle. If sensitive data must be pickled there is no

solution short of encryption with a shared key that will protect the informa-
tion.

. Fingerprinting compares classes for both structural and name equivalence.

This does not guarantee that the code implementing the class does what it
is expected to. Support for identifying and authenticating classes is a basic

requirement and is outside the scope of pickling.

. It is possible to create an object that could never exist, by unpickling it
from a concocted pickle. Since all classes in the hierarchy need to initialize
themselves, specials need to be satisfied with the data they read, and marker
boundaries need to be respected, this is not an easy thing to do. Howeve¡
it is technically possible and can produce an object that violates internal
invariants between data fields which may be integral for the object's cor-

rect operation. This potential for error can be mitigated to some extent by
having read-specials explicitly test invariants.

. It is possible to violate opaqueness by using unpickling to "look" inside
objects to examine private state. This is typically a concern faced only by
private, critical classes. The class can prevent access by marking sensitive

fields transient, by using the specials mechanism to control access, or rais-

ing exceptions as appropriate.

Pickling State in the JavarM System 309

7.1. Guidelines for Safe Píckling of Sensitive Classes

When writing a class that provides controlled access to resources, care must be

taken to protect the mechanisms that access those functions. During unpickling (by
default) the private state of the object is restored. For example, a file descriptor is

a handle that provides access to an operating system stream. Being able to forge
a file descriptor would allow some forms of illegal access, since restoring state is

done from an insecure stream. To avoid compromising access control, the related

state of an object must not be restored from the pickle or it must be reverified by
the class. Use one of the following techniques to protect sensitive data in classes:

. The easiest technique is to mark fields that contain sensitive data as "private
transient." Transient and static fields are not pickled or unpickled. Simply
marking the field will prevent the state from appearing in the pickle and

from being restored during unpickling. Since pickling and unpickling (of
private fields) cannot be taken over outside of the class, the classes' tran-

sient fields are safe.

. Particularly sensitive classes should not be pickled at all. To accomplish

this r¡rite0bject and readObject methods (with signatures as described

above) should be implemented to throw a NoAccessException passing its
class name. Throwing an exception will abort the entire pickling process

before any state from the class will be pickled or unpickled.

. Some classes may find it beneficial to allow pickling/unpickling but specif-

ically handle and revalidate the state as it is unpickled. The class should

implement writeObject and readObject methods to save and restore

only the appropriate state. If access should be denied throwing a new

NoAc ce s sExcept i on will prevent further access.

8. Future Work

While the current implementation is robust and extensible, some additional work
is needed. The performance of pickling is sufficient for medium sized graphs of
objects where the pickling time is comparable to the time needed to transmit or
store the stream. Further work is needed to characterize and make improvements.

Also, the current recursive traversal is suitable only for modest size graphs and

relies on class specific handling of very deep graphs or long lists of objects.

The security of private information is of vital concern to the Internet com-

munity. The current implementation requires the programmer to go beyond just

310 Roger Riggs, Jim Waldo, Ann W'ollrath, Krishna Bharat

putting data in private fields to keep data secret. To prevent the unintentional

oversight of not protecting sensitive data, the released version of this software

requires that each class that is to be pickled explicitly mark itself as implementing

the Serializable interface. This ensures that classes do not accidentially allow their

contents to be visible.
No attempt has been made in this work to address the evolution of classes.

Further work has been done to support evolution of the classes that write and read

from these streams and will be covered in a future paper.

Availability

Java Object Serialization will be released with JDK 1.1. Early access versions of
this system can be obtained from http: / / java. sun. cottr.

Pickling Støte in the JavarM System 3ll

References

1. Ken Arnold and James Gosling, The Javq Programming Innguage, Addison-
Wesþ (1996).

2. Andrew Birrell, Michael B. Jones, and Edward P. \Mobber, A Simple ønd Efficient
Implementation for Small Databases, Digital Equipment Corporation Systems
Research Center Technical Report 24 (1987).

3. Andrew Birrell, Greg Nelson, Susan Owicki, and Edward V/obber, Network Ob-
jects. Digital Equipment Corporation Systems Research Center Technical Report
rts (1994).

4. James Gosling, Bill Joy, and Guy Steele, The JavørM Language Specificøtion,
Addison-ril'esley (1 996).

5. M. Herlihy and B. Liskov, A Value Transmission Method for Abstract Data Types,
ACM Transactions on Programming l-ønguages and Systems, Volume 4, Number
4, (1982).

6. Tim Lindholm and Frank Yellin, The Java Vrtual Machine Specification Addison-
Wesley (1996).

7. Bruce Schneier, Applied Cryptogrøphy, John Wiley & Sons, Inc (1994).

8. Ann Wollrath, Roger Riggs, and Jim V/aldo, A Distributed Object Model for the
JavarM System, Proceedings of the USENIX 2nd Conference on Object-Oriented
Technologies and Systerns (1996).

312 Roger Riggs, Jim Waldo, Ann Wollrath, Krishna Bharat

