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l. Introduction

The demand for distributed electronic medical imaging systems (EMISs) is pushed

by technological advances and pulled by economic necessity lBlaine et al. 1994]-

Recent advances in high-speed networks and hierarchical storage management

provide the technological infrastructure needed to build large-scale distributed,

performance-sensitive EMISs. Consolidating independent hospitals into integrated

health care delivery systems to control costs provides the economic incentive for

such systems.

Two key requirements for the communication infrastructure in a distributed

EMIS are flexibitity and performance. An EMIS must be flexible in order to trans-

fer many types of message-oriented and stream-oriented data (such as HL7, DI-
COM, and domain-specific objects) across local and wide area networks. EMIS

requirements for flexibility motivate the use of distributed object computing mid-

dleware such as CORBA lObject Management Group 1995] in the communication

infrastructure. CORBA automates corlmon network programming tasks (such as

object selection, location, and activation, as well as pafameter marshalling and

framing), thereby enhancing application flexibility.

However, empirical studies lschmidt et aL.1995.18; Gokhale & Schmidt

19963 & 1996.81 reveal that for bulk data transfer, the performance overhead

of widely used CORBA implementations on high-speed ATM networks is 25Vo

to 70Vo below that achievable using lower-level transport layer interfaces such as

sockets or TLI. As high-speed networks like AIM, FDDI, and 100 Mbps Fast-

Ethernet become ubiquitous, this performance overhead will force programmers

to use lower-level mechanisms to achieve the necessary transfer rates, rather than

adopting distributed object computing technologies. This is particularly problem-

atic for performance-intensive application domains like medical imaging, where

the use of low-level tools increases development effort and reduces system relia-

bility and flexibility.
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Figure 1. Topology of Distributed Objects in Projecr
Spectrum.

To address this problem, we have developed an object-oriented communica-
tion software framework called Blob streaming.l The Blob streaming framework
is designed to meet the requirements of next-generation electronic medical imag-
ing systems (EMISs). Figure 1 illustrates the topology of our distributed EMIS
environment [Blaine et aI. I994].In this environment, various types of modalities
(such as cT, MR, and cR) capture patient images and transfer them as Blobs to
an appropriate storage management system (called a Blob Store). Radiologists use
diagnostic workstations to retrieve these images for viewing and interpretation.
In addition to medical images, next-generation EMISs must support multimedia
Blobs such as video streams and audio diagnostic reports.

The Blob Streaming framework provides a uniform interface that enables
EMIS developers to flexibly and efficiently operate on multiple types of Blobs
located throughout a large-scale health delivery system. This framework com-
bines the flexibility of high-level distributed object computing middleware (e.g.,
coRBA) with the efficiency of lower-level transport mechanisms (e.g., sockets).

1. Blob stands for "Binary Large OBject."
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Developers of communication software for EMIS environments have tradition-

ally had to choose between (1) high-perfonnance, lower-level interfaces provided

by sockets, or (2) less efficient, higher-level interfaces provided by communi-

cation frameworks like CORBA. Blob Streaming fepresents a midpoint in the

solution space. It improves the correctness, programming simplicity, portability'

and reusability of performance-sensitive EMIS communication software' Blob

Streaming leverages the flexibility of CORBA, while its performance remains

competitive with applications programmed at the socket level.

This paper is organized as follows: Section 2 motivates the design of the Blob

Streaming framework, outlines the key design challenges, and describes how we

resolved these challenges; Section 3 illusffates how the Blob Streaming frame-

work has been used to build high-performance image transfer applications; Sec-

tion 4 compares the performance of Blob Streaming with alternative C, C++' and

CORBA approaches over a high-speed AIM networh Section 5 discusses fecom-

mendations based on our results; and Section 6 presents concluding remarks.

2. Design of the Blob Streaming Framework

2.1. BIob Streaming Architecture

The Blob Streaming framework is designed to minimize excessive layering to

improve performance, while still allowing applications to be decoupled from

communication details that are prone to change. This decoupling helps increase

portability and enables transparent optimizations without altering public Blob

Streaming interfaces. The shaded portion of Figure 2 illustrates the architecture

of the Blob Streaming framework, which consists of the following layers:

. C++ wrapper layer: This layer uses an existing toolkit of C++ wrappers

lschmidt 1994.161that shield applications from the details of the lower

layer C library and OS system call mechanisms. These mechanisms include

sockets and CORBA for interprocess communication, memory-mapped frle

wrappers for optimized secondary storage access, and event demultiplexing'

The use of C++ wrappers provides strongly typed interfaces that simplify

the development of Blob Streaming. For example, porting to alternative

platforms requires no changes to Blob Streaming software because the Blob

Streaming library does not directly access any OS specific interfaces. Cur-

rently, Blob Streaming is implemented on many versions of UNIX, as well

as TVin32 Platforms.
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Figure 2. Layenng Architecture of the Blob Streaming
Framework.

Common services layer: This layer uses an existing framework [Schmidt
1994.161of strategic design patterns [Schmidt 1996.20] rhar enhance frame-
work quality by providing reusable communication system components. For
instance, Blob Streaming uses component implementations of the Acceptor
and Connector patterns [Schmidt 1996.2I) that decouple the passive and ac-
tive initialization of services from the tasks performed once the services are
initialized. Likewise, the component implementation of the Reactor pattern

[Schmidt 1995.1,71simplifies event-driven applications by associating event
handler objects to the demultiplexing of events. The use of these patterns
and components in the Blob Streaming framework leverages prior design
efforts and reduces software development risks.

Blob Streaming layer: This layer provides application developers with the
Blob Streaming components that provide generic interfaces for high-speed
Blob transfer. The main components include Blob Proxies, Transporters,
and Factories:
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. Proxies-which use the Bridge and Proxy patterns [Gamma et al. 1995]

to represent location- and type-independent handles to Blobs. These pat-

terns provide a surrogate that shields clients from knowledge of where

the Blob resides, thereby making it easy to vary the location without

affecting client code.

. Transporters-which use the Strategy pattern [Gamma et al. 1995] to

represent location- and type-independent algorithms that perform optimal

fransfer of Blobs between sources and destinations. The Strategy pattern

lets the algorithms vary independently from clients that use them.

. Factories-which use the Factory pattern [Gamma et al. 1995] to de-

couple Proxy creation from Proxy use. A Factory performs the work

necessary to build a Proxy, such as using a location service to find the

Blob within the EMIS.

A key design goal of the BIob Streaming layer is to provide operations that

behave uniformly irrespective of where the Blob actually resides or what type

of Blob is being transferred. For instance, Blob Store software that receives and

stores MRI images to a database remains unchanged whether the source or desti-

nation of the MRI data is in memory on a local ûle, in memory of a remote client,

or on disk of a remote client.

2.2. Resolvíng Design ChøIlenges

Developing an enterprise-wide distributed EMIS is difficult. It requires a deep

understanding of networking, databases, distributed systems, human/computer

interfaces, radiological workflow, and hospital information systems. There are

many technical challenges related to performance, functionality, high availability,

information integrity, and security. Moreover, system requirements and the hard-

ware/software environment change frequently-

To cope with complexity and inevitable changes, the software infrastructure of
an EMIS must be flexible. In particular, developing large-scale distributed EMIS

applications with low-level network programming tools like sockets is tedious,

effor-prone, and inflexible. Therefore, we designed Blob Streaming to elevate the

level of programming for these applications. To accomplish this, we abstracted

away from the following tasks and mechanisms in the Blob Streaming design:

. Common network programming tasks

. Blob location and storage mechanisms

. Blob type
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. Blob transport mechanism

. Concurrency policies

. Multiple event loops

. Platform-specific OS mechanisms

This section describes the software design challenges we faced when developing
the Blob Streaming framework for EMIS applications. The following explains
how we resolved these challenges using object-oriented design techniques, de-
sign patterns, and C++ language features. Although the discussion centers around
issues that arise when building medical imaging frameworks, the principles and
patterns described below are representative of a wide range of bandwidth-intensive
distributed object computing environments.

2.2.1. Abstracting Away from Common Network Programming Tasks

Many low-level programming tasks (such as object location and activation,
parameter marshalling and framing) performed when building distributed appli-
cations are tedious and error-prone. The current version of Blob Streaming uses

CORBA to automate these common low-level network programming tasks. The
use of CORBA enabled us to concentrate on higher-level Blob Streaming issues
(such as performance, reliability, and interface uniformity), rather than wrestling
with low-level communication details. We used the following CORBA mecha-
nisms to implement the Blob Streaming framework:

. Strongly-typed interfaces: In CORBA, all interfaces are defined using the
CORBA interface deflnition language (IDL) tObject Management Group
19951. A CORBA IDL compiler generates stubs and skeletons that translate
IDL interface definitions into C++ classes. For instance, IDL interface def-
inition in Figure 3 describes a BlobTransporter that is used internally by
the framework to control Blob transfer from a server to a client. Client ap-
plications use the BlobTransporter to selectively request certain sections
of a Blob. The ability to randomly access Blobs has several uses, including
(1) the ability to efficiently access header information from a Blob, or (2)
resuming an intemrpted transaction without restarting from the beginning.

The use of CORBA IDL interfaces allows the transmission of strongly-
typed data across the network. Strong typing improves abstraction and elim-
inates errors cofnmon to socket-level programming. For instance, if the
send and recv operations shown above were implemented over a socket
connection, we would need to manually convert the typed information into
a stream of untyped bytes. Moreover, the sender and receiver software for
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j.nterface BlobTransPorter {
// Timeout value rePresentation.
struct TineValue { long sec; long usec; };

// Transaction notification options. These

// optíons allor¡ the framework to control blob
/ / i"ransfers acknowledgnents.
enr¡m Notif icationsenantics {

SEND-NOTIFICATIONS,

QUEUE-NOTIFICATIONS,
IGNORE-NOTIFICATIONS

Ì;

// A request to the server to send <length> bytes
// of BLob data starting fron <absolute0ffset>'
// Since this can potentially be a long-duration
// opera¡íon, a (tlmeout) can also be specified.
// 't¡e (semantics> vary depending on the reliability
// requíred.
oneútay void send (in long length,

in long absoluteOffset,
in boolean useTi-neout,
in TimeVa1ue tineout,
in Noti.f icationsemantics senantics) ;

// Ï:ntorms the server to receive <length> bytes of
// BLob data. This data is copied to the Blob

// startíng at (absoluteOffset>. Other options
/ / are sinilar to sendO. '
oneway void recv (in long length,

in tong absoluteOffset,
in boolean useTimeout,
in TineValue timeout,
in Notif icationSenantics sena¡tics) ;

// .., others onitted...

Figure 3. IDL Interface for Blob Transport.

parsing messages must be tightly coupled to ensure coffectness. Since this

provides many opportunities for errors, automating this process via CORBA

significantþ improves system robustness.

. Parameter marshalling and framing: CORBA IDL compilers automatically

generate client-side stubs and server-side skeletons. These stubs and skele-

tons ensure correct byte ordering and linearization of all parameters sent
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via operation calls on CORBA interfaces over a network. For instance, the
send and recv operations in the IDL BlobTransporter interface shown
above pass various types of binary parameters. The IDL compiler maps
these parameters into C++ data types such as char for the IDL boolean
type and a C++ struct containing two long fields for the TimeValue pa-
rameter.

Marshalling the BlobTransfer parameters manually and then using
sockets would require copying the parameter values into a transfer buffer
and performing a send. We would also have to convert the representation
of the longs from host-byte order to network-byte order. In addition, if the
bytestream-oriented TCP/IP was used, we would be responsible for framing
the data correctly at the receiver. Marshalling and framing are two tedious
and error-prone aspects of network programming. By using CORBA, we
did not need to implement these low-level operations.

. Object location and object activation: CORBA supports location trans-
parency, i.e., services can be located anywhere in a distributed system.
Therefore, objects accessed by clients can be remote, local (on the same
host) or co-located (in the same address space). We used this feature of
CORBA in the Blob Streaming framework to shield applications from the
location of Blob Stores where a Blob of interest resides. Since CORBA
interfaces are location independent, the framework invokes operations on
Blob Stores without knowledge of where the server resides. As a result, ap-
plications that use Blob Streaming also have no dependencies on Blob Store
locations.

Blob Streaming also takes advantage of CORBA s activation services.
Orbix can be configured such that if a request is received for a non-active
server, the a server can be launched to process the request. This allows
Blob stores to be started by orbix only when they're needed, thus consery-
ing system resources.

2.2.2. Abstracting Away from BIob Location and Storage

The location of Blobs can vary signiflcantly. Blobs may exist in the memory of
a modality (such as an ultrasound scanner), on the local disk of a radiologist's
workstation, or in a remote Blob Store. To provide adequate reliability, availabil-
ity, and performance a large-scale EMIS must support a range of Blob stores. As
shown in Figure 1, these include the following:

' central Stores-which provide hierarchical stofage management and sup-
port long-term archiving of Blobs.
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. Cluster Stores-which cache Blobs within a cluster of diagnostic worksta-

tions in a local area network in order to increase system fault tolerance and

decrease load on Central Blob Stores.

. Local Store-which cache Blobs on the local disk of a diagnostic (DX)

workstation.

. Memory Stores-which cache Blobs in workstation memory'

In addition to the Blob Stores listed above, new implementations of Blob

Stores can be created for more advaqced data storage. For example, a Database

Store mightbe designed to manage Blobs in a database (e.g', Oracle, Sybase, or

ObjectStore) and an Archival Store canbe implemented to maintain legacy data to

comply with legal statutes on image persistence.

To enhance the system usability, images must be presented to the radi-

ologist quickly. For instance, consider the case of presenting MR images to

a radiologist on a diagnostic workstation. The Blob Streaming framework is

responsible for selecting the optimal transfer technique for this task. If im-

ages are stored in files on the local Workstation Blob Store, Blob Stream-

ing memory maps the files, thereby avoiding excessive mode switches and

read/write buffering. If Blobs do not reside locally, they must be found us-

ing name servers and locators [Object Management Group 1994]. Once found,

they must be transported to the radiologist's workstation for display and

interpretation.
Before being displayed, however, Blobs may need to be processed (e.g., mag-

nified, rotated, and edge-enhanced) for optimal presentation. Due to the wide

range of stores that Blobs can reside, Blob Streaming allows application software

that operates on Blobs to be developed independently of the Blob's location'

The component in Blob Streaming that facilitates location abstraction is the

Blob prory. The Blob Proxy def,nes the interface visible to clients. All requests

to the Blob Proxy are forwarded to the Slot object, which is the abstract class

that defines the interface for implementation classes. Figure 4 shows the multi-

ple specializations of the Slot class such as socket, memory, file, and database.

This design is an example of the Proxy and Bridge patterns [Gamma et al. 1995],

where the Blob interface is decoupled from its implementation so that the two can

vary independently. Section 3.1 describes the Blob Proxy programming interface

in greater detail.

The Blob Streaming framework can be extended by adding new Slot imple-

mentations. The separation of interface from implementation allows these ex-

tensions to be tfansparent to code that uses the Blob Streaming framework. This
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Figure 4. Blob Proxy and the Slot Hierarchy.

separation also enables the Blob Streaming framework to use the same Slot imple-
mentation instance for different Blob Proxies.2

The advantage of defining a uniform Blob Proxy interface is to reduce soft-
ware dependencies. Using this generic interface, application software can be writ-
ten to store and retrieve images from Blob Stores, rather than to files or databases
directly. This shields existing software from changes in storage type. A disad-
vantage to this approach is the increased learning curve. For example, developers
of Blob Servers who are familiar with a particular database must learn the Btob
Store interface in order to use Blob streaming. Therefore, as discussed in Sec-
tion 3.1, the Blob streaming interface was modeled after the UNIX file system
interface, which provides a uniform set of operations (like open, cJ_ose, read.,
write, seek, etc.) on various types of devices, files, and VO streams.

2. This approach is used by some CORBA implementations like Orbix where multiple proxies use the same socket
channel to communicate with a server. Some slots that t¿ke relatively long to setup (such as socket slots) can be
cached intemally to the library and can be reused by new Blob Proxies.
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2.2.3. Abstracting Away from Blob þpe

In addition to shielding application software from Blob location, the Blob Stream-

ing framework abstracts away from Blob type. Therefore, a Blob Store that re-

ceives and stores MR images uses the same software to receive and store CT and

CR images. The type of data being transferred is not directly exposed by the Blob

Streaming interface.

The primary advantage of decoupling Blob type from Blob transfer is to max-

imize soft-vvare reuse and enhance interface uniþrmity.In addition, our design

allows meta-data (such as image identification information including patient name

and examination data) to be separated and stored in a database. This decoupling

allows image data (pixels) to be transported as fast as possible to the destination

(e.g., using memory-mapped VO and DMA). If an application requires access to

the image's meta-data, complex queries can be performed on the database.3

The Blob Streaming framework is similar to the abstraction provided by an

OS file system. The flle system supports a variety of file formats. It is up to the

application using the file to correct$ interpret the file format. However, the type

of abstraction offered by Blob Streaming is not available in other medical imaging

toolkits (such as DICOM and HL7). Many such toolkits only transfer data for-

matted according to the protocol's specification. This becomes a problem when

trying to extend a project to deal with new data types or when trying to optimize

performance.

Another advantage of the Blob Streaming design is that it allows the integra-

tion of image processing and Blob transfer operations. Applications need not wait

for an entire Blob to transfer before processing the data (e.g., compressing it as it
is sent on the network and decompressing while being received). This technique is

a form of Integrated Layer Processing (ILP) tClark & Tennenhouse 19901, which

has been used in high-speed communication protocol stacks. ILP optimizations

can improve performance signiflcantly by overlapping communication and compu-

tation, as well as reducing memory bus traffic.

2.2.4. Abstracting Away from Blob Transport Mechanism

Blob Streaming presently uses a combination of CORBA and TCP/IP as data

transport mechanisms. CORBA is used for location and control operations,

whereas TCP/IP is used for bulk data transfer. This design choice reflects a

tradeoff between flexibility and efficiency. Blob Streaming leverages CORBA s

3. Consistency management between pixel store and database entries are considered outside the scope of the Blob

Streaming framewo.f. C".tuin i*ug" io.rnum (e.g., DICOM) place meta-data as header information of the Blob.

Since Blob Streaming treats all Blobs as untyped streams of data, images with integrated meta-data also can be

transferred easily.

342 Irfan Pyarali, Timothy H' Harrison, and Douglas C. Schmidt



abstraction and flexibility, while still utilizing the effrciency of socket program-

ming.
To shield applications from these low-level communication details, however,

the public interface of Blob Streaming does not expose its internal transport mech-

anisms. This allows changes in the Blob Streaming architecture without affecting

public interfaces. In particular, since CORBA is not visible to application pro-

grammers, different implementations of CORBA can be used (such as ORBeline,

HP ORB Plus, or Sun NEO). Moreover, CORBA can be removed entirely and

replaced with another mechanism (such as DCOM, DCE RPC, or Sun RPC)'
'We chose CORBA since other pafts of our EMIS use CORBA services like the

COS Naming and Events [Object Management Group 1994). Selecting a common

distributed object computing framework reduced our training, maintenance, and

software licensing costs.

Similarly, multiple transport mechanisms can be used to transfer bulk data

efficiently. For instance, certain types oftrafflc (such as video and voice) can tol-

erate some degree of loss. In these cases, performance can be optimized by using

a lightweight ATM protocol in place of TCP/IP. Since Blob Streaming provides

alayer of abstraction over these details, optimizations can be performed without

altering applications.

The primary advantages of decoupling the Blob Streaming public interface

from its internal transport mechanisms are to improve flexibility, increase porta-

bility, and enable transparent performance tuning. Therefore, the framework can

be tuned to use the best performing technology without affecting applications. For

instance, subsequent versions of Blob Streaming could omit TCP/IP in favor of
a strictly CORBA implementation if CORBA becomes performance-competitive

with lower-level sockets programming. Likewise, CORBA could be replaced by

DCOM and TCP/P replaced by a lightweight AIM protocol. Figure 5 shows the

communication layers currently used by Blob Streaming. In addition, it illustrates

the different IPC and network layer choices that can be used as alternatives.

One disadvantage with Blob Streaming is performance overhead of the ex-

tra levels of abstraction. Although the cost of these abstractions can be reduced

through optimizations such as C++ inlining, some overhead remains, as shown in

Section 4. Another disadvantage is the increased complexity of the Blob Stream-

ing internal design. In particular, connection management and synchronization arc

more complex. However, the complexity is not exposed to applications, which use

the simple Blob Proxy interface provided by the Blob Streaming framework.

2.2.5. Abstracting from Concurrency Policies

Different applications require different types of operation invocation semantics

from a framework. For instance, a multi-threaded server can simplify application
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software by using synchronous interfaces. Conversely, a single-threaded server

that cannot afford to block on a single transaction needs an asynchronous inter-

face to all long-duration operations. Similarly, client applications are frequently

single-threaded and event-driven (e.g., GUIs), which cannot block indefinitely on

synchronous calls.

On multi-threaded operating systems like Solaris 5.x [Eykholt et al. 1992] or

windows NT [custer 19931, applications can use threads to simplify program-

ming and take advantage of parallelism. A multi-threaded application can use

synchronous interfaces for long-duration operations (such as large image transfers)

since it will not block other threads. In contrast, single-threaded applications must

be programmed carefully to avoid starving time-critical operations by blocking on

long-duration operations.

Tightly coupling an application to a particular concurency policy increases

development effort if the concurrency policy changes (e.g., if a single-threaded

application becomes multi-threaded or vice versa). It is hard to avoid this tight

coupling because reusable frameworks and applications often must be developed

without knowledge of the end system concuffency policies or hardware/software

capabilities.
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The Blob Streaming framework is designed to separate application software

from dependencies on concunency policies. Blob Streaming accomplishes this
by providing uniform callback-driven interfaces to both synchronous and asyn-

chronous operations. Switching between synchronous/return-value and asyn-

chronous/callback interfaces can require modifications to application software.

For instance, consider the case where a server implemented using multiple threads

is ported to a platform that does not support threads. If the software run by the

threads uses synchronous interfaces, many changes will be necessary to support

asynchronous transactions in a single thread.

To improve portability and uniformity, the Blob Streaming framework sup-

ports a uniform callback interface for both synchronous and asynchronous op-

erations. These callbacks indicate when an operation completes. For instance, a

single-threaded application that needs to load a large image from a remote Blob
Server performs an asynchronous Blob Streaming read, which does not block
the application from handling GUI events. When the library completes the op-

eration, the application is notified via a callback. Similarly, synchronous Blob
Streaming operations also complete with callback notifications. The difference
from asynchronous calls is that the callback has already been executed when the

synchronous call returns.

The advantages of abstracting away from concuffency policies are increased

undormity and increased flexibility of concurrency strategi¿s. For instance, the

same software that is used asynchronously in a single-threaded application can be

used synchronously in a multi-threaded application. Because both synchronous

and asynchronous operations use callbacks, switching to new concurency policies
simply requires toggling a flag. Therefore, no application software will change.

This flexibility is particularly useful for developers of reusable components who
write software that can be used with a variety of concurrency strategies.

The disadvantage of this approach is that some developers may never want to
program asynchronous operations. To some extent, the use of uniform interfaces

increases the complexity of synchronous calls in order to eliminate dependency

on a particular concurrency model. To address this issue, the Blob Streaming li-
brary offers wrappers around the synchronous callback operations to provide a

synchronous/return-value API. This is illustrated in Section 3.4.

2.2.6. Abstracting Away from Event Loops

Complex EMIS applications must react to events from multiple sources. Common
sources of EMIS events include DICOM toolkits, ln-i infertace engines, GUI
window events, and Blob Streaming transfers. Furthermore, the Blob Streaming

library must integrate the processing of socket-level events, CORBA events, timer
events, and signals.
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Each of these sources of events (X V/indows, CORBA, etc.) has its own event

loop. If an application must react to all of these events, it cannot block indefinitely

on any one event loop. One solution is to use a polling technique where the ap-

plication uses a round-robin policy to check each event loop. A disadvantage to

this approach is that it can lead to excessive overhead when there are no pending

events.

An alternative approach is to combine the multiple event loops into a single

waitable object. Blob Streaming uses ACE's Reactor lSchmidt 1995.17] to imple-

ment this technique. The Reactor provides a mechanism that integrates the event

demultiplexing and event handler dispatching components of multiple frameworks.

It presents applications with an object-oriented interface to lower-level OS event

demultiplexing mechanisms that react to VO handle events, timer events, and sig-

nal events. The select, poll, and tJaitForMultiple0bjects system calls are

common examples of these demultiplexing mechanisms. This allows the applica-

tion to block on the Reactor for all events, eliminating the overhead imposed by

the polling technique.

Frameworks such as X windows or CORBA are generally driven by events

from "waitable" VO handles (also called descriptors). We will use a UNlX-centric

naming policy and call Íhese select-based objects. Some applications and frame-

works also use waitable resources such as message queues, semaphores, and con-

dition variables. We will call these synchronizatíon-based objects.

An example of a synchronization-based object exists in MT-Orbix. The

MT-Orbix library dedicates a thread to each network connection. This allows

easy integration with third-party toolkits (such as the Tuxedo transaction mon-

itor) that utilize System V message queues (which are synchronization-based).

Requests that come over the connections are queued up in a thread-safe mes-

sage queue. The main thread of control now waits on a conditional variable,

rather than waiting in a demultiplexing operation (like select or po11) as

it would in the single-threaded. After a new request is added to the message

queue, the main thread is signaled, which then dequeues and processes the

request.

The MT-Orbix model adds a synchronization-based source of event demul-

tiplexing to applications. For Win32 platforms, hlaitForMultipleObjects can

be used to wait on both select-based and synchronization-based objects. How-

ever, this is problematic for platforms (such as SVR4 UNIX) that do not provide

a uniform model for demultiplexing synchronization-based events. The problem

is relatively easy to solve if applications can use multiple threads. In this case,

one or more threads could be dedicated to process select-based events, while other

threads could be dedicated to process the synchronization-based events queued in

the message queue.
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Figure 6. Participants and Collaborations integrating MT:
Orbix into the Reactor.

However, many systems (including our EMIS applications) must deal with
large amounts of legacy code that is not thread-safe. Therefore, it becomes essen-

tial that the select- and synchronization-based events be combined into one logical
source. Figure 6 shows how we use the following components to adapt the MT-
Orbix VO handles into a single demultiplexing object:

o fts¿sfo¡-fhe main thread is dedicated to handling the select-based events.

This is done through the select demultiplexing operation. The purpose of
the remaining components is to allow the Reactor to wait on MT-Orbix
events as well as select-based events.

. Object Adapter-A separate thread is dedicated to handling the synchronization-

based MT-Orbix events. This is done with MT-Orbix's inpl-is-ready and

operation marshalling filters. MT-Orbix uses a thread per network connec-

tion to receive incoming requests. V/hen requests are given to the 0bject
Adapter, it uses the Thread Filter to decide whether to process the event

or not.

. Thread Filter-Orbix filters allow applications to access incoming CORBA
requests from the message queue before upcalls are invoked on the appro-
priate objects. The Thread Filter notifies the Reactor via the Pipe when

MT-Orbix events occur.
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. Pipe-An intra-process communication channel (in this case, a pipe) is

created for communication between the two event handlers. The read-

ing end of the pipe is owned by the Reactor thread and is registered

with the demultiplexing operation for input events. The Object Adapter
thread owns the writing end of the pipe. When MT-Orbix events occur,

the Object Adapter thread uses the pipe to communicate the event to the

Reactor thread.

. MT-Orbix Handler-When the Reactor is notified of MT-Orbix events,

it calls the MT-Orbix Handler to handle the request. The MT-0rbix
Handler then uses the Orbix 0bject Adapter to continue the method

dispatching.

. Object Implementation-Once MT-Orbix requests are received and pro-

cessed by the various components discussed above, application level objects

are tnally called by the Reactor thread.

This design restores the simple model of "single threaded, single source of events"

that our legacy applications require.

The advantage of integrating multiple event loops is that it allows developers

to use Blob Streamingwhile continuing to integrate with other frameworks.For
instance, an application developer building X-window applications can perform

Blob Sfeaming operations without changing how the application interfaces with

the event-loop. Since Blob Streaming uses the Reactor, the framework can be

integrated with the necessary event-loop without affecting internal framework

software or external framework interfaces.

The disadvantage to this approach is that the Reactor must be integrated with
each new framework. This integration can be difûcult if the framework does not

provide adequate hooks into its internal event demultiplexing logic. Moreover,

there is a performance penalty for this integration. For instance, the approach

we used to integrate MT-Orbix with our single-threaded applications effec-

tively eliminated concurency within the event demultiplexing layer of imaging

applications.

2.2.7. Abstracting Away from Platform-specific OS Mechanisms

As shown in Figure 2, the Blob Streaming framework shields applications from

non-portable OS-specific features such as memory mapping, event demultiplexing,

multi-threading, and interprocess communication. This, in turn, makes applications

using the Blob Streaming interface portable across platforms without changing

application communication software. The Blob Streaming framework has been

ported to a variety of UNIX platforms, as well as V/in32 platforms lCuster 19931.
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The primary advantage of decoupling application software from os-specific
mechanisms is cross-platform portability. T:he primary disadvantage is that perfor-
mance and functionality may be compromised to provide a generic OS interface.
For example, the version of Blob Streaming described in this paper did not take
advantage of native v/indows NT asynchronous vo mechanisms such as over-
lapped VO or UO completion ports [Schmidt & Stephenson 1995.19].

3. Blob Streaming Interfaces and Examples

This section describes the key components in the Blob Streaming framework and
illustrates how to use these components to program synchronous and asynchronous
Blob transfer applications. our goal is to demonstrate the expressive power and
simplicity of the framework.

3.1. Blob Proxy

Figure 7 shows the interface of the BlobProxy class, which includes methods like
open, close, read, write, size, and position. These methods are similar to
those provided by system v Release 4 (svR4) LINIX for file I/o. svR4 UNIX
adapts a wide variety of disk and communication devices into a common set of
Vo operations. Blob Streaming has the following notable differences from the
SVR4 UNIX file system interfaces, however:

. Seamless Integration of Memory Networking, and File VO-The SVR4
I-INIX UO interfaces are not entirely uniform. For instance, a different set
of calls is required to open a socket vs. opening a file. Likewise, SVR4
UNIX uses a different interface for memory-mapped file VO and buffer-
based network/file UO. In contrast, Blob Streaming provides a uniform
interface for all these forms of UO. This makes it possible to abstract away
from Blob location by removing inconsistencies and special cases in the VO
programming model.

' object-oriented interfaces-Low-level network programming tools such as

sockets do not provide sufficient type-checking since they utilize untyped
UO handles. It is disturbingly easy to misuse these interfaces in ways that
can only be detected at run-time (such as trying to read or write data on
a passive-mode listener socket used to accept connections). unlike svR4
LTNIX, which provides these C-level system call interfaces, Blob Streaming
provides C++ interfaces. The use of C++ enforces encapsulation and yields
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a more modular, extensible, and loss effor-prone programming interface,

without compromising þerformance.

The BlobProxy interface is designed so that operations can be invoked

synchronously or asynchronously. Asynchronous invocation is useful for long-

duration operations (such as open, send, and recv) that can run independently

without blocking the main thread of control. Synchronous invocation is useful for
(1) short-duration operations (such as size and type) that do not block the caller

for long and (2) applications that spawn multiple threads to execute the calls with-
out blocking the entire process.

The Synch0ptions class gives users a single interface to specify the type

of synchrony/asynchrony policy used for a call. This encapsulation simplifies

the Blob Streaming interfaces and gives applications greater flexibility over

the synchronizatton policies used by the application. For instance, applications

can define a global instance of Synch0ptions that is passed in to every Blob

Streaming operation. In this way, applications can change the synchronization pol-

icy used by the entire application through a single Synch0ptions instance. The

Synch0ptions interface is defined as follows:

class Synch0ptions
{

// Options flags for controlling s¡mchronizatj.on.
enr:m 0ptions {

NONBLOCK, // tJse asynchronous invocation.
BL0CK, // Use synchronous invocation.
TIMEoUT // tJse tined invocation.

Ì;

Synch0ptions
(0ptions options,
const TineValue &tineout,
LocalReceiver *notifiee = 0);

// ...ott.ers onitted...
Ì

The Options enumeration records whether the call is to be made synchronously

or asynchronously and whether it should be timed or not. If the TIMEOUT enumeral

is enabled, the TineValue is interpreted as specifying a timeout duration. Finall¡
if the call is performed asynchronously, the LocalReceiver pointer is used to

specify an object whose receiveNotif ication method is called back when the

asynchronous invocation completes.
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class BlobProxY
{
public:

// Open the Blob ProxY'
void open (const Synch0ptions &options);

// Close the proxy down and release resources'
void close (voi.d);

// Èead <mrmBytes> fron the Blob Proxy into the
// <buffer>.
void read (Buffer &buffer,

size-t numBYtes,
const SYnch0Ptions& oPtions) ;

// ldrjte <mrnBytes> fron the <buffer> to the
// StoV Proxy.
void ¡¡rite (const Buffer &buffer,

size-t nunBYtes'
const SYnch0Ptions& oPtions) ;

// Size of data rePresented by the Blob Proxy'
size-t size

(const Synch0ptions& options) const;

// Type of data represented by the Blob Proxy'
// Yaríous tyPes include pixel data or DIC0M

// inage.
BlobProxy::TYPe tYPe

(const Synch0ptions& options) const;

// Set/çet the position of the Blob Proxy

// tn¡s allows the user to nove to a

// partícttlar tocation in the Blob.
void position (size-t offset'

BlobProxY: : Off setSetting whence,

const SYnch0Ptions& oPtions) ;

size-t position
(const Synch0ptions& options) const;

// ...others onitted...

Figure 7. BlobProxY Interface.
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Private:

// I gtoU Proxy can only be created
// ay a Blob Proxy Factory.
BlobProxy (const BlobKey &key);

Ì;

Figure 7. Continued.

3.2. Blob Proxy Factory

The Blob Proxy Factory is responsible for creating proxies to Blobs that may be
remote or local. The Factory is also responsible for dynamically selecting and con-
figuring the objects (such as Slots) needed to implement the Blob Proxy interface.
This encapsulation of the responsibility and process of creating and composing
implementation objects for the Blob Proxy isolates the user of the proxies from
the implementation classes.

Figure 8 shows the interface of the BlobProxyFactory class, which has
methods like bind and route. The bind method creates a Blob Proxy that is
bound to a Blob. This is similar to the functionality provided by coRBA for cre-
ating a proxy to a remote object. The route method is used to create a new Blob
of a given size. In this case, the factory is responsible for communicating with the
appropriate Blob Store to reserve space for the new Blob. If the space is success-
fully reserved, a proxy is created to the new Blob and returned to the user.

3.3. BIob Transporters

The Blob Transporter is responsible for efficiently copying data from one Blob to
another The Blob Transporter implements algorithms that iterate over the source
Blob and copy the data to the destination Blob. The copy methods of the Blob
Transporter are similar to the algorithms provided by the C++ Standard Template
Library (STL) [Stepanov &,Lee 1994]. STL algorithms are complerely generic
and behave the same way irrespective of the types they work on. In contrast, the
algorithms defined by the Transporter are optimized for different Blob locations.
Since there are relatively few Blob locations types (memory file, network, and
database), it is feasible to explicitty optimize each type of Blob Transporter. For
instance, a transporter can simply perform a nemcpy when the source and destina-
tion of a copy are both in memory.
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class BlobProxyFactory
{
public:

/ / tne f actory creates a ner^Ì Blob proxy that
// is bound to a¡ existing Blob represented
// Ay the <key>.
static
BlobProxy *bindBlob (const BlobKey &key,

const Slmch0ptions &options) ;

/ / fne factory creates a nerú Blob (represented.
// Ay <key>) of (size) bytes. It also creates
// a BIob Proxy that is bound to the new BIob.
static
BlobProxy* routeBlob (const KBlobKey &key,

size_t size,
const Synch0ptions &options) ;

// ... others omitted...
);

Figure 8. Blob Proxy Factory Interface.

Figure 9 shows the interface of the Blobrransporter class. Note that
the copyTransporter only implements static interfaces. state for copies in-
progress is dynamically allocated by the copy routine and deleted when the op-
eration completes. If the state for a copy operation was kept as instance data in
a copyTransporter instance, the instance would only be able to keep track of
one in-progress copy. This would also force the user to create and manage multi-
ple instances of copyTransporter in order to execute multiple copy operations
simultaneously.

3.4. Using the Blob Streaming Framework

The following discussion presents several use-cases that illustrate how to program
synchronous and asynchronous applications using Blobproxies. The two ex-
amples in Figures 10 and 11 use Blob streaming to copy images from a remote
Blob Store to a local Blob Store. Blobs in the system are identified uniquely by
BlobKeys. Both examples copy an image identified by sourceKey to an image
identified by destinationKey.
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class CopyTransporter
{
public:

// Copy entire (source) Blob to
// <destination> B1ob.
static
void copy (BlobProxy *destinationProxy,

BlobProxy *sourceProxy,
const S¡rnch0ptions &options) ;

// Copy (size) bytes fron (source> Blob
// to <destination> Blob.
static
void copy (BlobProxy *destinationProxy,

BlobProxy *sourceProxy,
size-t size,
const Synch0ptions &oPtions) ;

// ... others onitted...
Ì;

Figure 9. Blob Transporter Interface.

A destinationKey is created by replicating the sourceKey and chang-

ing the host information in the destinationKey to the local host. Space

is then reserved for the new image at the local BlobStore by calling

BlobStreamingFactory: :routeBlob. The copy options sets a timeout of 30

seconds for the copy operation. The copy operation will timeout if the operation

does not complete in the specified time.

In the synchronous example, an exception is raised in the event of failure or

timeout. In the asynchronous example, the Replicator class is notified of the

result of the operation. Exceptions cannot be raised in the asynchronous example

since the call to the copy method returns immediately without blocking the caller.

The primary difference between the two examples is the nature of the copy

call. The first example shown in Figure 10 uses a synchronous, return-value

based version of the CopyTransporter: : copy method call. The second ex-

ample shown in Figure 11 uses the asynchronous, callback based version of the

CopyTransporter: : copy method call.
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// Èetríeve to local store.
void copy (BlobKey sourceKey ) {

// Creatø a keY for the destination
BlobKey destinationKey (sourceKey,

localHostName);

// !.l-tocate space on Blob Store for
// destination B1ob.
BlobstreanFactory : : routeBlob (d.estinatlonKey,

source-)si.ze O ) ;

// tineout after 30 seconds
TineValue tineout (30);
Synch0ptions copY0Ptions

// Sytchronous, tined invocation.
(Synch0ptions : :TIÌ'IEOUT I

Synch0ptlons : : BLOCK ,

tineout); // Io,ottrrt of tine to block.

// Syncnranous copy of the Blob.
try {

CopyTraasporter : : coPY (sourceKeY,
destinationKeY,
copy0ptions);

Ì catch (RecoverableException exc) {
s¡ritch (exc.tag O) {
case ERR0R-BL0B-C0PY-FAILED :

// report failure
break;

case EHR0R-BL0B-C0PY-TIMEUUT :

// rePott tineout
break;

]
)
/l report success

Ì

Figure 10. Synchronous, Return-value-based Copy Example.
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class Replicator
: public LocalReceiver

// Defines the pure virtual
/ / receíveNotificationO nethod.

{
public:

// Handles I/0 conpletion.
virtual bool receiveNotification

(LocalNotif ication *notif ication) ;

// Retrieve to local store.
void copy (BlobKey sourceKey) {

// Create a key for the destination
BlobKey destinationKey (sourceKey,

localHostName);

// Allocate space on Blob Store for
// destination B1ob.
BlobStreanFactory : : routeBlob (destinationKey,

source-)size O);

// Timeout after 30 seconds.
TineVa1ue tineout (30);
Synch0ptions copyOptions

/ / Asynchronous, tined invocation.
(Synch0ptions : :TIME0UT I

Synch0ptions : : NONBLOCK,

timeout, // Anount of tine to $¡ait.
this); // Notíty this object (Replicator)

// upon conpletion of the copy.

// Start an asynchronous copy. 0n conpletion,
// our receiveNotificationO nethod is called.
CopyTransporter : : copy

(sourceKey, // copy fron this Blob
destinationKey, // to this Blob
copyOptions); // copy options

];

Figure 11. Asynchronous Callback-based Copy Example.
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bool Replicator : : receiveNotif ication
(LocalNotif icat ion *notif ication)

{
CopyTransporter : : CopyNotif ication *

copyNotification =
(CopyTransporter : : CopyNotif ication *)
notiflcation;

sr,¡itch (copyNotification-)result O) {
case CopyTransporter: : CopyNotif ication: : SUCCEEDED :

// report success
break;

case CopyTransporter: : CopyNotification: : F^AILED:

// report failure
break;

case CopyTransporter: : CopyNotification: : TIMEOUT:

// report tineout
break;

default:
return 0;

]
Ì;

Figure 12. Receiver of Copy Notifications.

Figure 12 illustrates the method that receives copy notifications for callback-

based copies. The following changes to Replicator: : copy afe all that are re-

quired to make an asynchronous, callback-based operation like this:

Synch0ptions copyOptions
/ / A,synchronous, tined invocation.
(Synch0ptions: :TIME0UT I

SynchOpt ions : : N0NBLOCK ,
timeout, // Anount of tine to wait'
this); // Xotity this object uPon

// comPletion of the coPY.

into a synchronous, callback-based operation like this:

Synch0ptions copyOptions
(Synch0ptions : :TIME0UT, tineout) ;

If the thread executing the copy operation can afford to block without com-

promising the quatity of service of other components of the application, the syn-

chronous approach can be used. However, if the long-duration coPy operation

will affect other components of the application, the asynchfonous approach can
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be used. This allows the application developer to develop the imaging replication

module without becoming dependent on the concuffency model used for image

replication. As a result, systems that use Blob Streaming are more portable than

those written to use lower-level OS mechanisms directly.

4. Performance of the Blob Streaming Framework

Sections 2.2 and 3 motivate and outline the design and use of the Blob Streaming

framework. Our design abstracts away from many low-level communication tasks

to achieve the flexibility requirements of disributed EMISs. In practice, however,

we recognized that the framework will not be widely used unless applications built
using it meet their performance requirements.

This section describes performance tests of the Blob Streaming framework.

The test scenario involved the point-to-point transfer of Blobs between a client

and a server. In a large-scale EMIS, several types of bulk data transfers can place

high loads on a coÍrmunications framework. For instance, ffansferring a typical

MR image study can include frffy 250 Kbyte images. Likewise, a CR image study

can include several 500 Kbyte images. The tests performed on the Blob Streaming

framework have been designed to mimic the behavior of transmitting studies such

as these.

4.1. Test Platform and Benchrnarks

The performance results in this section were collected using a Bay Networks
LattisCell 101,1,4 AIM switch connected to two dual-processor SPARCstation

20 Model712s running SunOS 5.4. The LattisCell 10114 is a 16 Port, OC3

l55Mbs/port switch. Each SPARCstation 20 contains two 70 Mhz Super SPARC

CPUs with a 1 Megabyte cache per-CPU. The SunOS 5.4 TCPÆP protocol stack

is implemented using an optimized version of the STREAMS communication
framework [Ritchie 1984]. Each SPARCstation has 128 Mbytes of RAM and an

ENI-155s-MF ATM adaptor card, which supports 155 Megabits per-sec (Mbps)

SONET multimode ûber. The Maximum Transmission Unit (MTU) on the ENI
AIM adaptor is 9,180 bytes. Each ENI card has 512 Kbytes of on-board mem-

ory. A maximum of 32 Kbytes is allotted per ATM virtual circuit connection for
receiving and transmitting frames (for a total of 64 K). This allows up to eight
switched virtual connections per card.

Data for the experiment was produced and consumed by a client and server

test application. The client represents a diagnostic workstation. The server appli
cation represents a Blob Store server. Various client and server parameters may be
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Figure 13. Push and Pull Models.

selected at run-time. These parameters include the size of the Blob being trans-
ferred and the size of the socket transmit and receive queues.

Our test environment is similar to the widely available ttcp benchmarking
tool. However, out test application differs from ttcp since we implement a "re-
quest/response" model rather than the conventional ttcp "flooding" model. In our
model, the client can request the server to send it data (the'þull" model) or move
data to the server (the 'þush" model). This is different from ttcp because the data
transmitter does not simply flood the receiver with a continuous unidirectional
stream of bytes. The push and pull models implemented by our test application ate
illustrated in Figure 13 and described below.

. The push model: This model is representative of the use case where a

modality stores data on a Blob Store. In addition, it can be used by a Blob
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Store to pre-cache data to a workstation. The push model behaves as fol-
lows:

1. Negotiation-the client sends control data to the server characterizing the

image being transferred from the client to the server ( e.9., size and name

of the image).

2. Transmission-the client then sends the image data.

3. Confirmation-the server sends a confirmation to the client when all the

data is received. This acknowledgment is necessary to insure end-to-end

reliability of the requeslresponse transaction.

The pull model: This model is representative of the use case where a work-

station retrieves data from a Blob Store. The pull model behaves as follows:

1. Negotiation-the client sends control data to the server characterizing the

image the client wants from the server (size and name of the image)'

2. Transmission-the server then sends the image data. Once the client re-

ceives the data that was requested from the server, the requeslresponse

ffansaction is complete. Unlike the push model, the pull model does

not require an extra acknowledgment, which improves performance, as

shown in Figure 19.

'We implemented and benchmarked the following versions of the test

application for Blob transfers:

C version: This version is implemented completely in C. It uses C socket

calls to transfer and receive the data and control messages via TCPIIP. Fig-

ure L4 illustrates the design of this ttcp test.

ACE C++ version: This version replaces all C socket calls in the appli-

cations with the C++ wrappers for sockets provided by the ACE network

programming components [Schmidt 1994.16]. ACE encapsulates sockets

with typesafe, portable, and efficient C++ interfaces. Figure 14 illustrates

the design of this test, as well.

CORBA version: The Orbix 1.3 implementation of CORBA was used. This

version replaces all socket calls in the test applications with stubs and

skeletons generated from a pair of CORBA interface definition language

(IDL) specifications. One IDL specification uses a sequence parameter for
the data buffer and the other uses a string parameter. Figure 15 illusffates

the design of this test.

Blob Streaming version: the Orbix implementation of CORBA was used to

exchange control messages and C++ wrappers for sockets provided by ACE
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Figure 14. C and C++ ttcp Benchmarking Architecture.

were used for bulk data transfer. This is the only test that implements both
the push and pull models. Figure 16 illustrates the design of this test for
the push model and Figure 17 illustrates the design of the test for the pull
model.

4.2. Perforrnance Results

4.2. I. Throughput Results

we ran a series of tests that transferred I MB, 8 MB, 16 MB, and 32 MB of user
data using TCP/P over our AIM network testbed. Two different sizes for socket
queues were used: 8 K (the default on sunos 5.4) and 64 K (the maximum size
supported by sunoS 5.4). Each test was run 20 times to account for performance
variation due to transient load on the networks and hosts. The variance between
runs was very low since the tests were conducted on an otherwise idle network.

' Push Model rhroughput: Figure 18 shows that different versions of tests
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Figure 15. CORBA ttcp Benchmarking Architecture'

for Ethernet show much less variation, with the performance for all tests

ranging from around 8 to 8.7 Mbps with 64 K socket queues. In addi-

tion, Figure 18 summarizes the performance results for all the push model

benchmarks using 64 K and 8 K socket queues over a 155 Mbps ATM link.

The following describes the performance of each test program, using 64

K and 8 K socket queues:

. The C and ACE C++ wrapper versions of the tests obtained the highest

throughput 60 Mbps using 64 K socket queue. This indicates that the

performance penalty for using the higherlevel ACE C++ wrappers is

insignificant and is comparable with using low-level C socket library

calls directly.

. The Blob Streaming performance was slightly more than 807o of the C

and C++ versions, reaching 50 Mbps with 64 K socket queues. The pri-

mary source of overhead in the Blob Streaming framework is explained

in Section 4.2.2.

. The Orbix sequence version peaked at around 667o of the C and C++

versions, reaching 40 Mbps, whereas the Orbix string implementa-
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Figure 16. Blob Streaming ttcp Benchmarking Architecture
(Push Model).

tion peaked at 33 Mbps (both using 64 K socket queues). The primary
sources of overhead for the Orbix implementation of CORBA is ex-
plained in Section 4.2.2.

In addition to comparing the performance of the various ffansport
mechanisms, Figure 18 also illustrates the generally low level of utiliza-
tion of the ATM network. In particular, 60 Mbps represents onry 40vo of
the 155 Mbps ArM link. This disparity between network channel speed
and end-to-end application throughput is known as the throughput preser-
vation problem [schmidt & suda 1993.15]. This problem occurs when only
a portion of the available bandwidth is actually delivered to applications.

The throughput preservation problem stems from operating system
and protocol processing overhead (such as data movement, context switch-
ing, and synchronization [Clark & Tennenhouse 1990]). This throughput
preservation problem is exacerbated by contemporary implementations of
distributed object computing middleware like coRBA, which copy data
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Figure 17. Blob Streaming ttcp Benchmarking Architecture

(Pull Model).

multiple times during fragmentation/reassembly, marshalling, and demar-

shalling. Furthermore, the latency associated with the request-response

protocol implemented by ttcp significantþ reduced performance. An

earlier implementation of ttcp [Schmidt et al. 1995.18] attained 90

Mbps over the same AIM testbed by using a "flooding" traff,c gener-

ation model that did not use an end-to-end acknowledgment scheme.

Finally, Figure 18 illushates the impact of socket queue size on

throughput. Increasing the socket queue from 8 K to 64 K doubled per-

formance from 28 Mbps to 60 Mbps. The reason for this is that larger

socket queues increase the TCP window size [Modeklev et al. 1994],

which allows the transmission of multiple TCP segments back-to-back.

These socket queue results demonstrate the importance of having

hooks to manipulate underlying OS mechanisms (such as transport layer

and socket layer options). It is important to note that the choice of socket

queue size has more impact than the choice of communication model (i.e.,
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Figure 18. Push Model Performance Over Ethernet and AIM.

CIC++ vs. CORBA vs. Blob Streaming). In fact, the slowest communi-
cation model (coRBA) is faster with 64 K socket queues than the faster
communication model (c/c++) with 8 K queues. clearly, communication
frameworks that do not offer these hooks to application developers are des-
tined to perform poorly over high-speed networks.

. Pull Model Throughput: Figure 19 compares the performance of the pull
model and the push model of the Blob Streaming versions of the tests.a
For 64 K socket queue size, the pull model out-performed the push model
by ISVo to 20Vo for all sizes of data being transferred. This result illus-
trates the drawback of the push model, which must wait for an acknowl-
edgment from the receiver in order to guarantee end-to-end delivery.

Figure 19 also compares the two models with 8 K socket queue
sizes. There is no appreciable difference in performance of the two mod-

4. Due to space constraints, the ACE, C, and CORBA pull model results are not shown - they exhibit similaÌ
performance curves, however.
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Figure 19. Pull Model vs. Push Model Performance Over

AIM for Blob Streaming.

els with this socket queue size. This illustrates once again how important it
is for ORBs to allow applications to tune the size of the underlying socket

queues.

4.2.2. High Cost Functions

In order to explain the throughput results shown above, we used the Quaatify
execution proûler [P. Software 1995] to pinpoint the sources of overhead. The

test applications were relinked using Quantify, which modified the object code

to include monitoring instructions. Two related tools (qxprof and gv) were then

used to display and measure the amount of time spent in functions during program

execution. Table I lists the functions where the most time was spent sending and

receiving 1 Mbytes of user data and using 64 K socket queues. The results show

the push model experiment repeated 100 times.

. High cost operations for C and ACE C++: The high cost operations for C

and ACE C++ wrapper versions are nearly identical. The sender spent 94Vo

of the time in the r.rrite system call sending data to the receiver. About

3Vo of the time was spent in receiving acks from the receiver. The receiver
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Tþst VoTime #Calls Name

C sockets (sender)

C sockets (receiver)

ACE C++ wrapper (sender)

ACE C++ wrapper (receiver)

Orbix Sequence (sender)

Orbix Sequence (receiver)

Orbix String (sender)

Orbix String (receiver)

Blob Streaming (sender)

Blob Sreaming (receiver)

93.9

3.6

93.2

4.5

94.4
3.2

93.9
5.6

53.5

35.1

7.3

84.6

12.4

3.2

45.0

35.1

10.8

6.0

70.7
t6.I
10.0

3.0

48.8

44.8

1..3

77.2

16.4

1.4

rtz
110

13,085

102

tt2
110

12,984
102

t27
223

1,108

12,846
1,0æ

101

127

223

1,315

1,109

12,443

2,142
I,064

101

327
232

2,055

12,546

12,734

102

r¡rite
read

read
write
write
read

read
¡.rrite

¡yrite
read
nencpy

read
nêncpy
¡¡rite
write
read
strlen
mencPy

read
strlen
nencPy
r¡-rite

write
read
nêncPy

read
¡ne¡ncpy

write

Table l. High Cost Functions for Push Model Blob Stream-
ing Tests.
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spent 93Vo of the time in the read system call receiving data from the

sender. About l.5Vo of the time was spent in sending acks from the sender.

The sender approximately made 100 write system calls (once per iter-

ation) to send the data and approximately 100 read system calls (once per

iteration) to receive the ack. The receiver made approximately 13,000 read

system calls (130 times per iteration) to receive the data and approximately

100 write system calls (once per iteration) to send the ack. The excessive

amounts of reads results from fragmentation of the data into packets of
9,180 bytes, which is the maximum transmission unit (MTU) size of the

AIM network.

. High cost operations for Orbix: Two different implementations of Or-

bix were proflled. The flrst version uses a sequence parametü for the

data buffer and the other uses a string parameter. Both the sender and

the receiver spent a considerable amount of time in copying data (6-

L2Vo of the time was spent in memcpy), slowing down the performance

of the system. The decrease in performance compared to the C and

ACE wrappers versions causes the sender to wait longer to receive the

ack from the receiver. This is indicated by the time spent in the read

system call. These experiments are similar to the ones in [Schmidt et

al. 1995.181 and details about the behavior is explained in that paper.

The Orbix implementation differs from the C and ACE implementa-

tions in the number of read system calls made to receive an ack. Orbix

implementations make two read system calls per-ack compared to one

call by the c and ACE versions. This is because orbix uses the "header

followed by the data" protocol. The first read system call reads the

fixed size header and the subsequent read system call reads the vari-

able size payload. This protocol is not necessary in the c and ACE ver-

sions since the only type of information sent to the sender is an ack.

Figure 18 illustrated that the performance of the Orbix sequence fe-

sults consistently performed around 6 to 7 Mbps higher than the string.
This difference in performance is due to the C++ mapping for strings

in the CORBA IDL specifrcation. The client-side stubs that perform pa-

rameter marshalling for remote calls must obtain the length of the string

being sent. This is accomplished via calls to strlen, which add sig-

nifrcant overhead to the string version. However, the IDL-to-C++

mapping of the sequence provides length fields in addition to the data.

To illustrate the difference, consider the following IDL definition of a

sequence and its corresponding C++ mapping:
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// tOl- definition
typedef sequence<char) char_sequence;
oneway void push (in char_sequence data_seq,

in string data_string) ;

// c++ napping
struct char_sequence {

u_1ong _naxinum;
u_long _length;
char *_buffer;

];

void push (const char-sequence &data-seq,
const char *data_string);

The -length field is explicitly set by the application allowing client-side stub to
know the size ofthe -buffer. Thus, data-string requires a strlen; data_seq
does not.

. High cost operations for Blob Streaming: Compared with the C, ACE,
and Orbix implementations, the Blob Streaming sender implemen-
tation performs a higher number of write calls. As shown in Ta-
ble 1, Blob Streaming makes three write system calls per iteration,
whereas the C, ACE, and Orbix versions only make one call. The
first call by Blob Streaming sends the control information, the sec-

ond call is for the data, and the third is for a request for the ack. The
control information cannot be bundled with the data as Blob Stream-
ing uses different channels for control and data messages. All the
other versions use the same channel for control and data messages.

The Quantify analysis of the Blob Streaming implementation revealed
that the receiver spent 16.4%o of the time in memcpy. Upon closer inspec-
tion, we found our implementation was making an extra copy of the data
received from clients. A single extra copy reduced the performance of Blob
streaming and the sender has to wait longer to receive an ack from the re-
ceiver.

One way to reduce this overhead is to have the application preallo-
cate the buffer space before passing into the Blob Stream receiver. Once
we remove the extra data copy from the receiver, we expect the results to
perform roughly the same as the C and ACE C++ wrapper versions. In
particular, although the sender makes three times more calls to write, we
expect the overhead is due to the extra data copying on the receiver, rather
than the additional mode switching on the sender.
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5. Evaluations and Recommendations

When developing large frameworks such as Blob Streaming, the greatest challenge

is designing for future changes in requirements and environments. The framework

must be able to adapt to the ever-changing needs of the customer it is built for.

Blob Streaming chose CORBA as a tool to help the framework meet these de-

mands. The following two sections discuss our recommendations to others facing

similar challenges.

5. I . D e si gnin g Obj e ct - O rient e d C ommunic ation F ramew o rks

Based on our performance experiments and our experience using the Blob Stream-

ing framework, our evaluations and recommendations for developing object-

oriented communication frameworks for high-performance bulk data delivery

systems include the following:

. Develop flexible tools-The framework must be able to deal with new

types of data and new transport protocols and networks. If the tools used

to build the framework cannot adapt to changing needs, the framework will
not be flexible either. This was one of our motivations for using CORBA.

. Know the performance requirements-Meeting the performance require-

ments of bandwidth-intensive and delay-sensitive applications is essential

before the framework will be adopted widely. Furthermore it is important

to evaluate tools based on empirical measurements rather than adopting a

particular communication model or implementation unconditionally. Our

performance requirements motivated the combination of CORBA with

lower-level transport mechanisms to achieve the performance benefits of
sockets.

. Make the system easy to use-The learning curve of using a new frame-

work must be as small as possible. This inspired us to simplify the

Blob Streaming interfaces by modeling after the UNIX file VO inter-

faces and including abstractions such as SynchOptions and the stateless

CopyTransporter. Whenever possible, leverage well known designs and

idioms that will help decrease the learning curve for the framework users.

. Decouple concuffency policies-The framework should try to avoid making

concurrency policy decisions. Applications using the framework should

not have to be single- or multi-threaded. The framework must, however,
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provide mechanisms that allow the framework to work correctly in a multi-
threading and multi-processing environment. Blob Streaming addresses this
need by supporting uniform callback interfaces for both synchronous and
asynchronous operations.

Design with portability in mind-Portability requirements of the framework
must be addressed in the early phase of design. This helps the designers
and developers make reasonable assumptions about the OS level services
available. Blob Streaming uses the ACE toolkit lSchmidt et al. 1994.16] to
remove dependencies from OS-specific system call mechanisms.

Design for new technologies-Networks have experienced a tremendous
growth in the last few years. There is no reason to doubt that this trend will
continue for many more years. Prototypes of gigabit network are already
being developed [Parulkar et al. 1995]. Next generation frameworks must
be able to adapt to new technologies such as higher speed networks and
new transport protocols.

Do not assume event-loop ownership-The framework should not as-

sume ownership of the event-loop. Applications using the framework will
typically be dealing with multiple sources of input like GUI events and
CORBA events. Blob Streaming uses the ACE Reacror [Schmidt l9g5.l7l
as a single demultiplexing object to encapsulate these multiple sources of
events.

5.2. Using CORBA Effectively

CORBA offers many advantages for developing complex distributed systems since
it automates many common network programming tasks such as object selection,
location, and activation, as well as parameter marshalling and framing. However,
a major disadvantage of coRBA is that current implementations incur signifi-
cant performance overhead when used to transfer large amounts of data [Schmidt
199s.181.

We addressed the performance problems of CORBA by integrating it with
sockets. our approach uses coRBA for control messages and sockets for bulk
data transfer. This two-tiered design leverages CORBA s extensibility and socket's
efficiency. CORBA is particularly useful for short-duration, requeslresponse oper-
ations that exchange richly typed data.

Modifying or extending the type of information exchanged between applica-
tions is also sffaightforward using CORBA since it automatically generates code
to marshall the parameters. Thus, for many types of inter-process communication,
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CORBA offers a powerful solution. TCP/IP endpoint negotiations in Blob Stream-

ing are performed using CORBA messages. These negotiations usually contain

small amounts of richly typed data, and therefore are well suited for CORBA.

The poor performance of CORBA bulk data transfer is a result of existing

implementations that fail to optimize conìmon sources of overhead. This over-

head stems primarily from inefficient presentation layer conversions, data copying,

memory management, and inefflcient receiver-side demultiplexing and dispatching

operations. This overhead is often masked on low-speed networks like Ethernet

and Token Ring. On high-speed networks like ATM or FDDI, however, this over-

head becomes a signifrcant factor limiting communication performance [DoVan
et al. 19951. To overcome these ineffrciencies, we use sockets to setup point-to-

point TCP connections and transmit bulk data efficiently across the connections.

Since Blob Streaming does not interpret the data it transfers, the untyped nature of
socket-level data exchange is acceptable.

Low-level network programming interfaces like sockets are hard to program

because they have complex interfaces and are prone to subtle programming er-

rors. Our solution to this problem was to use C++ wfappers from the ACE toolkit

lSchmidt 1994] to encapsulate the C interfaces. ACE provides a rich set of ef-

ficient, reusable C++ wrappers, class categories, and frameworks that perform

common communication software tasks (such as évent demultiplexing, event

handler dispatching, connection establishment, message routing, dynamic con-

figuration of application services, and concurrency control).

It is important to note that ACE does not offer all the services of CORBA
(such as object selection, location, activation, and parameter marshalling). There-

fore, CORBA provides important value as a higher-level distributed object com-

puting framework.

6. Concluding Remarks

We are currently deploying the Blob Streaming framework in a production dis-

tributed electronic medical imaging system being developed as part of Project

Spectrum at the Electronic Radiology Lab (ERL) at the Washington University

School of Medicine and BJC Health System, in collaboration with industrial

partners Kodak Health Imaging Systems, IBM/ISSC, and Southwestern Bell Cor-

poration. BJC is one of the nation's largest integrated health delivery systems,

representing an alliance of health care partners in Missouri and southern Illinois.

Distributed electronic medical imaging systems like Project Spectrum require

high-performance bulk data communication. The Blob Streaming framework de-

scribed in this paper uses sockets to achieve high performance and uses CORBA
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to provide the flexibility needed for distributed electronic medical imaging sys-
tems. Blob Streaming allows application code to be developed independent of
Blob location, Blob type, and Blob storage. These abstractions allow image
processing algorithms to be reused for many types and locations of Blobs. In
addition, Blob Sneaming is designed to allow flexibility across plaforms by ab-
stracting from OS-specific mechanisms, concurrency policies, and event loops.
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