
Guest Editorial
Douglas C. Schmidt

Washington University

over the past decade, improvements in hardware and networking technology
have yielded dramatic increases in network and computer power. For instance,
advances in vLSI technology and fiber optics have increased computer pro-
cessing power by 2-3 orders of magnitude (from 1 MIP VAXes to Alphas
with hundreds of MIPs). Likewise, network channel speeds increased by 5-6
orders of magnitude (from 300 baud modems to Gigabit ArM networks).

Despite these advances in performance, however, the effort and cost required
to develop, port, and extend software for distributed systems remains remark-
ably high. Experience over the past decade indicates that distributed systems are
hard to implement correctly, efficiently, and robustly. In addition, many exist-
ing examples of distributed systems (such as the www and the Internet) don't
yet support the quality of service required for emerging multimedia services and
electronic commerce.

Much of the complexity of building distributed systems stems from the need
for both highly flexible and highly efficienr sofrware. Flexibiliry is needed to
adapt quickly to new application requirements. For instance, medical systems,
global trading systems, and digital library applications require increasingly
sophisticated support for security, transactions, and synchronized multime-
dia streams. Efficiency is needed to support the quality of service demands of
performance-sensitive applications that possess stringent throughput and delay
requirements. For example, applications like digital movie studios, avionics, and
teleconferencing require increasingly higher bandwidth, lower latency, and less
jitter.

One promising approach for alleviating the limitations of conventional meth-
ods is distributed object computing. Distributed object computing represents the
confluence of two major areas of software technology: distributed computing and
object-oriented design and programming. Techniques for developing distributed
systems focus on integrating multiple computers to act as a single, scalable com-
putational resource. Likewise, techniques for developing object-oriented systems
focus on reducing software complexity by capturing successful design patterns
and creating reusable frameworks and components. Thus, distributed object com-
puting is the field dealing with object-oriented systems that can be distributed
efficiently and flexibly over multiple computing elements.

This issue of Computing Systems contains five papers that represent current
leading-edge research on, and experience with developing, distributed object

Guest Editorial 261



computing systems. The papers were culled from the 2nd USEMX Confer-

ence on Object-Oriented Technologies and Systems (COOTS), which was held

in Toronto, Canada on June 1721,1996. Like the half-dozen USENIX C++

Conferences from which it evolved, COOTS is dedicated to showcasing ad-

vanced R&D work on object-oriented technologies and software systems. The

1996 COOTS technical program covered a range of core object-oriented tech-

nologies including frameworks and components, design patterns, C++, Java, and

CORBA.
The papers appearing in this issue cover a targe of distributed object

computing topics. The first two papers focus on the use of Java to develop

frameworks for invoking methods on remote objects. The lead article is "A Dis-

tributed Object Model for the Java System" by Wollrath, Riggs, and Waldo. This

paper describes the Java Remote Method Invocation (RMD system, which adds

distribution to the Java object model. Java RMI is similar to other distributed

object computing models, like CORBA and DCOM, in that it supports remote

object invocations. Unlike CORBA and DCOM, however, Java RMI is specific

to the Java programming language. This allows Java RMI to take advantage of
Java features such as garbage collection, downloadable code, and security managers.

The second paper focuses on a specific aspect of Java RMI. "Pickling State

in the Java System" by Riggs, V/aldo, V/ollrath, and Bharat describes the process

used in Java RMI to serialize objects for transferring across process boundaries

or storage in databases. When a Java object is written to an output stream, the

stream first serializes the object, and then traverses the object's references to

other objects. The whole graph of objects is thus oopickled" to the stream and

can be subsequently "unpickled" to preserve the inter-object references.

Framework support for method invocation is also important for program-

ming parallel object-oriented systems in languages like C++. The third paper on

"Smart Messages: An Object-Oriented Communication Mechanism for Paral-

lel Systems" by Arjomandi, O'Farrell, and Wilson describes the Smart Message

mechanism in their ABC++ class library. They use smart messages to create and

invoke operations on active objects in shared- and distributed-memory parallel

computers. Smart messages leverage C++ features like polymorphism and tem-

plates to simplify use and ensure type-safe parameter marshalling. In addition,

ABC++ combines smart messages and futures to allow asynchronous communi-

cations between active objects in a type-safe and portable manner.

Another area of intense R&D in distributed object computing is the Com-

mon Object Request Broker Architecture (CORBA). Like Java RMI, CORBA
"ORBs" are designed to enhance distributed applications by automating com-

mon networking tasks such as object registration, object location, parameter

marshalling, framing and error handling, object activation, demultiplexing,

262 Douglas C. Schrnidt



and upcall dispatching. V/ith the advent of high-speed networks and complex
distributed applications, it is increasingly important to implement these tasks

efficiently and scalably. The remaining papers in this issue focus on these two
topics.

Pyarali, Harrison, and Schmidt's paper on the "Design and Performance of
an Object-Oriented Framework for High-Speed Electronic Medical Imaging"
describes a framework for efficiently transferring Binary Large OBjects (Blobs)

in a distributed medical imaging system. The framework integrates higher-level
distributed object computing middleware (such as CORBA) with C++ wrappers

for lower-level communication mechanisms (such as sockets over TCPÆP). This
integration allows medical imaging applications to operate efficiently on very
large Blobs (e.g., images containing dozens of Megabytes), independently of
Blob location and Blob type.

Finally, Kordale, Ahamad, and Devarakonda's paper on "Object Caching

in a CORBA Compliant System" explores another aspect of CORBA
performance-scalability via object caching. Their paper describes the design

and implementation of a framework for caching distributed CORBA objects. Ap-
plications can use either strong consistency (where changes to shared objects

are made visible to all cached copies immediately and in the same order as the

changes were made) or causal consistency (where newly cached objects are guar-

anteed to reflect causally preceding events).

As the papers in this issue of Computing Systems attest, distributed object

computing is now being applied to develop flexible and efficient distributed
systems and applications. Although a great deal of hype has appeared in the

commercial software industry and trade press, it's surprisingly hard to find
solid technical material on the real strengths and weaknesses of distributed
object computing. As a result, distributed object computing is a technology
that has been "sold" more than it has been examined empirically. Therefore,

those interested in the technology have had few opportunities to evaluate the

promise and the challenges that distributed object computing provides. This issue

of Computing Systems is intended to address this lack. I encourage you to get

involved with others working on these topics and to contribute your insights and

experience at future USENIX COOTS conferences.

In closing, I'd like to thank the USENIX staff, the COOTS '96 program
committee, and the authors and tutorial speakers for making the conference such

a success. I'm particularly grateful to Doug Lea, Steve Vinoski, Jim V/aldo, and

Tim Harrison for helping to select and improve the papers in this issue of Corn-

puting Systems.In addition, I'd like to extend my appreciation to Peter Salus for
expediting the production of this final issue of Computing Systems, and for his

many years of exemplary service to the USENIX community.

Guest Editorial 263


