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ABSTRACT: Arjuna is an object-oriented program-
ming system, implemented entirely in C++, that pro-
vides a set of tools for the construction of fault-tolerant
distributed applications. Arjuna exploits features found
in most object-oriented languages (such as inheritance)
and requires only a limited set of system capabilities
commonly found in conventional operating systems.
Arjuna provides the programmer with classes that im-
plement atomic transactions, object level recovery
concurrency control and persistence. These facilities
can be overridden by the programmer as the needs of
the application dictate. Distribution of an Arjuna ap-
plication is handled using stub generation techniques
that operate on the original C++ class headers normally
used by the standard compiler. The system is portable,
modular and flexible. The paper presents the design
and implementation details of Arjuna and takes a ret-
rospective look at the system based on the application
building experience of users.
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l. Introduction

Arjuna is an object-oriented programming system, implemented in C++, that pro-

vides a set of tools for the construction of fault-tolerant distributed applications.

Arjuna supports the computational model of nested atomic actions (nested atomic

transactions) controlling operations on persistent (long-lived) objects. Arjuna ob-
jects can be replicated on distinct nodes in order to obtain high availability.

Several other prototype distributed object-oriented systems have been built,
often emphasising different aspects of fault tolerance, distribution, concurency,
persistence etc. Their implementations have been achieved by the creation of new

programming languages, enhancements to existing languages and systems, creation

of entirely new operating systems or by some combination of these (for example:

Emerald lBlack et al. 1987], Clouds [Dasgupta et al. 1991], Avalon [Detlefs et al.

19881, Argus [Liskov 1988], SOS [Shapiro et al. 1989], Guide [Balter et al. 1991],

and Choices [Campbell et al. 1993]). We wanted Arjuna to be a widely available

toolset, in the spirit of other UNIX related software (e.g., the X window system).

Thus we have deliberately chosen not to modify the language or the operating sys-

tem. The ISIS system fBirman et" al. 1987, Birman 1993] is one of the best known

examples of a software system that has also taken the same approach. However,

ISIS is concerned with the provision of a reliable group communications infras-

tructure, while Arjuna deals with higher level application building tools. A careful

examination of the underlying models of these systems (virtual synchrony and se-

rialisable transactions respectively) and their integration is an interesting topic for
further research.

Designing and implementing a programming system capable of supporting

such 'objects and actions' based applications by utilising existing programming

languages and distributed system services is a challenging task. Firstly, despite

their obvious potential, most widely used object-oriented languages have little or

no direct support for programming a distributed application. The primary reason

for this focus is that existing object-oriented languages have been developed with-
out the demands of distribution in mind and thus possess one or more features

that are either impossible, or at least impractical, to support in a distributed ex-

ecution environment. A classic example of such a feature is the assumption that
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the application will execute within a single address space. Secondly, support for
distributed computing on currently available systems varies from the provision of
bare essential services, in the form of networking support for message passing, to
slightly more advanced services for interprocess communication (e.g., remote pro-
cedure calls), naming and binding (for locating named services), and remote frle
access. The challenge lies in integrating these services into an advanced program-
ming environment permitting existing languages to be used for building distributed
applications.

The design and implementation goal of Arjuna was to provide a state of the
art programming system for constructing fault-tolerant distributed applications. In
meeting this goal, three system properties were considered highly important:

Modularity. The system should be easy to install and run on a variety of hard-
ware and software configurations. In particular, it should be possible to re-
place a component of Arjuna by an equivalent component already present

in the underlying system.

Integration of mechanisms. A fault-tolerant distributed system requires a va-
riety of system functions for naming, locating and invoking operations
upon local and remote objects, and for concurrency control, error detection
and recovery from failures, etc. These mechanisms must be provided in an

integrated manner such that their use is easy and natural.

Flexibility. These mechanisms should alsobe flexible, permitting application
specific enhancements, such as type-specific concurrency and recovery
control, to be easily produced from the existing default ones.

In Arjuna, the first goal has been met by dividing the overall system func-
tionality into a number of modules which interact with each other through well-
defined narrow interfaces. This facilitates the task of implementing the archi-
tecture on a variety of systems with differing support for distributed computing

[Shrivastava & McCue 1994]. For example, it is relatively easy to replace the de-
fault RPC module of Arjuna by a different one. The remaining two goals have

been met primarily through the provision of a C++ class library; the classes in this
library have been organised into a class hierarchy in a manner that will be famil-
iar to the developers of more traditional (single node) centralised object-oriented
systems. Arjuna assumes that every major entity in the application is an object.
This philosophy also applies to the internal structure of Arjuna itself. Thus, Ar-
juna not only supports an object-oriented model of computation, but its internal
structure is also object-oriented. This approach has permitted the use of the inher-
itance mechanisms of object-oriented systems for incorporating the properties of
fault-tolerance and distribution in a very flexible and integrated manner.
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The Arjuna research effort began in late 1985. Early papers [Dixon & Shrivas-

tava 1987, Parrington & Shrivastava 1988, Dixon et al. 19891 describe preliminary
versions of the recovery, concurrency control and persistence mechanisms of Ar-
juna. The use of C++ in building reliable distributed applications is examined in

[Parrington 1990, Parrington 1995], while a brief overview of the system appears

in [Shrivastava et al. 1991,1. This is the first paper that describes the system as

a whole, giving the overall architecture of Arjuna, including its design, imple-

mentation, and performance details of the major system components responsible

for maintaining the abstraction of distribution transparency. We will concentrate

on the core features of Arjuna that are concerned with the provision of atomic

actions and persistent objects, and only briefly discuss more advance features con-

cerned with the provision of object replication and clustering (details concerning

these may be found in ll-ittle eT. al. 1993, Little & Shrivastava 1994 and Wheater

& Shrivastava 19941). All aspects of the system described here have been fully
tested and implemented to run on networked UNIX systems. Arjuna has been used

for building a number of applications. Based on this experience, in the last sec-

tion of this paper we will examine how effectively we have met the stated goals.

Finally, Arjuna system software has been freely available for research, develop-

ment, and teaching purposes since 1992 (for information consult our WWW page:

http : / / arjwa.ncl. ac. uk/).

2. Failure Assumptions and Computation Model

2. I. Failure Assumptions

It will be assumed that the hardware components of the system are computers

(nodes), connected by a communication subsystem. A node is assumed to work
either as specified or simply to stop working (crash). After a crash, a node is re-

paired within a finite amount of time and made active again. A node may have

both stable (crash-proof) and non-stable (volatile) storage orjust non-stable stor-

age. All of the data stored on volatile storage is assumed to be lost when a crash

occurs; any data stored on stable storage remains unaffected by a crash. Faults

in the underlying communication subsystem may result in failures such as lost,

duplicated, or corrupted messages. Well-known network protocol techniques are

available for coping with such failures, so their treatment will not be discussed

further. More serious are network partition failures preventing functioning nodes

from communicating with each other. Because not every communication environ-

ment is subject to partitions, we categorise communication environments into two

types:
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Non-partitionable networks.ln such a network, functioning nodes are capa-

ble of communicating with each other, and judiciously chosen time-outs
together with network level 'ping' mechanisms can act as an accurate in-
dication of node failures.

Partitionable networks. Here physical breakdowns (e.g., a crash of a gateway

node) and/or network congestion can prevent communication between
functioning nodes. In such networks, time-outs and network level 'ping'
mechanisms cannot act as an accurate indication of node failures (they

can only be used for suspecting -failures). We assume that a partition in a
partitionable network is eventually repaired.

2.2. Objects and Actions

As indicated, we are considering a computation model in which application pro-
grams manipulate persistent (long-lived) objects under the control of atomic ac-

tions (atomic transactions). Each object is an instance of some class. The class

defines the set of instance variables each object will contain and the operations
or methods that determine the behaviour of the object. The operations of an ob-
ject have access to the instance variables and can thus modify the internal state

of that object. We will consider an application program initiated on a node to be

fhe root of a computation. Distributed execution is achieved by invoking opera-

tions on objects which may be remote from the invoker. An operation invocation
upon a remote object is performed via a remote procedure call (RPC). All op-
eration invocations may be controlled by the use of atomic actions which have

the well known properties of serialisability,failure atomicity, and permanence of
ffict. Atomic actions can be nested. A commit protocol is used during the ter-
mination of an outermost atomic action (top-level action) to ensure that either
all the objects updated within the action have their new states recorded on sta-

ble storage (committed), or, if the atomic action aborts, no updates get recorded.

Typical failures causing a computation to be aborted include node crashes and

continued loss of messages caused by a partition. It is assumed that, in the absence

of failures and concurrency, the invocation of an operation produces consistent
(class specific) state changes to the object. Atomic actions then ensure that only
consistent state changes to objects take place despite concurrent access and any
failures.

The object and atomic action model provides a natural framework for design-
ing fault-tolerant systems with persistent objects. When not in use a persistent

object is assumed to be held in a passive state in an object store (a stable object
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repository) and is activated on demand (i.e., when an invocation is made) by load-

ing its state and methods from the persistent object store to the volatile store, and

associating with it an object server for receiving RPC invocations.

In the model discussed above, a persistent object can become unavailable dtrc

to failures such as a crash of the object server, or network partition preventing

communications between clients and the server. The availability of an object can

be increased by replicating it on several nodes. We will consider the case of strong

consistency which requires that all replicas that are regarded as available be mu-

tually consistent (so the persistent states of all available replicas are required to be

identical). Object replicas must therefore be managed through appropriate replica-

consistency protocols to ensure strong consistency. To tolerate K replica failures,
in a non-partitionable network, it is necessary to maintain at least K + | replicas

of an object, whereas in a partitionable network, a minimum of 2K * 1 replicas

are necessary to maintain availability in the partition with access to the majority of
the replicas (the object becomes unavailable in all of the other partitions).

3. System Architecture

With the above discussion in mind, we will first present a simple client-server

based model for accessing and manipulating persistent objects and then present the

overall system architecture necessary for supporting the model. We will consider

a system without any support for object replication, defening the discussion on

replication to a later section.

We assume that for each persistent object there is one node (say a) which,

if functioning, is capable of running an object server which can execute the op-

erations of that object (in effect, this would require that a has access to the exe-

cutable binary of the code for the object's methods as well as the persistent state

of the object stored on some, possibly remote, object store). Before a client can

invoke an operation on an object, it must first be connected or bound to the object

server managing that object. It will be the responsibility of a node, such as a, to
provide such a connection service to clients. If the object in question is in a pas-

sive state, then a is also responsible for activating the object before connecting the

requesting client to the server. In order to get a connection, an application program

must be able to obtain location information about the object (such as the name of
the node where the server for the object can be made available). We assume that

each persistent object possesses a unique, system given identifier (UID). In our

model an application program obtains the location information in two stages:
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1. By first presenting the application level name of the object (a string) to a
globally accessible naming service; assuming the object has been registered
with the naming service, the naming service maps this string to the UID of
the object.

2. The application program then presents the UID of the object to a globally
accessible binding service to obtain the location information. Once an ap-
plication program (client) has obtained the location information about an

object it can request the relevant node to establish a connection (binding) to
the server managing that object. The typical structure of an application level
program is shown below:

<create bindings>

ainvoke operations from within atomic actions)

<break bindings>

In our model, bindings are not stable (they do not survive the real or suspected

crash of the client or server). Bindings to servers are created as objects enter scope

in the application program. If some bound server subsequently crashes (or gets

disconnected) then the corresponding binding is broken and not repaired within
the lifetime of the program (even if the server node is functioning again); all the
surviving bindings are explicitly broken as objects go out of the scope of the ap-
plication program.

The passive representation of an object in the object store may differ from its
volatile store representation (e.g., pointers may be represented as offsets or UIDs).
Our model assumes that an object is responsible for providing the relevant state

transformation operations that enable its state to be stored and retrieved from the

object store. The server of an activated object can then use these operations dur-
ing abort or commit processing. Further, we assume that each object is responsible
for performing appropriate concurrency control to ensure serialisability of atomic
actions. In effect this means that each object will have a concurency control ob-
ject associated with it. In the case of locking, each method will have an operation
for acquiring, if necessary, an appropriate lock from the associated lock manager
before accessing the object's state; the locks are released when the commilabort
operations are executed.

We can now identify the main modules of Arjuna and the services they pro-
vide for supporting persistent objects.

. Atomic Action module. Provides atomic action support to application pro-
grams in the form of operations for starting, committing and aborting
atomic actions;
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. RPC module. Provides facilities to clients for connecting (disconnecting) to

object servers and invoking operations on objects;

. Naming and Binding module. Provides a mapping from user-given names of
objects to UIDs, and a mapping from UIDs to location information such as

the identity of the host where the server for the object can be made avail-

able;

. Object Store modul¿. Provides a stable storage repository for objects; these

objects are assigned unique identifiers (UIDs) for naming them.

The relationship amongst these modules is depicted in Figure 1. Every node in

the system will provide the RPC and Atomic Action modules. Any node capable

of providing stable object storage will in addition contain an Object Store mod-

ule. Nodes without stable storage may access these services via their local RPC

module. The Naming and Binding module is not necessary on every node since

its services can also be utilised through the services provided by the RPC module.

This system structure is highly modular: by encapsulating the properties of persis-

tence, recoverability, shareability, serialisability, and failure atomicity in an Atomic
Action module and defining n¿urow, well-defined interfaces to the supporting en-

vironment, we achieve a significant degree of modularity as well as portability for
Arjuna [Shrivastava & McCue 1994].

Figure 1. Components of Arjuna.
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In Arjuna the primitive operation initiate ( . . . ), provided by the RPC

module is used for binding to an object. A complementary operation, called
terminate ( . . ), is available for breaking a binding. Clients and servers have

communication identifiers, CIDs (UNIX sockets in the current implementation),
for sending and receiving messages. The RPC module of each node has a connec-

tion manager process that is responsible for creating and terminating bindings to

local servers. The Arjuna stub generation system for C++ generates the necessary

client-server stub-codes for accessing remote objects via RPCs and also generates

calls on initiate and terninate as an object comes and goes out of the scope

of a computation [Panington 1990, Parrington 1995].

An RPC has the following semantics: a normal termination will indicate that

a reply message containing the results of the execution has been received from the

server; an exceptional return will indicate that no such message was received, and

the operation may or may not have been executed. Once the execution of an action

begins, any failures preventing forward progress of the computation lead to the

action being aborted, and any updates to objects undone. However, as establishing

and breaking bindings can be performed outside of the control of any application
level atomic actions, it is instructive to enquire how any clean-up is performed
if client, server, or partition failures occur before (after) an application level ac-

tion has started (finished). The simple case is the crash of a server node: this has

the automatic effect of breaking the connection with all of its clients; if a client
subsequently enters an atomic action and invokes an operation in the server, the

invocation will return exceptionally and the action will be aborted; on the other

hand, if the client is in the process of breaking the bindings then this has occurred

already. More difficult is the case of a client crash. Suppose the client crashes

after binding to a server. Then explicit steps must be taken to remove any state

information kept for the orphaned bindings; this requires that a server node must

have a mechanism for breaking the binding if it suspects the crash of a client.
This mechanism will also cope with a partition that prevents any communication
between a client and a server. The Arjuna RPC level facilities for the detection

and killing of orphans lPanzieri & Shrivastava 19881 are responsible for such a

cleanup, ensuring at the same time that an orphaned server (a server with no bind-
ings) is terminated.

We will now use a simple program to illustrate how these modules interact.

The program shown below is accessing two existing persistent objects, A, an in-
stance of class 01 and B, an instance of class 02.

{
01 objctl(Nane-A);
02 objct2(Nane-B);
AtomicAction act;

/* bind to A */
/* bind to B */
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act.Begino;
objctl.op(...);
objct2.op(...);

act.EndO ;

,/* start of atomic action act */

/* invocations ....*/

/* act comnits *,/
/* break bindings to A and B *,/

Program 1. Outline Action Example.

Thus, to bind to A, a local instance of 01 called objctl is created, passing

to its constructor an instance of the Arjuna naming class ArjunaName (which

will be described in more detail in section 4.5) called Nane-A suitably initialised
with information about A (e.9., its UID, the location of the server node, etc.). This

enables the client side stub-constructor to initiate A, resulting in binding to the

server for A. The Object Store module of Arjuna enables a server to load the latest

(committed) state of the object from the object store of a node. The state is loaded,

where necessary, as a side effect of locking the object.

Now assume that the client program is executing at node N1 and the server

node for A is at N2 (see Figure 2).The client process at node Nl executing the stub

for objectl is responsible for invoking the initiate operation of the local RPC

module in order to send a connection request to the connection manager at N2. The

connection manager locates the object sever for A who then returns the CID to the

client at N1, thereby terminating the invocation of initiate at N1. The storage

and retrieval of object states from an object store is managed by a store daemon.

The object server uses the store demon for retrieving the state of an object from
the object store. For efficiency reasons, an object server can (and will) directly

access the object store, bypassing the daemon, if the server and the store are on

the same node. However, if the object store is remote, then it must contact the

store demon of the remote node managing the object store.

To manipulate objects under the control of an atomic action, the client creates

a local instance of an action (act) and invokes its Begin operation. The End op-

eration is responsible for committing the atomic action (using a two-phase commit
protocol). When an object goes out of scope, it is destroyed by executing its de-

structor. As a part of this, the client-side destructor (e.9., the stub destructor for
obj ectl) breaks the binding with the object server at the remote node (using the

operation terninate).
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I

Figure 2. Accessing an Object.

4. Implementing the System

The following sub-sections describe in detail how the architecture outlined in the
previous sections has been implemented in Arjuna. The actual implementation
effectively splits into two distinct areas. Firstly, there is a set of C++ classes
(effectively organised as a single inheritance hierarchy) that implement a non-
distributed version of the system. Secondly, there is a stub generation and RPC
system to handle the distribution aspects of the system. V/e start by describing the
first part of the system, concentrating on object storage, retrieval, and the atomic
action system.

Although deliberately not machine or system speciûc, Arjuna still requires cer-
tain basic capabilities from the underþing operating system; these mainly include:

1. BSD style sockets; these are needed by the supplied RPC mechanism.

2. System V shared memory and semaphore support is required by both the
RPC mechanism and the concurrency controller.

3. Support for long file names which are generated by the object persistence
mechanisms.

4.1. The Lifu Cycle of an Arjuna Object

A persistent object not in use is assumed to be held in a passive state with its
state residing in an object store (in Arjuna this is implemented by the class
ObjectStore) and activated on demand. Passive representations of an object
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ObjectStore: :read_committed0

Passive Active

ObjectStore: :write-uncommittedQ

ObjectStore: :commit_state0

UserObject: : save-state0

Objectstate
in memory

Figure 3. The Life Cycle of a Persistent Object.

are held as instances of the class ObjectState. Such instances ¿ue compacted

machine and architecture independent forms of arbitrary user-defined objects.

As such they can be stored in the object store for persistence purposes; held in

memory for recovery purposes; or transmitted over a communications medium

for distribution purposes. The class ObjectState is responsible for maintaining a

buffer into which the instance variables that constitute the state of an object may

be contiguously saved and provides a full set of operations that allows the run-

time representation of a C++ object to be converted to and from an Obj ectState
instance. The fundamental life cycle of a persistent object in Arjuna is shown in

Figure 3.

1. The object is initially passive, and is stored in the object store as an in-

stance of the class ObjectState.

2. When required by an application the object is automatically activatedby
reading it from the store using a read-cornmitted operation and is then

converted from an ObjectState instance into a fully-fledged object by the

restore-state operation of the object.

266 Parrington et al.

ObjectState
in file

^ñ,..\ 
UserObject: :restore_state0

Wffi'
\

olatile t

O 
userobject

o
)



3. When the application has finished with the object itis deactivatedby con-
verting it back into an ObjectState instance using the save-state oper-
ation, and is then stored back into the object store as a shadow copy using
r¡rite-uncommitted. This shadow copy can be committed, overwriting
the previous version, using the conmit_state operation. The existence of
shadow copies is normally hidden from the programmer by the atomic ac-
tion system. Object deactivation normally only occurs when the top-level
action within which the object was activated commits.

During its lifetime, a persistent object may then be made active many times.
The operations save-state and restore-state are fundamental operations

that form part of the interface provided by the class StateManager. Their defini-
tion and use are described in a later section.

4.2. Implementing Object Storage Services

4.2.1. Saving Object States

Arjuna needs to be able to remember the state of an object for several purposes,
including recovery (the state represents some past state of the object), persistence
(the state represents the final state of an object at application termination), and
for distribution purposes (the state represents the current state of an object that
must be shipped to a remote site). Since all of these requirements require common
functionality they are all implemented using the same mechanism-the classes
Obj ectState and Buf f er.

The Buf f er class maintains an internal array into which instances of the stan-
dard types can be contiguously packed (unpacked) using the overloaded pack
(unpack) operations. This buffer is automatically resized as required should it
have insufficient space. The instances are all stored in the buffer in a standard
form (so-called network byte order) to make them machine independent. Any
other architecture independent format (such as XDR or ASN.I) could be imple-
mented simply by replacing the operations of Buf f er with ones appropriate to the
encoding required.

class Buffer
{
public:

Buffer (size_t buffSize = DEFAULT_CHUNK_SIZE) ;

virtual -Buffer O;

char *buffer O const;
size_t length O const;
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/* pack a:rd unpack operations for sta¡dard C++ types */

Boolean pack (char);
Boolean pack (unsigned cbar);
Boolean pack (int);
Bootea¡ pack (unslgned int);

1-.TU 
so on for other standard types */

Boolea¡ unpack (char&) ;

Boolean unpack (unsigned char&);
Boolean unpack (int&);
Boolea¡ unpack (unsigaed i-nt&);

private:
char *bufferStart;

);

class 0bjectstate : public Buffer
{
public:

0bjectState (const Uid& newUid, TypeName tName);
-0bjectState O;

Boolean notenpty O const;
size-t size O const;
const Uid& stateUid O const;
const TypeNa.ne type O const;

private:
Uid bufferUid;
TypeNane inageType;

];

Program 2. classes Buffer and ObjectState.

The class Objectstate provides all the functionality of Buff er (through

inheritance) but adds two additional instance variables that signify the UID and

Type of the object for which an Obj ectState instance is a compacted image.

These are used when accessing the object store during storage and retrieval of the

object state.
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4.2.2. The Object Store

The object store provided with Arjuna deliberately has a fairly restricted interface
so that it can be implemented in a variety of ways. For example, the currently
available distribution has object stores implemented in shared memory; on the
UNIX flle system (in four different forms); and as a remotely accessible store
(implemented using the stub generation techniques described in a later section).
This is implemented by making the ObjectStore class abstract and deriving the
classes that handle the actual implementation of each style of object store from
this base class.

The object store only stores and retrieves instances ofthe class ObjectState.
These instances are named by the UID and Type of the object that they repre-
sent. States are read using the read-conmitted operation and written by the
write-(un)cornrnitted operations. Under normal operation new object states

do not overwrite old object states but are written to the store as shadow copies.
These shadows replace the original only when the connit_state operation is
invoked. Normally all interaction with the object store is performed by Arjuna
system components as appropriate, thus the existence of any shadow versions of
objects in the store are hidden from the programmer.

class ObjectStore
{
publi.c:

enum StateType { 0S-SHADO[I, OS_ORIGINAL, 0S_INVISIBLE };
enum statestatus { 0s-uNKNoÌlN = 0, OS-COMMITTED = 1, 0S_UNCoMMITTED =

0S-HIDDEN = 4,
OS_COMMITTED_HIDDEN = 0S_COMMITTED I 0S_HIDDEN,
0S-UNC0MMITTED_HIDDEN = OS_UNCOMMITTED I OS_HIDDEN

virtual -ObjectStore O ;

/* T}re abstract interface */
virtual StateStatus currentState (const Uid&, const TypeName) = g.
virtual Boolean comnit_state (const Uid&, const TypeNane) = 0;
virtual ObjectState *read-connitted (const Uid&, const TypeName) = 0;
vi-rtual ObjectState *read_uncommítted (const Uid&, const TypeName) = O;
virtual Boolean remove_committed (const Uid&, const TypeName) = 0;
virtual Boolean renove_unconrnitted (const Uid&, const TypeName) = 0;
virtual Boolean r¡rite_conmitted (const Uid&, const TypeName,

const ObjectState&) = 0;
virtual Boolean write_uncomnitted (const Uid&, const TypeName,

const ObjectState&) = 0;

virtual const TypeName type O const = 0;
virtual void storelocation (const char*) = 0;

2,

);

The Design and Implementation of Arjuna 269



"t"at" ObjectStore* create (const TypeNane, const charx);
statj-c void destroy (0bjectStore*&) ;

protected:
ObjectStore O;

];

Program 3. class ObjectStore.

The implementations of the object store provided in the standard release map

the inheritance hierarchy for an object (provided by the typeO operation as a

string such as "StateManager/LockManager/Object") directly onto a standard

UNIX directory structure. Each individual object is then stored as an individual
file named by the UID of the object. Since the object store must be capable of
storing shadow copies of an object in addition to the original, in the default im-
plementation, each file is segmented into three areas: a header, and two object

storage areas. The header block contains a control structure that describes the size

and offsets of the other two storage areas, together with flags that indicate which

area represents the original and which the shadow copy and whether the states

are currently visible. The areas all start on disk block boundaries and the header

block always has the first block reserved for it. Reading or writing a state then

consists of reading the header (to determine which area contains the appropriate

state) and then reading (or writing) the state requested. Committing a shadow copy

is achieved by simple manipulation of the header block.

In order to improve the performance of the store several optimisations are im-
plemented. The first is an open file cache that keeps files containing object states

open as long as possible. This is to reduce the considerable overhead UNIX im-
poses for file system opens. Files are automatically added to this cache when

first used and remain in it until they are explicitly removed or the cache needs

compacting. The cache size is conflgurable and is initially set to use 507o of the

available file descriptors for a process. The second optimisation overcomes read

latency introduced by the use of a header. When a shadow copy is committed, the

store determines if the object is small enough to fit into the disk block reserved for
the header. If it will, then it is written to that block immediately after the control

information as part of the same write system call that replaces the header block.

Thus when the header is later read the last committed state may also be implic-
itly read and is immediately available without the need to read either of the object

storage areas.
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4.3. Implementing Atomic Action Services

4.3.1. Overview

The principal classes which make up the class hierarchy of Arjuna's Atomic Ac-
tion module are depicted below.

StateManager // Basic naming, persistence and recovery
control

LockManager // Basic two-phase locking concurrency control
User-Defined Classes

Lock ,// Standard lock type for multiple readers/
single writer

User-Defined Lock
AtomicAction
AbstractRecord

RecoveryRecord
LockRecord
RecordList
other management

Classes
// Inplenents atonic action control abstraction
// lmportant utitity class
// handles object recovery
// handles object locking
// Intentj-ons list

record types

To make use of atomic actions in an application, instances of the class
AtomicAction must be declared by the programmer in the application as illus-
trated earlier. The operations this class provides (Begin, Abort, End) can then
be used to start and manipulate atomic actions (including nested actions). The
only objects controlled by the resulting atomic actions are those objects which
are either instances of Arjuna classes or are user-defined classes derived from
LockManager and hence are members of the hierarchy shown above. Most Arjuna
system classes are derived from the base class StateManager, which provides
primitive facilities necessary for managing persistent and recoverable objects.
These facilities include support for the activation and de-activation of objects,
and state-based object recovery. Thus, instances of the class StateManager are

the principal users of the object store service. The class LockManager uses the
facilities of StateManager and provides the concurrency control (two-phase lock-
ing in the current implementation) required for implementing the serialisability
property of atomic actions. The implementation of atomic action facilities for
recovery, persistence management, and concuffency control is supported by a
collection of object classes derived from the class AbstractRecord which is in
turn derived from StateManager. For example, instances of LockRecord and
RecoveryRecord record recovery information for Lock and user-defined objects
respectively. The AtomicAction class manages instances of these classes (using
an instance of the class Recordlist which corresponds to the intentions list used
in traditional transaction systems) and is responsible for performing aborts and
commits.
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Consider a simple example. Assume that Exanple is a user-defined persistent

class suitably derived from the Arjuna class LockManager. An application con-

taining an atomic action Trans accesses an object (called 0) of type Example by

invoking the operation op1 which involves state changes to 0. The serialisability
property requires that a write lock must be acquired on 0 before it is modified;

thus the body of op1 should contain a call to the setlock operation of the con-

cunency controller:

Boolean Example::op1
{

(...)

Lock(L'TRITE)) == GRANTED)(setlock (new

/ / actual state change operations fo11or^r

Program 4. Simple Concurrency Control.

The operation setlock, provided by the LockManager class, performs the

following functions in this case:

1. Check write lock compatibility with the currently held locks, and if al-

lowed:

2. Call the StateManager operation activate that will load, if not done al-

ready, the latest persistent state of 0 from the object store. Then call the

StateManager operation nodif ied which has the effect of creating an in-
stance of either RecoveryRecord or PersistenceRecord for 0 depending

upon whether 0 was persistent or not (the Lock is a I'IRITE lock so the old
state of the object must be retained prior to modification) and inserting it
into the Recordlist of Trans.

3. Create and insert a LockRecord instance in the Recordlist of Trans.

Now suppose that action Trans is aborted sometime after the lock has

been acquired. Then the Abort operation of AtomicAction will process

the Recordlist instance associated with Trans by invoking an appropri-
ate Abort operation on the various records. The implementation of this op-

eration by the LockRecord class will release the I'rIRITE lock while that of
RecoveryRecord/PersistenceRecord will restore the prior state of 0.

Each of these classes and their relationships with each other will be described

in greater detail in the following sections.
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4.3.2. Recovery and Persistence

At the root of the class hierarchy in Arjuna is the class stateManager. As indi-
cated before, this class is responsible for object activation and deactivation, object
recovery and also maintains object names (in the form of object UIDs).

enun ObjectStatus
{

PASSM, pASSM_NEhr, ACTIVE, ACTIVE_NEI¡
1;

enum ObjectType
{

RECOVERABLE, ANDPERSTSTENT, NEITHER

];

class StateManager
{
public:

Boolean activate (const char * = 0);
Boolean deactivate (const char * = 0, Boole¡n commit = TRIIE);

Uid get-uid O const;

virtual Boolean restore_state (0bjectState&, 0bjectType) = 0;
virtual Boolean save-state (Objectstate&, QbjectType) = 0;
virtual const TypeName type O const = 0;

protected:
/x Constructors & destructor */

StateManager (0bjectType ot = RECOVERABLE);
StateMaaager (const Uid&) ;
virtual -StateManager O ;

vo:.¿ no¿itied O;

private:

Ì;

Program 5. class StateManager.

Objects are assumed to be of three possible basic flavours. They may sim-
ply be recoverable (signified by the consfructor argument RECOVERABTE), in
which case StateMânager will attempt to generate and maintain appropriate
recovery information for the object (as instances of the class Objectstate as
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mentioned earlier). Such objects have lifetimes that do not exceed the application

program that creates them. Objects may be recoverable and persistent (signified by

ANDPERSISTENT), in which case the lifetime of the object is assumed to be greater

than that of the creating or accessing application so that in addition to maintaining

recovery information StateManager will attempt to automatically load (unload)

any existing persistent state for the object by calling the activate (deactivate)
operation at appropriate times. Finally, objects may possess none of these capabili-

ties (signified by NEITHER) in which case no recovery information is ever kept nor

is object activation/deactivation ever automatically attempted. This object property

is selected at object construction time and cannot be changed thereafter. Thus an

object cannot gain (or lose) recovery capabilities at some arbitrary point during its

lifetime. This restriction simplifies some aspects of the overall object management.

If an object is recoverable (or persistent) then StateManager will invoke

the operations save-state (while performing deact ivat ion), restore-state
(while performing activate) and type at various points during the execution of
the application. These operations must be implemented by the programmer since

StateManager does not have access to a runtime description of the layout of an

arbitrary C++ object in memory and thus cannot implement a default policy for

converting the in memory version of the object to its passive form. If a different

language that supported a runtime type identification system had been used to

implement the system, this requirement could have been removed. However, the

capabilities provided by ObjectState make the writing of these routines fairly

simple. For example, the save-state implementation for a class Example that

had member variables called A, B and C could simply be the following:

Boolean Example::save-state ( OUjectState& os, ObjectType )

{
return (os.pack(A) && os.pack(B) && os.pack(C));

]
Program 6. Example save-state Code.

Since StateManager cannot detect user level state changes, it also exports

an operation called modif ied. It is the responsibility of the programmer to call

this operation prior to making any changes in the state of an object (as discussed

before, this is normally automatically done via the concunency controller).

The get-uid operation provides read only access to an object's internal sys-

tem name for whatever purpose the programmer requires (such as registration of
the name in a name server). The value of the internal system name can only be

set when an object is initially constructed-either by the provision of an explicit
parameter (for existing objects) or by generating a new identifier when the object

is created.
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Since object recovery and persistence essentially have complementary require-
ments (the only difference being where state information is stored and for what
purpose) stateManager effectively combines the management of these two prop-
erties into a single mechanism. That is, it uses instances of the class ObjectState
both for recovery and persistence purposes. An additional argument passed to the
save-state and restore-state operations allows the programmer to determine
the purpose for which any given invocation is being made thus allowing different
information to be saved for recovery and persistence purposes.

4.3.3. The Concurrency Controller

The concurrency controller is implemented by the class LockManager (program
7) which provides sensible default behaviour while allowing the programmer to
override it if deemed necessary by the particular semantics of the class being
programmed. The primary programmer interface to the concufrency controller
is via the setlock operation. By default, the Arjuna runtime system enforces
strict two-phase locking following a multiple reader, single writer policy on a
per object basis. Lock acquisition is (of necessity) under programmer control,
since just as StateManager cannot determine if an operation modifies an object,
LockManager cannot determine if an operation requires a read or write lock. Lock
release, however, is under control of the system and requires no further interven-
tion by the programmer. This ensures that the two-phase property can be correctly
maintained.

enum LockResult
{

GRANTED, REFUSED, RELEASED

];

enum Confl-ictType
{

CONFLICT, COMPATIBLE, PRESENT

Ì;

class LockManager : public StateManager
{
public:

:":01"""ta 
setlock (Lock *toSet, int, unsigned i.nt);

/* virtual functions inherited from StateManager */

virtual Boolean restore_state (Objectstate& os, ObjectType ot) = 0;
virtual Boolean save_state (0bjectState& os, ObjectType ot) = 0;
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virtual const TypeNane type O const;

protected:
/* Constructors and destructor */

LockManager (0bjectType ot = REC0VERABLE);

LockManager (const Uid& storeUid) ;
-LockManager O;

private:
/x non-virtual member functions *,/

ConflictType lockConflict (const Lock& otherlock) ;

);

Program 7. class LockManager.

The LockManager class is primarily responsible for managing requests to

set a lock on an object or to release a lock as appropriate. However, since it is
derived from StateManager, it can also control when some of the inherited fa-

cilities are invoked. For example, if a request to set a write lock is granted, then

LockManager invokes modif ied directly assuming that the setting of a write lock
implies that the invoking operation must be about to modify the object. This may

in turn cause recovery information to be saved if the object is recoverable. In a
similar fashion, successful lock acquisition causes activate to be invoked.

4.3.4. Locking Policy

Unlike many other systems, locks in Arjuna are not special system types. Instead

they are simply instances of other Arjuna objects (the class Lock which is also

derived from StateManager so that locks may be made persistent if required and

can also be named in a simple fashion). Furthermore, LockManager deliberately

has no knowledge of the semantics of the actual policy by which lock requests

are granted. Such information is maintained by the Lock class instances which

provide operations (the conf lictstlith operation) by which LockManager can

determine if two locks conflict or not.

extern const LockMode READ;

extern const LockMode IJRITE;

LockStatus

LOCKFREE, LOCKHELD, LOCKRETAINED

enum

{

Ì;
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class Lock : public StateManager
{
public:

/* Constructors and destructor

constructor */Lock (LockMode lm);
virtual "Lock O;

/* Lock

,/* virtual member functions *,/

virtual Boolean conflictsl,lith (const Lock& otherlock) const;
virtual Boolea¡ nodifiesObject O const;

/* inherited functions */

virtual Boolean restore_state (ObjectState& os, ObjectType ot);
virtual Boolean save_state (0bjectState& os, ObjectType ot);
virtual const TypeNane type O const;

private:

];

Program 8. class Lock.

This separation is important in that it allows the programmer to derive new
lock types from the basic Lock class and by providing appropriate definitions of
the conflict operations enhanced levels of concurrency may be possible. The Lock
class provides a nodifies0bject operation which LockManager uses to deter-
mine if granting this locking request requires a call on modif ied. This operation
is provided so that locking modes other than simple read and write can be sup-
ported. The default Lock class supports the traditional multiple reader/single writer
policy.

4.3.5. Co-ordinating Recovery, Persistence and Concurrency Control

Since objects are assumed to be encapsulated entities then they must be responsi-
ble for implementing the properties required by atomic actions themselves (with
appropriate system support). This enables differing objects to have differing re-
covery and concurrency control strategies. Given this proviso then any atomic
action implementation need only control the invocation of the operations provid-
ing these properties at the appropriate time and need not know how the properties
themselves are actually implemented.
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class AtomicAction : public StateManager

{
public:

AtonicAction O;
virtual -AtonicActionO ;

static AtonicAction *Current O;

Boolean add (AbstractRecord *);
Actionstatus statusO;
Boolea¡ isAncestor (const Uid&);
AtomicActiqa r.parent O i

virtual Actionstatus Abort O;
virtual Actionstatus Begin O;
virtual Actionstatus End O;

protected:
Boolean phase2Commit O;
Boolean phase2Abort O;
PrepareOutcone prePare O ;

private:
Recordlist *const pendinglist;
Recordlist *const preparedlist;
Recordlist *const readonlytist;

Ì;

Program 9. class AtonicAction.

In order to accomplish this, AtomicAction instances maintain a list of in-

stances of classes derived from a special abstract management class called

AbstractRecord. Each of these classes manages a certain property, thus

RecoveryRecords manage object recovery; LockRecords manage concunency

control information, etc. Instances of these management records are automatically

added to the pendinglist of the current atomic action as appropriate during ex-

ecution of the application. Given this list of management records then it is thus

sufflcient for the operations of AtomicAction to run down the list invoking an

appropriate operation on each record instance.

class AbstractRecord : public StateMaaager

t
public:

virtual -AbstractRecord O;
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. / / various mânâgement operations

virtual Boolean nestedAbort O = 0;
vírtual Boolean nestedCommit O = 0;
virtual PrepareOutcome nestedPrepare O =
virtual Boole¡n toplevelAbort O = 0;
virtual Boolean toplevelComnit O = 0;
virtual Prepare0utcome toplevelPrepare o

protected:
AbstractRecord (const Uid&) ;

private:

);

0;

=0;

Program 10. class AbstractRecoïd.

Thus, when an action is committed by the user (using the End opera-
tion) then the two phase protocol implemented by AtomicAction is per-
formed. This consists of firstly invoking the appropriate prepare phase operation
(toplevelPrepare or nestedPrepare) on each of the records held in the
pendinglist. As each record is processed it is moved from the pendinglist
to either the preparedlist or the readontylist depending upon whether the
record needs take part in phase two of the commit protocol. Each such invocation
returns a status indicating whether the operation succeeded or not. If any fail-
ures are detected the prepare phase is terminated and the action will be aborted in
phase two of the protocol.

once the prepare phase has terminated AtomicActlon will either invoke
phase2commit or phase2Abort depending upon the result of the prepare phase.
If the prepare phase for a top level action completes successfully (indicating that
the action should be committed) then the state of the atomic action is written to
the object store (using the same persistence mechanisms described previously)
to ensure that the commit will succeed even if a node crash occurs during phase
two of the protocol. Both of these operations are essentially identical in that
they process the records held on all of the lists and invoke the appropriate man-
agement operation (toplevelCommit, toplevelAbort, nestedComnit, or
nestedAbort). At this point the records may either be discarded (if the action
aborts or is top level) or propagated to the parent action for possibly further pro-
cessing. For top level actions successful completion of phase two causes the state
saved in the object store at the end of the prepare phase to be deleted.
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This record based approach provides complete flexibility in that new record

types can be created as required (other record types currently handle persistence

(PersistenceRecord), distribution (RajdootCallRecord) and object lifetime

(ActivationRecord)).
As a demonstration of the simplicity of using actions in Arjuna, the following

class represents the interface to a simple distributed diary system:

#include "AppointMent.h"

/ / tne following stub specific commands are actually the default
// @Remote, @NoMarshall
class Diary : public LockManager
{
public:

Diary(ArjunaName AN);
"DiaryO;

String ülherels(time-t now, String user);

AnAppointment GetNextAppointment (time-t now) ;

int AddAppointrnent (AnAppointment entry) ;

int DelAppointnent (time-t when) ;

virtual Boolean save-state(Obiectstate&, ObjectType) ;

virtual Boolean restore-state(0bjectState&, ObjectType) ;

virtual const TypeNane typeO const;

pri.vate:
String user-nane;
Appointmentlist *aPPts ;

Ì:

Program 11. class Diary.

The GetNextAppointment operation of this class could be written as shown

in Program lL.The Arjuna additions to this code consist simply of the declaration

and use of an instance of the AtomicAction class and the insertion of a call to

the inherited setlock operation. The remainder of the code is exactly as it would

be had Arjuna not been used. In this case read locks are set to ensure that the list

of appointments is not modified during the search for the next valid appointment.

These locks are automatically released (or propagated to a parent action if one ex-

ists) if the action commits or they will be released regardless if the action aborts.

AnAppointnent Appointments : :GetNextAppointnent( tine-t time )

{
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AtomicAction A;
AnAppointnent entry;

l.BeginO;
if (setlock(new Lock(READ), RETRIES) == GRANTED)

{
Appointnentlist *tnp = appts;

entry.start = 0;
entry.end = 0;
entry. description = rt tt '

white (tnp != NIILL)
{

if (tnp->entry.start <= time)
tnP = tmP->next;

else
{ // fourld first appointnent starting after given tine

entry = tnp->entry;
break;

Ì
)
l.EndO;

Ì
else

A.AbortO;
return entry;

Program 12. Example User Code.

4.4. Coping Wíth Distribution

ln order to cope with distribution, we need to provide the necessary facilities for
the distributed execution of atomic actions. This has three aspects:

1. Provision of the necessary object support infrastructure required for the
management of objects by servers.

2. Addition of distributed atomic action capability by enhancing the atomic
action and abstract record classes.

3. Interfacing to the underlying RPC system.
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4.4.1. Object Support Infrastructure for Distribution

In the present version of Arjuna, the object support infrastructure used is very

simple. Basically, it consists of the two processes mentioned earlier, namely

a store daemon and a connection manager; in addition, there is a housekeeper

process at each node that monitors liveness of client nodes and implements or-

phan detection and killing. Top-level actions access remote objects through

independent servers. On receiving an initiate request from a client, the con-

nection manager simply forks a (server) process supplying it the name of the

binary ûle containing the object specific server code. This server first checks if
a server for the client already exists on the node, and if so, it returns the com-

munication identifier of the existing server to the caller and dies; otherwise

it becomes a fully fledged server by executing the named binary file. Thus n

servers for an object can exist at a node if n top-level actions are sharing that

object. The concurrency controller for the object will ensure proper sharing: for
example, only one server will ever be allowed to modify the state of the ob-

ject. This simple scheme has the important advantage of providing isolation

between independent actions, but is inefficient for frequently shared objects. A
better approach would be to provide a flexible scheme for managing objects,

permitting a server to be shared if required (this will naturally require multi-

threading), and even allowing a server to manage instances of several differ-
ent classes of objects (this requires a dynamic loading facility). Such options

were discounted in this version of Arjuna because at the time the implemen-

tation started (late eighties) there were no satisfactory, portable threads pack-

ages available for UNIX, nor was there any dynamic loading facility avail-

able. Future versions of Arjuna will be based on a more flexible object support

infrastructure.

4.4.2. Implementing Distributed Atomic Actions

For the atomic action system to function efficiently and correctly in a distributed

environment it is important that any atomic actions active in a client are correctly

reflected in any remote object server that the client has accessed. This ensures

that remote objects are correctly managed should the atomic action in the client

commit or abort. These server-side atomic actions (termed server actions and im-
plemented by the class ServerAtomicAction) behave solely as representatives

of any actions in the client and are created automatically by the system as needed.

The class ServerAtomicAction is derived from AtonicAction and essentially

behaves identically to it. The primary difference between the two classes is that

ServerAtomicAction allows each of the operations that constitute the two-phase

protocol to be explicitly called-which AtonicAction does not. This is important
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since these operations will actually be invoked directly by the commit or abort of
an action in the client.

Since the action hierarchy present in the client must be reflected in the server
it must be propagated somehow. This propagation is handled by classes that inter-
face with the underlying RPC mechanism. All calls from a client to a server auto-
matically have the current action hierarchy (as a list of action UIDs) prepended to
them. When the call is received in the server, this list is extracted and compared
with the hierarchy that currently exists. If there is a discrepancy, then the hierarchy
in the server is made to conform to that sent in the call. This may mean creating
new ServerAtonicActions (if the client hierarchy is deeper than the one in the
server), aborting ServerAtomicActions (if the hierarchy is shallower) or a com-
bination of the two.

The use of abstract management records provides a simple handle on the im-
plementation of the distributed two-phase commit protocol which can be imple-
mented using the same technique. That is, the classes that interface to the RPC
system create and register RPC management records as calls are made to remote
objects. Thus when an action commits or aborts in the client and the record list
is processed then the RPC management records transmit the operation to the ap-
propriate server which invokes the appropriate operation on the current Server
AtomicAction.

In the same way that the state of a top level atomic action is saved to the
object store at the end of a successful prepare phase, then the state of the corre-
sponding server atomic actions is also saved at the same time. The information
saved is different (it includes the name of the co-ordinating node, for example),
but its presence in the object store indicates the same thing. That is, this action has
prepared successfully.

4.4.3. Interfacing Tb The Underlying RPC

The underlying RPC system is not normally visible to programmers. Instead a

Stub Generation system is employed to create the required code to interface
to the RPC mechanism. Stub generation in Arjuna is different to that typically
employed in other systems in that it does not require the use of a separate Inter-
face Description Language (IDL). Instead the Arjuna stub generator is based upon
the philosophy that the interface to an object has already been specified (in C++)
when the object was originally designed with a non-distributed implementation
in mind. To this end the Arjuna stub generator accepts as input the standard C++
header files that would normally be input to the C++ compiler. The stub genera-

tor places as few demands on the underlying RPC system as it can. In particular
it requires only the ability to initiate a connection to some remote server, a means
of making actual calls, and a method of breaking the connection. This separation
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of the details of the actual RPC from the interface seen by the generated stub code

is important and has many advantages. In particular, stubs can be generated with-

out regard for the actual RPC mechanism used providing that the RPC mechanism

complies with the required interface specification.

The stub generated code uses only three classes: ClientRpcManager,
ClientRpc, and ServerRpc. As expected ClientRpc represents the client side

view of the RPC mechanism and provides operations to initiate an RPC connec-

tion (initíate), perform a remote call (ca11), and break the RPC connection

(terminate). initiate should establish a binding between the client and the

server through whatever mechanism the underlying RPC mechanism provides, us-

ing the information provided by the ArjunaName object supplied as a parameter.

terninate breaks the binding between a client and a server, while call performs

the actual RPC. The main parameters to caLl are an opcode indicating which

operation to invoke in the server and buffers for the call arguments and returned

results, together with two status flags.

class ClÍentRpc
{
public:

//
/ / Ftndamental generic operations provided by
// tne RPC interface.
//

ClientRpc (ArjunaNamex ArjNan) ;

ClientRpc (const char* serviceName = 0);
virtual -ClientRpcO;

RPC-Status initiateO;

RPC-Status call(Int32 opcode, RpcBuffer& callbuff ,

Int32& errcode, RpcBuffer& result) ;

virtual RPC-Status terninateO ;

Ì;

Program 13. class ClientRpc.

Similarly, the server side of the connection is handled by ServerRpc which

provides operations to receive an incoming request (getlJork) and return some

results (sendResult).

class ServerRpc
{
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public:
ServerRpc O;
vj.rtual -serverRpc O;

int initialise (int argc, char *argv[]);
void getllork (Int32& opcode, RpcBuffer& call);
void sendResult (Int32 errcode, RpcBuffer& result);

];
Program 14. class ServerRpc

Normally the stub generated code does not invoke any of the client side op-

erations directly. Instead this is handled by the third class ClientRpcManager.
The constructor for this class invokes initíate, while the destructor invokes

terninate. Naturally it exports the call operation unmodified. This approach

ensures that clienlserver connection and disconnection is handled simply by creat-

ing and deleting instances of the control class.

class ClientRpcMaaager
{
public:

ClientRpcManager (ArjunaNane *) ;

ClientRpcMarager (ClientRpc * = 0, int = 0);
ClientRpcManager (const char *, int = 0);
virtual -ClientRpcMaaager O;

RPC-Status call (Int32, RpcBuffer&, Int32&, RpcBuffer&) ;

static ClientRpcl{arìager *createlnsta¡ce (const char *, int = 0);

private:
int initiated;

Ì;
Program 15. class ClientRpcManager.

4.4.4. Parameter Marshalling

Implementing rernote procedure calls inevitably requires a mechanism by which

arguments and results can be transferred between the client and the server. This

typically involves packing the arguments into a buffer used by the underlying

RPC transport mechanism for transmission and then unpacking them again at the

receiving machine. These operations are frequently referred to as marshalling and

unmarshalling.
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C++ operator overloading is used to simplify considerably the code required
to marshall (encode) and unmarshall (decode) arguments to and from the underly-
ing RPC buffers. In particular, the operators )> and << have been adopted for this
purpose (similar to their use in the C++ VO system). Thus << is used to marshall

arguments into the buffers used by the RPC mechanism, and >> to unmarshall ar-
guments from the buffers regardless of the actual type of the argument. The RPC

buffer class (RpcBuf f er) provides a set of operations that permit the marshalling
and unmarshalling of all of the basic types of C++ (int, char, etc.). The mar-

shalling of more complex structures is simply achieved by breaking the structure
up into its component parts and marshalling each independently. The actual encod-

ing scheme currently used is the same as that used by the persistence mechanisms

in Arjuna that enable a C++ object to be stored on disk (that is RpcBuff er is de-

rived from the class Buffer and uses its pack and unpack operations directly).
There is, however, no reason why some other scheme could not also be used.

4.4.5. Client and Server Classes

For each class declaration that it reads from its input file the stub generator will
(when appropriate) generate three new class deûnitions. These class definitions
represent:

1. The replacement class for use by the programmer in the client application.

2. The server stub class responsible for decoding an incoming RPC request,

unmarshalling any incoming parameters, invoking the required operation,

and marshalling and returning any output values prior to returning control
to the caller.

3. A renamed version of the original input class that is instantiated in the

server as required.

For example, the class definition shown in Program 11 would result in the

generation of the definitions and supporting code shown in the following sub-

sections.

4.4.5.1. CLIENT INTERFACE Simple renaming tricks played using the stan-

dard pre-processor enable this class to be transparently used under its original
name in the programmer's application code.

class RenoteDiary : public RenotelockManager
{
public:

RemoteDiary (ArjunaName , ClientRpcManager *crpc = 0);
-RemoteDiary O;
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Strj-ng tr'lherels (time-t , String );
AnAppointnent GetNextAppointment (time_t ) ;

int AddAppointment (AnAppointnent );
int DelAppointment (tine_t );
virtual Boolean save_state (ObjectState & , 0bjectType );
virtual Bool-ean restore-state (0bjectState & , ObjectType
virtual const TypeName type O const;

protected:
RemoteDiary(ClientRpcManager *, const RpcBuffer&, char) ;

private:
virtual ClientRpcMa¡rager *,-get-handle O const;

Cl ientRpcManager x-c1 ient-handle ;

);

Program 16. class RemoteDiary.

This generated client stub class has the same set of public operations as the

original (although any constructors have had an extra argument added to them,
this is effectively invisible and the code written to use instances of the original
class will still compile). Public instance variables, however, are deliberately not
included in the generated class for reasons that will be explained in a later sub-

section. Internally the implementation of the class is totally different. Firstly, only
variables pertinent to the establishment and maintenance of the RPC connection
are present. Secondly, all of the operations are re-implemented to perform the ap-

propriate parameter (un)marshalling and RPC invocation. Thirdly, some additional
operations are introduced including an additional protected constructor which is

used to ensure that certain information pertinent to the RPC system is correctly
propagated to the stub generated versions of all base classes (if any).

4.4.5.2. CLIENT SIDE CODE The generated client stub code for each opera-

tion follows a standard pattern: marshall arguments, send invocation, await repl¡
unmarshall results, and return to caller. The client stub code produced exploits the

C++ constructor and destructor notions to ensure that the real (user) objects in the

server have lifetimes that match the lifetime of the (stub) objects in the client. At
the point that the stub object enters scope in the client (and thus the constructor
operation of the object is automatically executed) then binding of client to server

is accomplished using the supplied ArjunaName. Furthermore, the first RPC sent

to the newly created server corresponds to the invocation of the constructor for
the real object and is passed the arguments presented by the client application.

);
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Similarl¡ when the stub object is destroyed in the client, the generated destructor

causes an RPC request to be sent to the server causing the execution of the remote

object destructor. The server is destroyed when the ClientRpcManager instance

that performed the initiate request is destroyed.

AnAppointment RenoteDiary: :GetNextAppointrnent (time-t nor¡)
{

,/* call and return buffers *,/
RpcBuffer rvBuffer;
RpcBuf f er callBuff er (-myHashVal) ;

RpcBuf f er replyBuff er ;

RPC-Status rpcstatus = 0PER-UNKNOIíN;

Int32 serverStatus = OPER-INVOKED-OK;

AnAppointnent returnedValue ;

/* narshall paraneter x,/
callBuffer << nor¡t;

/* do call- */
rpcStatus = -clientHandle.call(31096804, callBuffer, serverStatus,

replyBuffer);
if ((rpcStatus == OPER-D0NE) && (serverStatus != DISPATCH-ERR0R))

{
sr¿itch (serverStatus)
{
case 0PER-fNV0KED-OK:

replyBuffer >> rvBuffer;
rvbuffer >> returnedValue'
break;
default:

-clientHandle. rpcAbort O ;

]
)
else

-cIientHandle . rpcAbort ( ) ;

return (returnedValue) ;

)
Program 17. Stub Generated Client Code for GetNextAppointnent.

The method for generating the server side interface and code follows a similar
pattern and is not discussed here; more complete details can be found in [Paning-
ton 19951.

4.5. Naming and Bínding Service

The Naming and Binding service together supports the location of objects by
name and the management of naming contexts. Such services are often designed
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as a part of a name server which becomes responsible for mapping user supplied
names of objects to their locations. Like the RPC and Object storage services, Ar-
juna can exploit any available name server, or a data storage service for storing
naming and binding information. The default system itself has been implemented
out of persistent Arjuna objects, thereby providing atomic access to naming and
binding information. The atomic naming and binding system is used for support-
ing object replication (to be discussed in a subsequent section).

Arjuna provides an abstract naming scheme for persistent objects. This
naming scheme is based around the use of instances of the class ArjunaName. The
ArjunaName class provides an interface to a (possibly replicated) naming service,
allowing the names of persistent objects to be registered with the name service
and searched for. Using this scheme, individual persistent objects (whether local
or remote) can be named by strings and the naming service can be accessed from
anywhere in the distributed environment.

class ArjunaNane
{
public:

ArjunaNane O;
ArjunaName (const char* Name);
-ArjunaNane O;

Boolean lookUp O;
Boolean registerNane O ;

Boolean registerName (const char*, const StateManager&) ;

void setObjectName (const char*);
void setObjectUid (const Uid&);
void setServiceName (const char*) ;

void setHostNane (const char*);

const char* const getQbjectNarne Oconst;
Uid get0bjectUid Oconst;
const char* const getServiceNane O const;
const char* const getHostName O const;

];

Program 18. class ArjunaName.

The ArjunaNane entry held within the name service contains all of the neces-
sary information for locating and using the persistent object, e.g., the hostname of
the node where the server is located, its service n¿une, and the UID of the persis-
tent object.
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The lookUp method contacts the name service to attempt to retrieve the stored

object information which matches the completed fields within the ArjunaName

object. The information returned can be obtained using the various get methods.

The registerName methods operate in a similar manner but build the actual entry

to be added to the name service.

#include <Arj Servers,/Arj Name . h>

class Example : public LockManager

{
public:

Exanple(char* name);
Example (ArjunaNarne arjunaName) ;

private:

Ì;

Program 19. Example ArjunaName Usage.

To use an ArjunaName, a persistent object's interface is augmented with two

additional constructors. The first constructor (with char* parameter) is for cre-

ating a new persistent object, the name of the new persistent object being the

value of the parameter (e.g., "MySpreadSheet"). The second constructor (with

ArjunaName parameter) is for accessing existing (already created and registered

with the name server) persistent objects.

V/hen the ArjunaName instance is created it contacts the name server to ob-

tain the remaining information about the persistent object named in the construc-

tor. If this is a remote object then this information includes the hostname of the

remote object as well as the persistent object's UID.

4.6. Crash Recovery

The Arjuna crash recovery mechanism is built around the fact that when a top-

level action that has modified the states of some objects prepares successfully it
saves its state in the object store (pure read-only actions do not need to do this).

Thus, by examining the contents of the object store the crash recovery mecha-

nisms can determine those actions that had prepared but not fully committed.

Crash recovery is actually driven from the server end rather than the original

client. This is because the information saved by server atomic actions includes

the name of the co-ordinating client node. Thus servers know their clients, but

clients do not necessarily know all of their servers. The crash recovery process
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therefore consists of scanning the object store for saved server atomic action states

(that is server actions that had prepared but not committed or aborted) and for any

found querying the co-ordinating node for the frnal outcome of the action. Once

the commit or abort decision has been completed the server atomic action entry is

deleted from the object store.

The query process at the co-ordinating node uses the presence (or absence) of

a coffesponding atomic action entry in the object store to determine whether the

client action committed or aborted. The system works in a presumed abort mode,

that is, if no record exists then the action is aborted. This arises from the fact that

the record is written only at the end of a successful prepare phase implying that

all servers have agreed to commit. If any cannot commit then the record will not

be written. Similarly, the record is deleted only when phase two has been success-

fully completed, in which case there cannot be any server actions whose state is

unknown.

4.7. Advanced Features

4.7.1. Replication

The availability of Arjuna objects can be increased by replicating them on several

nodes, for example, by storing their states in more than one object store. Object

replicas must be managed through appropriate replica-consistency protocols to

ensure that object copies remain mutually consistent.

A replication technique could either be active or passive.In active replication,

more than one copy of an object is activated on distinct nodes and all activated

copies perform processing. Passive replication in its basic form requires main-

taining multiple copies of persistent states but only a single copy (primary) is

activated; at commit time, the activated copy checkpoints its state to all the ob-

ject stores where the states reside. One of the advantages of this form of passive

replication is that it can be implemented without recourse to reliable group com-

munication that is required for active replication (as only one replica is activated

at any time). So passive replication can be supported on top of any conventional

RPC system. Since Arjuna is intended to be capable of running on top of com-

monly available distributed computing platforms, the default replication scheme

employed for Arjuna objects is passive. However, active replication of Arjuna ob-

jects is also possible ll-ittle & Shrivastava 1990]. Indeed, we have implemented

the necessary infrastructure within Arjuna to enable it to support both active and

passive replication of objects.

This infrastructure consists of a naming and binding service for persistent

replicated objects that ensures that applications only ever get to use mutually
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consistent copies of replicas. The naming and binding service itself has been
implemented out of persistent objects whose operations may be invoked under
the control of atomic actions; that is how the service is capable of providing the
necessary consistency. Further details are available in [Little et al. 1993, Little &
Shrivastava 19941.

4.7.2. Object Clustering

Arjuna also provides a dynamic performance improvement scheme that is based
on controlling clustering of persistent objects [V/heater & Shrivastava 1994].
There are two mutually conflicting factors that influence the execution time of
atomic actions:

1 The disc VO time taken to activate objects (load their states from object
stores) and then deactivate them (copy their modified states back to object
stores) at commit time.

2. Time taken up because of access conflicts: an action operating on an object
could block the progress of other actions requesting access to that object
(e.g., due to a read-write conflict).

The disc VO time can be reduced by decreasing the potential number of object
activations/deactivations: it is faster to activate (deactivate) a single object of size
N disc blocks than to activate (deactivate) fr, fr ) 1, different objects of total size
1/ (this is because like most object stores, the Arjuna object store stores the state
of an object in contiguous disc blocks). On the other hand, access conflicts can be
reduced by decomposing an application's state into a large number of persistent
objects each independently concuffency controlled.

The access pattern and the degree of sharing can vary during the lifetime of
applications. There could be a phase when applications require access to a large
number of related objects, but object sharing is infrequent; during this phase,

clustering related objects into a few large objects for the purposes of activa-
tion/deactivation would improve performance. Similarly, there could be a phase
when applications need to share objects frequently, then declustering objects
into a number of independently concurrency controlled units would be better.
Our scheme provides a means of dynamically reconfiguring storage structures
of application objects, from no clustering (all objects treated as independent), to
maximum clustering (all objects grouped together), including any intermediate
level of clustering to suit a given pattern of usage. Any such configuration is car-
ried out using atomic actions, so the configuration changes take place atomicall¡
even if failures occur.
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5. Pedormance

To give an indication of the performance of the prototype system a series of

p"rfor-*"" tests have been carried out on a Sun SPARCstation 10/30 running

Solaris 2.3.Themachine was normally loaded during the performance evalua-

tions and was running all of the standard daemons in order to simulate the typical

environment in which Arjuna operates. All of the performance evaluation tests in-

volved operations upon a number of objects each of which was 1024 bytes in size'

The times were measured using standard system calls and represent elapsed time'

Analysing the performance of Arjuna applications is complex since it depends

on many external and internal factors. For example, one key external factor affect-

ing perio.mance is the effect of the kernel file buffer cache. If an object has been

accessed recently such that its state is still in the buffer cache, then the activation

time for the object is significantly reduced since physical disk vo is unnecessary'

Similarly, the object store f,le descriptor cache which attempts to reduce the num-

ber of open system calls can significantly affect perfofÏnance depending upon the

number of different objects accessed.

5.1. Local Transactional Overhead

Any transactional system must add some measure of overhead to an application'

In Arjuna most of this overhead occurs due to the additional system calls the sys-

tem makes on behalf of the application (time spend executing other Arjuna code

in user space is tiny in comparison). Additionally read-only actions have differ-

ent performance characteristics to those that also modify objects. Experience has

st own that the primary factors affecting performance afe, not suprisingly, those

that involve disk activity, followed by those operations performed by the concur-

rency controller.

5.1.1. Object Store Overhead

Arjuna applications access the object store for three reasons: reading/writing the

state of an object, and action intention list processing. This accounts for the main

difference in the characteristics of read-only and write actions since the latter type

of action makes many more file system accesses. Note that Arjuna only writes to

the file system on top-level commit so these differences are only apparent then'

object Activation. This is a complicated operation requiring location of the

object in the object store (via read-conmi-tted) and its unpacking into a

usable C++ object (via restore-state). Of these two it is the former that

dominates. The operation read-committed can map into the following
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UNIX system calls: open, f cntl, f stat, Iseek, read.v, f cntl, close.
The open and close calls may not actually be made depending upon the
effect of the open file cache mentioned earlier.

object Deactivation.The inverse of the above, requiring a save_state,
followed by deactivate. Here deactivate maps into: open, f cntl,
writev, f cntl, cl-ose. Typically the open call is not actually made due
to the use of the open file cache and the majority of time is spent waiting
in the kernel on the writev call (which is forced to be synchronous since
the store is required to be stable).

Intention List Processing.When a top-level action commits a list containing
information about all of the objects modified by the action must be saved.
In the current implementation this is stored in a set of memory mapped
files which must be flushed to disk using memcntl.

5.1.2. Concurrency Control Overhead

Arjuna does not require concuffency control information to be stable, so most
of the concuffency control overhead comes from those system calls that enforce
mutual exclusion on the shared memory region in which the locks are stored-
notably sigprocnask and semop.

5. 1.3. Performance Evaluation

In order to find the dominant system calls, both top-level read-only and top-level
write tests were monitored with Quantify to determine the most significant (from
the point of view of elapsed time) system calls executed by Arjuna. The results
are presented below.

5.1.3.1- TOP-LEVEL SYSTEM CALLS-WRITE ACTION For any top-level action
that modifies objects, the system calls that dominate the elapsed time are (numbers
in brackets indicate the number of calls made):

Per Action: nemcntl(2), fstat(13), getpid(2), sigprocnask(7), and
semop(4). The first three calls are used in intention list processing, the
latter two are used to enforce mutual exclusion and prevent signal recep-
tion during critical sections of code.

Per Object: readv(3), tseek(5), fcntt(6), writev(2), fstat(3), getpid(4),
sigprocmask(6), and semop(4). As above the latter two calls are from
enforcing mutual exclusion and preventing signals. The other calls are
all incurred in reading and writing the state of an object from and to the
object store.
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In this scenario, the elapsed time is actually dominated by only two calls: the

writev (to write an object state) and memcntf (intention list handling) which

together represent -707o or the elapsed execution time of the test.

s.1.3.2. TOP-LEqEL SYSTEM CALIß-READ ONLY ACTION For any top-level

action that only reads objects the following system calls are dominant:

Per Action; sigprocmask(7), getpid(2), sigaction(3), and time(1). These

are concerned solely with mutual exclusion and signal prevention. Note

that since the action is read only no intention list handling calls are

needed. The call of the time system call is from UID generation.

Per Object: readv(1), lseek(1), fcntl(2), fstat(1), nemcpy(64),

getpid(3), time(3), si-gprocmask(4) and semop(4)' The flrst five are

from object store access; the next two are UID generation, and the last

two are the familiar mutual exclusion/signal handling calls'

Here, since the disk accesses are far fewer, more system calls show up and

their distribution is more even in that even the most heavily used (sigprocmask)

only represents l57o of the total elapsed time.

5.t.3.3. ANALysß One interesting characteristic of the above traces is that

despite the fact that many objects were accessed in the tests the open and close

system calls do not figure in the top time consuming calls. This shows that the

store's open file cache is operating effectively. When the cache is disabled open

becomes far more significant and rivals writev for time consumed by top-level

write actions. Table 1 shows the average elapsed time taken by the system calls

mentioned above in the test environment:

Using this information enables the approximate performance of an Arjuna ap-

plication to be calculated. Since nested actions do not perform any intention list

processing they effectively have performance characteristics similar to a read-only

top-level action.

Given these timings and system call patterns it can be seen that the perfor-

mance of any Arjuna application will be effectively proportional to the number of

objects modified by top-level actions which commit since it is only in this case

that the very expensive system calls writev and memcntl are executed.

The next set of performance figures effectively conflrm this observation. They

represent the performance of the action system, for both nested and top-level ac-

tions, controlling operations which either examine or modify an object. In the

nested case only the nested action manipulates the object-the top-level action is

simply a wrapper.
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Table 1. System Call Performance.

System Call Average Blapsed Time (ms)

writev
memcntl
fcntl
fstat
readv

semop

sigprocmask
lseek
getpid
time
sigaction

t4.o
2t.5
0.17

0.06
0.21 (cached in kernel)
3.40 (uncached)

0.08

0.01

0.02

0.02

0.01

0.04

Table 2. Local Atomic Action Performance.

Read Only Write

Top-level atomic action which commits
Top-level atomic action which aborts

Nested atomic action which commits (exploiting caching)
Nested atomic action which aborts

9.5 ms

9.5 ms

5.0 ms

8.6 ms

101.0 ms

10.5 ms

5.5 ms

9.5 ms

As can be seen from the figures above a top-level atomic action that modi-
fies an object, and then commits those modifications is a long operation. This is
due to the need to create, write, and then remove an intentions list for each top-
level atomic action in addition to the object storage overheads. As outlined earlier
these costs are dominated by the execution of the 2 x r¿ritev (-28ms), and2 x
¡nemcntl (-43ms) calls which together contributed 70Vo of the elapsed time con-
firming earlier comments.

The figures obtained for nested actions illustrate one of the effects of caching.
Once the first nested action commits, information (in particular the activation state
of the object) is propagated to the parent top-level action where it is retained.
Thus future nested actions proceed without further reference to the object store.
In the abort case all information is discarded requiring that each nested action re-
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Table 3. RPC Performance.

Server initiation 233.0 ms

Server termination 4.0 ms

Null RPC round trip 3.0 ms

Table 4. Distributed Atomic Action Performance.

No lock Read lock Write lock

Distributed top-level atomic

action which commits

Distributed nested atomic

action which commits

5.4 ms

5.3 ms

19.0 ms

9.0 ms

130.0 ms

10.0 ms

activate (i.e. reload from the store) the object thus the performance is similar to

that of a read-only action.

5.2. Distribution Overhead

Table 3 lists an evaluation of the performance of the basic distribution infrastruc-

ture:
Server initiation requires an RPC to the manager process on the remote node,

which in turn will execute two f ork and two exec system calls prior to return-

ing. The rationale behind the double f ork is to ensure that the child process is

completely divorced from the managel and the double exec occurs because a du-

plicate server checking process is exec'd first before the required server. The time

taken for server initiation is greater than the time to perform a simple double f ork

and exec, which required 96.0 ms, due to server registration. However, server ini-

tiation and termination are expected to be fairly infrequently executed operations.

The last set of performance figures were obtained to evaluate the performance

of distributed atomic action processing, including distributed two-phase commit

assuming that a server has already been created to avoid server startup/shutdown

costs.

The results show several things. Firstly, even a null action (i.e., one that does

not touch any object) imposes overheads over the Null RPC round trip time. This
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is due to the overhead involved in transmitting and then building the action con-
text in the server. Secondly, the performance of the distributed system is approxi-
mately equivalent to the non-distributed case with the addition of the extra RPCs
for the call and those sent during execution of the two-phase commit protocol.
For example, in the read-only case two RPCs are sent (-10.8 ms) which in com-
bination with a read-only action time (-9.5 ms) combine to yield the ûnal result
(read-only operation do not need to participate in phase-2, hence only two RPCs
are sent).

5.3. Final Comments

One immediately obvious problem shown by the above results is that the cost of
accessing the object store is quite high. This was only to be expected since the
object store implementation sits directly on top of the UNIX file system. Fur-
thermore, Arjuna uses the object store not only to store user objects but also for
atomic action commit information to ensure the permanence of effect properties.
Thus it treats the store as stable and in order to ensure this performs all of the VO
operations in synchronous mode to ensure that the UNIX kernel does not buffer
any critical data internally. This has a particularly bad effect on top-level actions
which commit where not only does the user's object have to be written but also
the atomic action intentions list as well. We continue to refine the object store to
reduce this bottleneck. It is worth noting that commit times for write actions can
be reduced significantly if stable main memory is made available; expected times
then would resemble read commit time (of the order of 10 ms).

6. Retrospective Examination

Arjuna has proved to be a useful research tool. It has shown that it is possible
to build a viable reliable distributed applications toolkit without modifying the
language or the underlying system. A major benefit of this approach is that ap-
plication builders can use Arjuna in conjunction with other existing tools. For
example, to construct user interfaces to Arjuna applications, we often make use of
the publicly available Interviews Toolkit.

Since its release in 1992, we have strived hard to maintain and improve the
system (thanks to comments and bug reports from numerous users), keeping track
of changes to C++ and its compilers and UNIX systems from different sources.
Arjuna has been used regularly by us for teaching distributed computing to under-
graduate and graduate students. In addition, it has been used for a variety of other
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purposes. This has given us useful insights into the strengths and weaknesses of
Arjuna as well as C++. In light of this, we flrst examine how effectively we have

met the stated design goals of Arjuna (modularity, integration of mechanisms, and

flexibility) and then discuss the suitability of C++ for programming distributed

applications.

6.1. A Critical Look at Arjuna

We begin by briefly describing some of the areas in which Arjuna has been used.

l. Object oriented distributed database system. Arjuna has been used for

building an experimental distributed database system called Stabilis [Buzato

& Calsavara 19921. Stabilis is currently being used in one experiment as

an information base for a run-time management system for distributed

applications and in an another experiment as a repository for an Internet

information discovery tool.

2. A Student Registration system, The management information services unit

of our University, responsible for computerisation of the University's ad-

ministration, has collaborated with us in building a student registration

system. In the past, all students went to a central registration offlce for reg-

istering themselves with the University. In the new system, admission and

registration is carried out at the departments of the students. The system has

a very high availability requirement: admissions tutors and secretaries must

be able to access and create student records (particularly at the start of a

new academic year when new students anive). Arjuna offers the right set of
facilities for this application, enabling the University to exploit the existing

campus network and workstation clusters to provide transactional access to

highly available data. The current configuration uses eight high perfotmance

workstations that together serve about eighty user terminals scattered over

the campus; three of the workstations are used exclusively for maintaining a

triplicated objectstore.

3. Provision of atomic transactions to an existing programming system. A
software company that specialises in providing data management software

to companies in oil and financial sectors is integrating the Arjuna class

libraries into its own software product for obtaining atomic action func-

tionality. This exercise involves replacing the default RPC mechanism of
Arjuna by that of DCE, and replacing the existing object store by a com-

mercial object store that is used within the company's product.
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4. Fault-tolerant parallel programming over a network of workstations. Use
of networks of workstations for obtaining speedups by running parallel ver-
sions of programs (e.g., floating point matrix calculations, computational
fluid dynamics calculations) is gaining widespread popularity amongst
scientists. Many such scientiflc parallel programming applications need
to manage large quantities of data (requiring several megabytes of stor-
age) and parallel calculations may last a long time (from hours to days).
Such applications could benefit from adequate support for data persistence
and fault-tolerance. We have explored the use of Arjuna for this type of
applications, and have been encouraged from our initial results [Smith &
Shrivastava 19951.

'We now take a critical look at Arjuna, examining in turn its modularity, inte-
gration of mechanism, and flexibility features.

Modularity. By encapsulating the properties of persistence, recoverability,
shareability, serialisability and failure atomicity in an Atomic Action
module and defining narro% well-defined interfaces to the support-
ing environment, Arjuna does achieve a significant degree of mod-
ularity. The structure of Arjuna makes it possible to replace default
RPC, Object Store, Naming and Binding modules by the modules
of the host system. This makes the system quite portable [Shrivas-
tava &. McCue 19941. One of our ports has been on to the ANSAware
distributed computing platform IANSA l99ll. This plarform pro-
vides RPC, object servers (known as capsules) and naming and bind-
ing service via a subsystem known as the Trader. The port was per-
formed by mapping the RPC operations (initiate, terminate, and
call) onto those provided by ANSAware. Application (3.) mentioned
above actually requires simultaneously discarding all of the three de-
fault modules of Arjuna in favour of those of the host environment.
'We 

have performed a feasibility study to ascertain that this is indeed
possible.

The current design for Arjuna, while elegantly sorting out the functions
of the Atomic Action module into classes, nevertheless fails to cleanly
separate the interfaces to the supporting environment. Some components
are responsible for too many things. For example, the StateManager
class maintains not only state information but also the unique identifier
of the object. The present RPC facility, while supporting the interface
discussed, is also responsible for the creation of object servers, and failure
detection and cleanup. These three facilities should have been separated.
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Notwithstanding these observations, we believe that on the whole, Arjuna
has met the goal of modularity.

Integration of Mechaniszs. Although Arjuna does make it relatively easy for
progranìmers to build distributed applications using objects and actions, in
many respects the programmer still has to be aware of several additional

complexities, for example, writing save-state and restore-state
routines and setting the appropriate locks in operations. Experience has

shown that users have not found these complexities to be insurmountable

problems. These latter problems can actually be alleviated by enhancement

of the stub generation system. For example, save-state and marshall
are essentially the same operations, and the latter can already be gener-

ated. Furthennore, sufflcient syntactic information already exists in the

declaration of a member function (so called const member functions)
to determine whether aread or write lock is needed. Thus by relatively

minor enhancements the programmer's burden can be reduced further, pro-

vided that the default behaviour provided by the system is acceptable. If
such a scheme is implemented, mechanisms will also be needed for those

cases where the programmer wishes to override the default actions.

Flexibility. We have learned our biggest lessons in the area of flexible sys-

tem structuring. When we began the design of Arjuna, we took flexibility
to mean that application builders should be able to perform application

specific enhancements to the class hierarchy, permitting for example,

type-speciûc concunency and recovery control to be easily produced

from the existing default ones. Although the single inheritance hierar-

chy is somewhat constraining in what is achievable, Arjuna does permit

such enhancements to be performed. Experience from helping users build-
ing Arjuna applications has taught us that this is however not sufficient;

serious application builders need controlled access to the deepest internals

of the system! The reason in most cases is for tuning the system behaviour

for obtaining higher performance; sometimes this is also because users

have some system structuring constraints imposed by existing applications

(e.g., where to place object servers and a limit on their numbers), that can

only be satisfied by modifications to the internals of Arjuna. We give a

few representative examples which we hope will be of interest to the read-

ers of this paper.

. Transport mechanismfor RPC. For efficiency reasons, the default RPC

mechanism of Arjuna, like several other RPC mechanisms, uses connection-

less datagrams (UDP) for transporting RPC messages, performing its own

fragmentation and reassembly of packets. This has proved adequate in all
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the applications we have encountered, except application (4.). This applica-

tion frequently requires RPC messages to caffy several megabytes of data,

for which the existing protocol proved inadequate (as it was not designed

for bulk data transfer). V/e changed the Arjuna RPC to enable it to use a

connection based transport layer (TCP) where needed. What is required is

for RPC to be able to choose the most appropriate transport mechanism at

run time.

Server managemenl. As stated before, Arjuna employs a simple scheme for
accessing remote objects: Top-level actions access remote objects through

independent servers. Although we knew that this would not be an adequate

policy under all circumstances, our experience has indicated that no single
policy is adequate. Most applications require some control over object-

to-server binding, including enabling and disabling of caching of objects

at clients. For example, application (3.) requires caching of read-only ob-
jects; we have met this by making specific changes to Arjuna. The database

application, Stabilis, routinely handles large numbers of objects, and there-

fore for performance reasons needs to minimise the number of servers. The

designers of Stabilis have done this by implementing their own server mul-
tiplexing scheme, a complication they would have preferred the system to

handle.

Concurrency control. The current design of Arjuna constraints the con-

cunency controller of an object to be co-located with the servers. A more

flexible scheme would permit the concurrency controller of an object to be

remote from the activated copies of the object. Such a scheme can then be

used by clients of application (3) for a more flexible form of object caching,
permitting multiple copies of an object for read access and a single copy

for write access that is allowed to invalidate the remaining copies. In the

absence of such a facility, the builders of Stabilis database system imple-
mented their own object caching scheme on top of Arjuna.

In summary users have managed to build non-trivial applications using Ar-
juna. Occasionally, meeting their requirements have required making changes to

Arjuna. It is an indication of the sound design of the system that it permits such

changes to be made. Nevertheless, such changes have required intervention of the

designers of the system. We are currently exploring new system structuring tech-

niques that will permit (expert) system builders to perform such changes them-

selves.
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6.2. An Examination of C++

In retrospect our choice of C++ has been both beneficial and responsible for some

of our problems. On the positive side it has enabled us to make Arjuna available

to a wide audience both academic and commercial. On the negative side the pri-

mary stumbling block has been the implicit assumption in the language of the

existence of a shared address space which causes some features of the language

to be impossible to extend to the distributed environment. Examples of such con-

structs include:

Variable length argument /isrs. These cannot be marshalled automatically since

the stub generator cannot determine at the time it processes the header flle

how many arguments will need to be marshalled on any given call.

Public variables andfriends. These break the assumed encapsulation model

and allow potentially unconstrained access to the internal state of an ob-

ject. Since that object may now be remote from the client application such

variables will typically not exist or at least not be accessible in the same

address space.

Static class members. C++ semantics state that only a single copy of a static

class variable exists regardless of the number of instances of the class in

existence. These semantics cannot be enforced in a distributed environ-

ment since there is no obvious location to site the single instance, nor any

way to provide access to it.

Additional problems arise from the fact that a C++ class declaration describes

not only the interface to a class but also much of its implementation. Further-

more the language continues to evolve requiring the stub generator to evolve

with it as new language features are added. These points have compromised the

stub generation process Arjuna uses to achieve distribution and have the effect

of lowering the overall transpafency to the programmer However, with care, ap-

plications can be written that are location and access transparent, requiring only

minimal additional programmer assistance for acquiring fault-tolerance and per-

sistence capabilities. However, the point remains that stub generation relieves the

programmer of a significant proportion of the burden involved in the distribution

of applications (see fPanington 1995] for more details)'

Finally, since the original design of Arjuna was conceived under an early

version of C++ the design was based upon the use of single inheritance only.

V/hether the use of multiple inheritance would be an advantage or not remains

open at this time. Other features such as exception handling and templates would

certainly have changed the way parts of the system are implemented but until
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compilers exist that implement these features reliably we are reluctant to make use
of them.

7. Future Directions

Work on Arjuna is proceeding in two directions, one with a relatively short term
goal and the other potentially long term. On a short term basis, we are examining
how the current version can be made to comply with the Object Transaction Ser-

vice (OTS) standard currently being defined by the OMG IOMG 1994.20]. This
extension, in conjunction with several other extensions such as the concuffency
control service IOMG 1994.191, is likely to become the standard for transaction
processing systems of the future. A simple comparison reveals that Arjuna already
effectively implements all of OTS and its related services but with different in-
terfaces. However, the mapping between the two is straightforword. V/ith minor
modiflcations the tockManager and Lock classes can be used to implement the
conculrency control service; AtomicAction effectively implements the 'Current'
interface from the OTS, and Buff er can similarly be used to provide the external-
isation service IOMG 1994.22].

The main aspect of our long term goal concerning Arjuna is to restructure it
in a way that will provide controlled access to its internals in a manner that will
permit users to customise the implementation to suit the specific needs of their
applications [Shrivastava 1994]. The basic approach to structuring that we are
adopting has some resemblance to the open implementation approach suggested
in [Kiczales 1992]. Kiczales proposes a way of system structuring in which ab-
stractions do expose their implementations. Such open implementations have two
interfaces per implementation: the traditional interface and an adjustment interface
(the meta-level interface) that provides a way of tuning or customising the imple-
mentation (see also [Stroud 1993] for related ideas). We intend to provide a clean
separation between the interface of a class and its implementation, permitting mul-
tiple implementations for a given interface, with the selection of the most suitable
implementation being left as a run-time decision. Each implementation will also
provide a control interface (the adjustment interface) for customisation [V/heater
& Little 19951. An immediately useful application of this will be to support more
than one implementation for RPCs, a need that was identified earlier.

In the present version of Arjuna, the object support infrastructure employed is
very simple, enabling clients to access remote objects through independent servers.
This simple scheme has the important advantage of providing isolation between
independent actions, but is inefficient for frequently shared objects. As observed
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earlier, applications often require some control over object to server binding, in-
cluding enabling and disabling of caching of objects at clients. A better approach
therefore would be to provide a more comprehensive object support infrastructure
for managing objects, with support for caching and migration, and permitting a
server to be shared, and capable of managing more than one object. With this view
in mind, we have designed an object support system that permits control over ob-
ject servers and also permits clients to create, copy and exchange references to
objects. In this system, a client holding a reference is able to invoke operations
on that object even if the object has moved to some other location [Caughey et

al.1993, Caughey & Shrivastava 19951. Our design scales to systems of arbitrary
size and is portable since it only requires a few standard capabilities from the un-

derlying operating system.
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