
A Site Confi'guration Engine

Mark Burgess Oslo College and Oslo University

ABSTRACT: Cfengine is a language-based system

uã*ini*t ution tool in which systern maintenance tasks

." uoaorrr*"¿ and the configuration of all networked

t or,, *" defined in a central file' Host confrguration

-uV U" tested and repaired anV n¡rmbLof times with-

o*'tft" need for human intervention' Cfengine uses a

decision-making process based on class membership

*J it therefore ópdmized for dealing with large num-

bers of related hosts as well as individually pin-pointed

systems.

o 1gg5 The usENIX Association, computing systems,vol. 8 ' No. 3 ' sum¡ner 1995 309

I. Introduction

The proliferation of TCP/IP networks, combined with the increased availability of
cheap UNIX-like solutions, continues to make machine-parks grow at a rate which
keeps system administrators on their toes. This presents a practical difficulty to
administrators: how does one keep track ofhundreds or perhaps thousands of sys-
tems and be sure that they are configured according to the network standard? In
spite of the efforts of standardizing organizations, the various operating system
alternatives from major software developers arc all substantially different from a
system administrator's perspective and, on a large heterogeneous network, one is
forced to undergo an often tiresome process of adapting each type of system in or-
der to make the alternatives cooperate harmoniousþ. Traditionally, such fixes have
been made by hand or with the help of shell scripts-a procedure which becomes
increasingly cumbersome and haphazard as the size of a network expands beyond
a handful of systems. A viable tool for efficiently systemizing the administ.uiion
of such a network has been lacking for some time.

The purpose of GNU cfengine [Burgess 1993, Burgess 1994, Burgess 1995] is
to provide a high level, language-based interface for the task of system admin-
istration. Using cfengine, administrators can create a single file which defines
the configuration of all hosts on an arbitrarily large network. Changes made in
this single file can cause system-wide changes to take place, or can pin-point
actions to be taken on a single host. The configurationìunguug" hides the dif-
ferences between different operating systems and automates frequently per_
formed tasks, thereby creating a very high level description. This can be used
to both document and enforce the characteristics, interrelationships, and depen-
dencies of all hosts from a single, easily readable file. A cfengine configuration
program can be used to automatically set up a new host from scratch, mak-
ing all the changes necessary to blend it into the local network; it can also be
run an unrestricted number of times to check or maintain the state of that con-
figuration. By defining system configuration in a central file, accidents which
destroy the changes made on a special host are no longer a problem, since a sin-
gle run of the systemwide program will restore the configuration to the defined
standard.

310 Mark Burgess

Thefunctionalityofcfenginecanbesummarizedbythefollowinglist:

. Testing and configuration of the network interface

. Simple automated text file editing

. Symbolic link management

. Testing and setting the permissions and ownership of files

. Systematic deletion of garbage files

. Systematic automated mounting of NFS filesystems

. Other sanitY checks

This article is a short conceptual presentation of cfengine' Tutorials and more

information can be obtained from the distributed documentation [Burgess 1995]'

2. WhY aNew l-anguage?

cfengine,s main contribution to system administration is to provide relevant tools

for a limited number of frequentþ-used-operations. cfengine supplements the

functionality ofpeer languales, such as Perl and lower level scripting languages'

by providing free checks which are built in to the engine itself' This frees pro-

grams from the clutter of irrelevant checking code and admits a more conceptually

user-friendly interface. For example, the command to create a symbolic link in

cfengine is

fi1e1 -> f1Le2

The corresponding command in shell is

tn -s file2 fllet

The functionality which cfengine adds here is the following algorithm' which is

executed for every single link defined in a cfengine progfam:

. Does link exist? If not, create it'

.Isthenameaplainfileordirectorynotalink?Ifsosignalawarning.

. If link exists, does it point to the location specified?

' If yes, do nothing, say nothing'

. If not, signal a warning.

A Site Configuration Engine 3Ll

The above algorithm is designed in such a way that it can be run an unlimited
number of times without generating spurious and uninteresting output. In shell, the
execution of the command ln -s twice results in

borg7" 1n -s cv.tex bla
borg% ln -s cv.tex b1a
ln: bla: File exists

an irrelevant and unhelpful error message. In cfengine, the execution of the link
script n-times results in no output unless verbose mode is selected. Additional
spices exist, such as the ability to link all of the children in a particular directory
to corresponding files in another. Again, extensive checking both of new files and
previously existing files is made.

In this example, cfengine has not provided anything which could not be re-
produced in a shell script-what it has done is to simplify the code required to
perform the appropriate actions considerably, by hiding the irrelevant details in
the language definition. This is the function of high level languages. similar fea_
tures are true of the other operations performed by cfengine. Some of these will be
mentioned in the remainder of the text.

3. Classes

One of the aims of cfengine is to make configuration programs as transparent as
possible. A key design feature which makes this possible is the introduction of
a class-based decision structure. A system-wide conflguration program must
make a considerable number of decisions in order to match statements to hosts.
In a traditional scripting language this would mean coding alarge number of
if . . . then. . . el-se statements, perhaps nested many times. Since a test is re-
quired not only to determine which hosts a particular command applies to, but
also to determine whether or not the present state of configuration is correct, the
number of tests very easily accounts for the bulk of coding in any program. To
avoid this scenario, cfengine uses a procedure of whittling away irrelevant state-
ments by classifying them according to certain properties of the host executing the
program.

A class-based decision structure is possible because a cfengine configuration
program is run by every host on the network individually. Each host knows its
own name' the type of operating system it is running and can determine whether it
belongs to certain groups or not. Each host which runs a cfengine program there-
fore builds up a list of its own attributes (called classes). A class ma¡ in fact,
consist of the following:

312 Mark Burgess

. The hostname of a machine.

. The operating system and architecture of the host.

. A user-defined group to which the host belongs.

. A day of the week.

. The logical AND of any of the above.

Given that a host knows its own class attributes, it can now pick out what it
needs from a list of commands provided the commands are also labelled with the

classes to which they apply. A command is only executed if a given host is in the

same class as the command it finds in the configuration program-a host can pick
out only the commands which it knows apply to itself and ignore the others. There

is no need for formal decision structures, it is enough to label each statement with
classes. At the simplest level, one has commands belonging only to a single class,

say the operating system type of the hosts:

ultrix::
statements

Here the statements which follow the class ultrix are executed only if the

host is an Ultrix system. To combine classes, signifying multiple membership dots

are used:

ultrix . Monday . nygroup::

statements

In this example, the statements which follow are only executed if the host is

of type Ultrix, the day is Monday and the host is a member of the user-deflned

group nygroup.
User-defined classes can be defrned and undefined on the command line and

in the action sequence in order to switch certain statements on and off for special

purposes. This makes it easy to isolate parts of a global configuration for partial

execution. It is, for example, useful to mark very time-consuming operations with
a class heavy which can then be undefined in order to execute a quick version of
the program.

4. Syntax

The syntax employed by cfengine resembles in some ways a Makefile (see, for
example, [Oram & Talbott, 1991]), where instead of targets one has classes. Each

A Site Configuration Engine 313

cfengine program is a free format ûle composed of a number of sections. Each

section deals with a particular task, such as symbolic links or file editing. Each

section deflnes actions for various classes (see figure 1).

#
Cfengine program
#
groups:

myclass = (hostl host2 host3 +@NlS-netgroup)

control:
actionsequence = (tint<s files)

links:
class: :

/tnp/x -> /usr/tnp/x

class l.class2.class3 : :

/bin/ t cs¡. -> / usr / Locallbin/t csh

files:
myclass::

/ :ust / Io cal owner=ro ot mode=o -w act i on=f íxaII

Figure 1. The form of a simple cfengine program. The format
is free, use of space is arbitrary.

Class membership of statements is, in fact, optional: if no special membership is

specified, a statement is assumed to belong to all classes and is executed on the

host running the program.

Figure 1 illustrates, with a trivial example, the basic points of syntax in a
cfengine progrÍrm. Each program is a free format textfile containing symbol dec-

larations and actions to be performed. More formally, it is a list composed of the

elements of the form

section:
class: :

statements

314 Mark Burgess

omittingaclassspecifierisequivalenttousingawildcardclassany::which
means that the following statements are to be executed on all hosts' statements

have a syntax which deiends on the section of the program: some of these will

define symbolic links, others specify editing actions for frles' etc'

Themeaningofthe"*u*pt"programinfigurelisthefollowing.Thefirst
few lines are comments and are identified by iines beginning with the hash symbol

#. The groups section of a program deûnes a new class called myclass' This

class has as its members hostl, host2, host3, and all of the hosts in the netgroup

NlS-netgroup.Ifthehostwhichexecutesthecfengineprogramisoneofthose
hosts, it inherits the class nyclass and statements which also belong to myclass

can then be executed.

In contrast to a makefile, the dependencies in a cfengine program are not files

which must exist bú host attributes which must be present. In a makef,le, actions

are performed if the target does not exist; in a cfengine program, actions are per-

formediftheclassesdomatchthepresentstateofthesystem.Inotherwords,a
cfengineprogfamisnotaninstructionofhowtobuildaSystem,butastatementof
whatmanydifferentclassesofsystemshouldlooklike.Someusershavefocused
onthesimilaritieswithmakeandhavesuggestedthatthemakeprogramcombined
with shell scripts would do the same job. While it is certainly true that any prob-

lem can be solved in a variety of ways, the criticism is somewhat misguided since

the real gains in using cfengine are that one avoids having to write long and com-

plicated scripts emplãying iepetitive checking procedures. cfengine is a classic

meta-language:iteliminat"stheneedfortiresomerepetitivecodingbyabsorbing
frequently used code back into the language'

Thecontrolpartofacfengineprogramisusedtosetcertaininternalvari-
ables and to define macros. The most important system variable is a list called the

actionsequence. Without an action Sequence, a cfengine program does nothing'

Itisawayofswitchingonandoffcertainstatements.Forexample,ifoneadds
the item f inks to the action Sequence, cfengine will process all of the link com-

mands which belong to classes the current host belongs to' The action sequence

determines the order and number of times in which these bulk actions are carried

out(theactualorderingofthedeclarationsinacfengineprogramisirrelevant
and should be used to achieve conceptual clarity rather than to indicate the se-

quenceofevents).Ifthisbulkhandlingofcommandsistoocoarse,finercontrolis
achieved bY using the notation

actionsequence =

(

Iinks .classl .class2

A Site Configuration Engine 315

links.class3

)

which means: execute links commands-but, on the first pass, define the addi-
tional classes classl and class2 for the duration of this pass only; on the second
pass define the additional symbol class3 for the duration of the pass. The result
is that, in the first case, only links labelled,by crasst and class2 will be executed
and in the second case only links labelled with class3 will be executed. Classes
defined in the action sequence have no lasting effect. They are local to a given
action and are only used to achieve a flner control over the sequence of execution.
They are attributes of the current task rather than of the host.

The keywords or actions in the actionsequence are internally defined and are
taken from the following list, which is printed incidentally in the order in which
the actions might typically be called:

mountall
mountinfo
checktimezone
netconfig
resolve
unmount
shellconnands
editfiles
addmounts
directories
links
mailcheck
required
tidy
disable
files

For a full explanation of these
documentation.

nount filesystems in fstab
scen nounted filesystens
check timezone
check net interface config
check resolver setup
unmount any filesystens
execute she1I conmands
edit files
add new filesystems to systen
make any directories
check a¡d naintain l-inks
check mailserver
check required filesysterns
ti-dy files
disable files
check file permissi.ons

functions, the reader is refened to the cfengine

5. Functions

In this section, a cursory

316 Mark Burgess

overview of the functionality of cfengine is presented.

5.1. Network

The configuration of the ethernet interface is one of the prerequisites for getting

a host up and running. It includes informing the ethernet interface of the subnet-

mask, broadcast address, and default loute of the host. In addition, the Domain

Name Service has to be configuretl. These tasks are handled by cfengine at a high

level. It is sufficient to def,ne:

. the value of the internal variable netmask,

. the bit-convention for determining the broadcast address (either all ones or

all zeros),

. the default route for packets (normally the address of the local gateway),

. the system domain n¿une,

. an ordered list of nameservers.

These can naturally be specifled either once for all hosts or individually by

special classes, depending on the physical organization of the net.

If the appropriate directives are added to the action sequence, cfengine uses

this information to check the present state of the ethernet device and, if neces-

sary, configure it to the standard deflned in the conflguration program. The default

route is added to the static routing table if necessary. Cfengine then loads the file

resolv. conf , and ensures that the DNS domain name is correct and that the cor-

rect nameservers are present with the defined priority'

5.2. File Editing

one of the characteristics of BSD/System V systems is that they are configured

primarily by human-readable textfiles. This makes it easy for humans to configure

the system and it also simplifies the automation of the procedure. Most config-

uration files are line-based text files, a fact which explains the popularity of, for

example, the Perl programming language lwall & schwarz 1990]. Cfengine does

not attempt to compete with Perl or its peers. Its internal editing functions operate

at a higher level and are designed for transparency rather than flexibility' Fortu-

nately most editing operations involve appending a few lines to a file, commenting

out certain lines or deleting lines. Files are edited with commands from the fol-

lowing list:

DeleteLinesStartin g " text..."

Del-eteLine sContaining t' text... tl

A Síte Configuration Engine 311

Appendlf NoSuchline,, text...,
Prependlf NoSuchline u text...',
Irlarnlf NoSuchline tt text... tl

l¡larnlf LineMat ching,, text... u

I'rlarnlf LineStart ing " text...,
hlarnlf LineCont ainin 9,, text... "
l,larnlf NoLineStart in 9,, text... n

I'larnlf NoLineCont ain ing " text...,,
HashConmentLinesContaining, text...u
HashConmentlinesStarting " text...u
HashConmentLinesMat ching,, text... "
SlashConmentLine sContaining, tØct... "
SlashConnentLinesStarting " te)ct...u

Sl-ashCommentlinesMatching n text...n
Per c entCornmentLine s Cont ai_ning n text... tl

PercentConmentLinesSt art ing I text... tl

PercentConnentLinesMat ching tt text... n

Commands containing the word oocomment"
are used to comnxent oú certainlines

from a textflle-i.e. render a line impotent without actually deleting it. Three types
of comment are supported: shell-style (hash) #, o/o as used in TeX and on AIX sys-
tems, and C++-s¡y1" ¡ ¡.

An example of the use of this might be the following. Each new GNU/Linux
installation contains a line in the start-up scripts which deletes the contents of
the "message of the day" file each time the system boots. on a system which
boots often this would be irritating. This line could be commented out for every
GNU/Linux system on the network with a simple command:

editfiles:

linux::

{ /etc/rc.d/rc.S

HashCornmentLinesContaining "notdt'
)

Other applications for these editing commands include monitoring and controlling
root-access to hosts by editing files such as .rhosts and setting up standard envi-
ronment variables in global shell resource files-for example, to set the timezone.

318 Mark Burgess

Files are loaded into cfengine and edited in memory. They are only saved

again if modifications to the frle are carried out, in which case the old file is pre-

serv"d by adding a sufflx to the filename. When files are edited, cfengine gener-

ates a warning for the administratof's inspection so that the reason for the change

can be investigated.

The behavior of cfengine should not be confused with that of sed or perl'

Again, it is true that nothing really new is introduced, but that a considerable

saving of user-programming is involved-moreover a common interface is used,

taking full advantage of the class selectors. Some functionality is reproduced for

convenience, but the specific functions have been chosen on the basis of (i) their

readability and (ii) the fact that they are frequently-required-functions' A typical

file editing session involves the following points:

. Load file into memory.

. Is the size of the file within sensible user-definable limits? If not, frle could

be binarY, refuse to edit.

.Checkeacheditingcommandandcountthenumberofeditsmade.

.Ifnumberofeditsisgreaterfhanzero,fenametheoldfileandsavethe
edited version in its place' Inform about the edit'

. If no edits are made, do nothing, say nothing'

Equivalentone-linesedoperationsinvolveeditingthesamefileperhapsmany
times to achieve the same results-without the safety checks additional'

5.3. Mount Model

cfengine regards NFS ûlesystems as resources. Resources, like actions' also be-

tong io classes and are mounted on the basis of class decisions' Cfengine auto-

mates the mount procedure as far as possible; administrators have only to specify

a number of servers for a class of hosts and cfengine will edit the appropriate

filesystem tables and attempt to mount the resources automatically.

cfengine distinguishes between two types of mountable resources which it

refers to as btnary ilesystems and home filesystems. Binary filesystems contain

architecture-specific data-i.e. compiled software which only applies to the op-

erating system under which it was compiled. Home filesystems contain users'

loginareasandcanbemountedmeaningfullyonanytypeofhost.Thewayin-
formation is structured in cfengine programs makes mounting of binary and home

resources quite transparent. For each class of hosts one defines a number of bi-

nary servers and a number of home servers. Cfengine mounts automatically all the

A Site Configuration Engine 319

declared resources from all a host's servers by referring to a list which contains
every filesytem resource available on the network. Network resources are defined
like this:

nountables:

server : / site / server/hone 1

server I /s ite/serv er /}..ome2
server2 :,/s ite/serv2 / Io ca]-

The name of the server (preceding the colon) and the remote directory name (fol-
lowing the colon) are declared in this list so that cfengine can search for resources
of different types. Employing a user-definable pattern, cfengine can distinguish
between home and binary resources, and mount the appropriate resources on di-
rectories with the same names as the source filesystems. Note that the key to the
success of this model is that remote filesystems are mounted on directories with
the same name on the local host. This is not a restriction provided one uses a ra-
tional naming scheme and any anomalies can be handled by the miscellaneous
mount command (which is more awkward syntactically but lifts the naming re-
striction).

To make the scheme work then, it is necessary to introduce a strict naming
convention for filesystem mount-points.l While this is user-configurable, the rec-
ommended convention is to mount all filesystems according to a three component
directory name:

/ s ite / ho stname / file - sy s tem- name

in which the site name is the name of your local department or section (separate
subnet), the hostname is the name of the host which is the server for the filesystem
and the final link is the name of the directory itself. Strict adherence to this sys-
tem means that no two filesystems will ever collide. Symbolic links can then be
used to make cosmetic changes to the system, for example to create an alias from
server2 : /site/serv2/].oca]- to /usr,/1ocal.

The issue of editing the exports files on the servers is not addressed directly
by cfengine since there is no unique way of handling this issue. If necessary it
could be dealt with using the editfiles facility. In practice ir easier to deal with
exports by hand-if only for security reasons.

l. This naming convention was first suggested to me by Knut Borge of USIT, University of Oslo.

320 Mark Burgess

The model cfengine uses for mounting filesystems around the network is sim-

ple and effective. The amount of writing required to add a latge number of filesys-

i"-, to either a single host or a class of hosts is simply equal to the number of

servers on which the resources reside.

Although most ûlesystems fall into the categories binary and home, some-

like information databases and sharable resources-do not. These remaining re-

sources can be dealt with using a miscellaneous mount command which makes no

reference to a special model. A small amount of extra writing is required in this

case. For example:

niscmounts:

myhost: :

otherhost :,/ s ite/otherhost/inf o / llbt ary / database rw

Cfengine hard-mounts filesystems by default. In contrast to the NFS auto-

mounter [Sun Microsystems] the filesystems are mounted by editing the filesystem

table so that all filesystems are available from boot time. Hence the functionality

does not compete with the automounter but augments it'

5.4. Files ønd Links

File and link management takes several forms. Actions are divided into three cat-

egories called files, tidy, and links. The first of these is used to check the

existence, ownership, and permissions of files. The second concerns the system-

atic deletion of garbage files. The third is a link manager which tests, makes, and

destroys links.
The monitoring of ûle access bits and ownership can be set up for in-

dividual files and for directory trees, with controlled recursion. Files which

do not meet the specified criteria can be fixed-i.e. automatically set to the

correct permissions---or can simply be brought to the attention of the sys-

tem administrator by a warning. The syntax of such a command is as fol-

lows:

files:
class::

/ path mode=mode ownet=owner 8T otlp= Sroup
recurse=/ro -of-levels action=action

The directory or file name is the point at which cfengine begins looking for

files. From this point the search for files proceeds recursively into subdirecto-

ries with a maximum limit set by the recurse directive, and various options for

A Site Confrguratíon Engine 32I

dealing with symbolic links and device boundaries. The mode-string defrnes the
allowed filemode (by analogy with chnod) and the owner and group may specify
lists of acceptable user-ids and group-ids. The action taken in response to a file
which does not meet acceptable criteria is specified in the action directive. It in-
cludes warning about or directly fixing all flles, or plain files or directories only.
Safe defaults exist for these directives so that in practice they may be treated as

options.

For example,

files:

any::
/tsr/x/bin mode=a*rx,o-r^r oi4rn=root r=inf act=f ixa11

which (in abbreviated form) would check recursively all files and directo-
ries starting from directories matching the wildcard (e.g. /usr/l'ocal-/bin,
/ust/ttcb/bin). By default, f ixall causes the permissions and ownership of
the flles to be fixed without further warning.

The creation of symbolic links is illustrated in figure 1 and the checking al-
gorithm was discussed in section2.ln addition to the creation of single links, one
may also specify the creation of multiple links with a single command. The com-
mand

links:

bi.naryhost: :

/Ioca\/ eLnlbin +> / 19ca1-/bin

links all of the files in /LocaL/elm/bin to corresponding files in /local/bin.
This provides, amongst other things, one simple way of installing software pack-
ages in regular bin directories without controlling users' PAIH variable. A fur-
ther facility makes use of cfengine's knowledge of available (mounted) binary
resources to search for matches to specific links. Readers are referred to the full
documentation concerning this feature.

The need to tidy junk files has become increasingly evident during the his-
tory of cfengine. Files build up quickly in areas like /tnp/, /var/tnp.Many
users use these areas for receiving large ftp-files so that their disk usage will not
be noticed! To give another example, just in the last few months the arrival of
netscape [Netscape Communication Corp. 1995] World V/ide V/eb client, with its
caching facilities, has flooded harddisks at Oslo with hundreds of megabytes of

322 Mark Burgess

WWW files. In addition the regular appeafance of core frles2 and compilation by-

products (. o files, . rog nt"', etc'i nfis disks with large files which many users do

not understand. The prãut"- is easily remedied by a few lines in the cfengine

configuration.Filescanbedeletediftheyhavenotbeenaccessedforn.days.
Recursivesearchesarebothpossibleandhighlypracticalhere.Inthefollowing
example:

tidy:

AllHomeServers : :

pattern=core r=inf age=O

pattern=* r=inf age=14

iattern=cache????* r=inf age=2

pattern=cache????* r=inf age=2

home

hone,/ . wastebacket
home/ . netscaPe-cache
home/ . MCoM-cache

all hosts in the group AllHoneServers are instructed to iterate over all

users' home directories (using the wildcard home) and look for flles match-

ing special patterns. Cfengine tests the access time of files and deletes only

filesolderthanthespecifiedlimits.Henceallcoreûles,inthisexample,
aredeletedimmediately,whereasfilesinthesubdirectory.wastebasket
are deleted only after tLy t un" lain there untouched for 14 days, and so

on.

5.5. Calling ScriPts

Aboveall,theaimofcfengineistopresentasimpleinterfacetosystemadminis-
trators. The actions whichLe built into the engine are aimed at solving the most

pressing problems, not at solving every problem' In many cases administrators

willstillneedtowritescriptstocarryoutmorespecifictasks.Thesescriptscan
still be profitably run frorn cfengine. Variables and macros defined in cfengine can

bepassedtoscriptsSothatscriptscanmakemaximaladvantageoftheclassbased
decisions.Alsonotethat,sincethedaysoftheweekarealsoclassesincfengine'
itisstraightforwardtorunweeklyscriptsfromthecfengineenvironment(assum-
ingthattheconfigurationprogramisexecuteddaily).Anobvioususeforthisisto
,rpäate databases, like theiasi-find database one day of the week' or to run quota

checksondisks.Adiskbackupscriptisincludedinthedistribution.

2. On some systems, core dumps cannot be switched off!

A Site Confrguration Engine 323

shellconmands:

nyhost.Sunday::

" / usr / b in/ f ind,/updat edb,,

6. How Cfengine Is Run

cfengine was designed to be run as a batch job, ideally at night when system disk
load is low. Because its policy is to check and then correct, it can also be run
manually any number of times without ill effects. cfengine runs silently by de_
fault, producing a message only if something is wrong. It is theref-ore convenient
to have elÏor messages mailed to the system administrator. This is accomplished
by running cfengine from a wrapper script which reports the name of the host and
forwards the text from cfengine. Suitable wrapper scripts are included with the
cfengine distribution.

Since cfengine only acts when action needs to be taken, a cfengine program
can be run any number of times without harmful side effects. A typical scenario
is the following. on the arrival of a new machine, a single NFS directory is then
mounted by hand to gain access to a compiled version of cfengine and the global
configuration file. cfengine is run and the machine is instantly configured_all
symbolic links, NFS filesystems, and textfiles are in place. The host is now in_
stalled. This should be sufficient. A reboot of the host should now have no effect
on the conflguration. Cfengine can itself be programmed to add itself to the cron
file so that it is run each night so as to monitor the host on a regular basis.

The global cfengine program can also profitably be called up in the system
boot scripts /etc/rc.local or its equivalent, perhaps with certain actions ex-
cluded to save time. It can be used to set the netmask, broadcast address, and de_
fault route as well as checking the ordering of nameservers in /etc/resoLv. conf
each time the system boots.

7. Security

Cfengine has built-in features which are designed for system security. The ability
to monitor file permissions and ownership is the first step. A common problem is
that files obtained by an ftp session get transferred with a user-id whicÀ belongs
to a completely randorn user on the local system. This can either cause access

324 Mark Burgess

problems or compromise the security of the files. A busy administrator could eas-

ily overlook this or simply forget to change the ownership of the ûles. A routine
check of all files would discover this fact very quickly.

A by-product of the file checking is that cfengine maintains a list of all known
setuid-root programs and setgid-root programs which it finds in the course of
checking the system. V/hen a new setuid-root program appears on the system, a

warning is always issued so that any potentially dangerous software is brought to
the administrator's attention. In most cases it will be the administrator who has

installed the software, but on other occaisions this could help to reveal surrepti-

tiously installed programs.

Using cfengine as a scripting language is also made safer. If a cfengine script
is made setuid-root (on a system which allows you to do this), it is still possible to

restrict the users who can run that script as a secondary check. For example:

access = (nark root)

An access control list defines the usernames who may run a program. This makes

it easy to write a program which can be run by others to flx a particular prob-
lem on the system. Responsibility can thus be disseminated quite safely to system

helpers.

Cfengine does not have to be run setuid-root, nor do any of its features de-

mand the availability of this feature. However, on systems which do support this

option, it is presumed that this will be a helpful additional feature. Caution should

always be exercised when opening privileged access to non-privileged users.

8. Scripting Language

Although the focus of attention has always been the construction of systemwide

configuration files, cfengine can also be used to write smaller scripts. For exam-
ple, the following script provides a useful way for users to manage their own files,

opening files for collaboration with other users and closing others which are pri-
vate.

t /l-oca]- / gnulbin/cf engine -f
#
0pen ny shared directory for others in ny group
#

control:

A Site Configuration Engine 325

actionsequence

files:

$ (HOME)

$ (HOME) /share
$ (HOME) /private

= (files)

node=a+rx r=0 action=fixdirs
mode=ug+rw,o-rvrx r=inf group=share act=fixall
mode=0600 r=inf action=f ixall

The first line ensures that the user running the script has a home directory which
is open to other users. The second line opens the subdirectory share to the

group share and tells cfengine to fix the files recursively. Note that, in recur-

sive searches, cfengine will automatically set the x flag on directories if the coffe-
sponding r flag is defined.

9. Experience

Cfengine has been on test, in prototype form, for three years during its devel-

opment. In addition the recent GNU release is now in use at least twenty sites

around the world. The number of features has grown in accordance with experi-
ence in using it and for its GNU release the syntax has been altered radically from
earlier versions. New features are incorporated as feedback is received through the

official mail point bug-cfengine@prep. ai . mit . edu

The philosophy employed in writing the configuration scripts has been to de-

fine as many general rules as possible. Special exceptions are to be avoided since

they increase the size of the configuration and make programs harder to under-

stand. This might give the impression of a loss of flexibilty, but systematic admin-

istration procedures on a large scale are by necessity simple-minded and general.

More difficult, specific issues can be dealt with locally, using local scripts (written
in cfengine or some other utility) and controlled by individuals who are closer to
the individual host concerned. In most cases, special configuration requirements

are a result of specially licensed software which runs only on a single host, or
perhaps a small cluster of hosts. These can nearly always be integrated into the
global configuration by using symbolic links. Cfengine has two powerful features

for building and managing a large number of symbolic links automatically. Indeed,

experience shows that cfengine would be a useful tool if the only thing it did was

to manage symbolic links. The use and maintainance of links (whose names can

be based on systemwide variables) opens up a new way of making easily under-

standable and maintainable patches to systems.

326 Mark Burgess

certain habitual practices must naturally be relearned in order to make effec-

tive use of cfengine: administrators, used to conflguring systems by hand, have to

discipline themselves to make changes only in the configuration file and then run

cfenline to make a change. Initially this introduces an extra step, and therefore a

certain amount of resistance, but on networks supporting hundreds of hosts this

minor overhead is worth the potential rewards'

10. Example Program

Here is a more substantial example program to illustrate the uses for cfengine'

Follow the comments for the details. It is difficult to represent all of the useful

features here; hopefully there is enough in this example to whet the appetite for

more.

#######################*########################f######
#
CFENGINE C0NFIGURATION FOR site = iu'hioslo'no
#
###########################f###########################

groups:

science = (nexus ferengi regula
diskless = (regula ferengi lore

lore axis)borg dax
)

)
)
borg

AllHoneServers = (nexus

AllBinaryServers = (nexus

glg_server" = (nexus borg)
0lH-clients = (ferengi- regula dax lore)

XTerninalserver = (nexus)
tllrMservers=(nexus)
FTpserver=(nexus)

LPD-clients = (ferengi regula borg dax lore axis)

######################################f##########f#####

A Site Confrgaration Engine 327

co4trol:

access = (root) * only root gets to start this

site =(iu)
donain = (iu.hioslo.no)
sysadn = (sysadm@iu.hioslo.no) # errors to ..

netnask = (255.255.255.0)
ti-nezone =(I'IET)
nfstype =(nfs)

sensiblesize = (1000) # nissing filesysten if total bytes
in fs less tha¡ 1000 (arbj.trary)

sensiblecount = (2) # nissing filesysten if total files
in fs less than 2 (arbitrary)

editfilesize = (6000) # Safety: don,t edit fíIes bigger than
6000 bytes - could be a nistake!

actionseguence = # Checking order...
(

nountall
nountinfo
checktimezone
netconfig
resolve
unmount
shellconnands
editfiles
addmounts
directories
links
nailcheck
nou¡taI1
required
tidy
disable
files
)

nountpattern = (/$(site)/$(host))

user dirs are u1, u2, etc

honepattern=(u?)

328 MarkBurgess

addclasses=(exclude)

#
Macros & constants
#

nain-server=(nexus)
gnu-path = (/1oca1/bin/gnu)
ftp= (/IocaL/fltp)

######f ############# ####+##############################

Nexus is the only host holding users' home dirs, so we

have to mount these on all systens listed in science

homeservers:

science:: nexus

nexus a:rd borg hold the binaries for /local for their
f respective 0S types... so arry machines of these types
in science should nount all non-hone dirs fron the
list of mountables. In this case there is only
.../Ioca1 to mount, but there could be any number
ha¡dled by this one command.

binservers:

science. solaris: : nexus
science.linux:: borg

The mail intray is on nexus and (on nexus) is called
/var/mall. This will be mounted where the local 0S

expects to find it e.g. /usr/spoo1/nai1 on BSD.

nailserver:

any::
nexus ; /var/malL

This is a list of all nountable partitions
available by NFS. (Used by binservers,/honesevers)

mountables:

any::

A Site Configuration Engine 329

nexus t /íu/nexus/ut
nexus z /i-u/nexus/u2
nexus :,/iu,/nexus/local
bor g : / iu / Linux,/ 1o caI

An exception to a general rule - here it proves
convenient to mount a solaris binary fs onto a
linux nachine because it contains some config
files which are useful.

miscmounts:

borg: : nexus:./J-u/nerots/J.ocal- /itt/nexus/1ocal ro

#################f ###################################f #

import:

Sone rules ca¡r be made so general that they can be
collected into a separate file to make this fj.le
less cluttered.

any:: cf.g1obal_classes
li:rux: : cf .linux_classes

###

broadcast:

All our networks use the rrehrer 'ones' convention
for broadcasting, but sone still use zeroes.

ones

Set a default route to the 1ocal gateway for all
hosts

defaultroute:

oih-gw

##############f #f######################################

resolve:

330 Mark Burgess

Our nameservers (applies to all hosts)

128.39 .89. 10

158.36.85. 10

L29.241.1..99

###########################f ## #########################

links:

Everyone needs a local dir' $(binserver) expands to
hostname if that dir exists -- if not it expands to the

/Iocal -> /$(site)/$(binserver)./Iocal

Make sure we dispose of silly sendmail a:rd replace it
r,rith BerkeleY V8 in /local/nail

solaris::

/usr/Ilb/sendmai-l -> I /Ioca1 /nall-/bjrn/ sendrnail

/ etc/nall/sendmail. cf -> ! /Local/mal1/etclsendnail ' cf

Link sone packages into /locaf/bin so we don't have

to have a 10 nile long PATH variable" '

nexus::

/Local/bín +> /Local/Per1/bin
/aocaL/bin +> /Iocal/e1n/bin

###

ti-dy:

List sone files Iíe $tant *deleted* once a¡d for all" '

The age refers to the access ti-me of the files" '

First tidy the users' hone dirs, then the tnp areas'

AtlHoneServers. exclude : :

hone
home

home

hone

pat=core r=inf age=O

pat=a.out r=inf age=2

p=*"/" r=inf age=2

p=*- r=inf age=2

A Site Configuration Engine 331

home p=#*
hone p=*.dvi
hone,/.uastebacket p=*
hone,/ . netscape-cache p=6¿"he???? *
hone/.MCoM-cache p=cache????*

r=1nf age=1
r=inf age=14
r=inf age=14
r=inf age=2
r=inf age=2

r=inf A=1
r=inf A=1
r=1 A=0

###########################f ############ #######*#######

files:

All the local binaries should be ornrned by root
and nothing should be writable to the world!

AllBinaryServers . exclude: :

llocaL node=-0002 r=inf o¡rner=root group=O, !,2,3,4,8,6

Make sure that none of the users, fires are un¡¡i.ttingry
¡¡ritable by others and delete any 1inks ¡¡hich poì-nt
nowhere and confuse everyone.
Note t'ignors, exception for wr¡¡¡ directory below, since
some users want to allow user nobody to be able to ed.it a
guestbook fiIe...

AllHoneServers. exclude : :

home n=o-w R=inf act=fixal1 links=tidy

Make sure the loca1 ftp dirs have the right
permissions...

FTPserver. solaris : :

$(ftp)/pub mode=755 o=ftp g=1¡p r=inf act=fixall
$(ftp)/Obin mode=l11 o=root g=other act=fixall
$(ttp)/etc node=111 o=root g=other act=fixdirs
$(ftp)/usr /bin/Is nod.e=l11 o=root g=other act=fixall
$(ftp)/Aev node=555 o=root g=other act=fixalt
$(ftp)/usr node=555 o=root g=other act=fixdirs

€ury::

/tnp/
/var/tmp

pat=*
pat=*
pat=core

332 Mark Burgess

############f #######################################f ##

directories:

solaris: :

hsr/L1b/XLL/nIs # for httpd

borg: :

/IocaL/tmp mode=1777 o=root g=0

###################################f #### ###############

ignore:

Don't enter these directories in recursive descents

any::

. x11
! 't'

/ Lo caL / Ilb/gnu/enac s / Lo ck /
,/1ocar/tnp
/Ioca1,/ftp
/IocaI/bín/top
/LocaL/Líb/tex/ronts
/LocaI/etc
/l-oca]./ww¡t
/1oca1/httpd-t . 4/ conf
/ Lo ca]- / mutlIs / et c / I inger . log

For users' hone dirs, so t rnobody" cen edit the guestbook

I^lVtl¡t

#################################f #####################

required:

All hosts should have access to the /Iocal dir. llarn if
they don't, or it looks funny (sensiblesize, sensiblecount)

/${f aculty}/${binserver}/locat

###

A Site Configuration Engine 333

editfiles:

Some basic files to edit.

solaris::

{ /etc/netmasks

DeletelinesContaj.ning'r255 .255.254.0"
AppendlfNoSuchline "128.39 255.255.255.0u
)

cfengine installs itself as a cron job.

{ /var / spso!/ cron/ crontabs,/root

AppendlfNoSuchline "0 0 * * * \
/ Io caL / gnu / l-lb / cf engine /bin/ cf !ürap \
/ ro car / gnuil-lb / cf engine/bin/cf daity "
Ì

{ /etc/services

hrarnff NolineContaining rrhttp'l

Warnlf Nolj-neContaining "pop"
I'larnlfNolineContaining 'rbootpc 68/udp',
llarnlfNolineContaining "bootp 67/ttdp"
]

{ /etc/i¡.etd.conf

AppendlfNoSuchline "bootp dgram udp wait root \
hocal/birn/bootpd bootpd -i -du
Ì

any::

{ ,/etclshells

Appendlf NoSuchline " / Io ca]- / bir./tcsh,,
)

########## #################### #########################

334 Mark Burgess

shellconmands:

Update the find/locate databases and the
nanual key on Sundays...

AllBinaryServers. solaris . exclude : :

" / Local / gnu,/1ib/1ocate,/updatedb "

AllBinaryServers . sun4. Saturday. exclude . Sunday: :

" /tsr/bi-n/ catman -w -M /local/nan"
" /usr/bin/ catmân -r¡ -M /Iocal/XttR5/nan"
" /usr/bin/ catman -r.r -M /usr/man"
" /usr /bín/ catman -r¡ -M /!oca),/ gntt/man"

#################### ###################################

disable:

Good to disable 1og files periodically so they don't
grow too big!

ÍlllllServers . Sunday : :

/ \ocaL /httpd- 1 . 4/logs/access_1og
/ Io caL /httpd-t . 4 / Iogslagent_1og
/ locaL /httpd- 1 . 4/1ogs,/error-1og
/ LocaL /httpd- 1 . 4/1ogs/ref erer-1og

Disable sendmaíl if it's a fi1e. ff it's the línk
we made further up, leave it!
Also delete sta¡dard .login file which tcsh ca¡'t
understand.

solaris: :

/ usr / J-lb / sendmail type=f ile
/etc/.logín type=file

A Site Configuration Engine 335

11. Summary

Cfengine is a language based interface for automating key areas of system ad-
ministration on potentially large TCP/IP networks. The configuration of all hosts
on a local area network may be steered from a single, central program, whose
primary aim is to be as simple as possible to understand. Cfengine enhances the
functionality of shell programs and provides an integrated environment for system
configuration which avoids excessive CPU usage (pipes) and minimizes disk ac-
cesses. The full functionality of the engine has not been discussed in this article:
readers are referred to the GNU package itself for comprehensive documentation
and examples.

Future enhancements include the further development of the text editing facili-
ties and the possibility of interfacing to companion tools for process monitoring in
real time. Cfengine could also be enhanced by the introduction of a daemon which
ensured that it was run (albeit silently) on every host. Ideally, cfengine configura-
tion files would be available in a distributed database such as NIS.

Cfengine can be obtained by anonymous ftp from ftp.iu.hioslo.no and
from any GNU site. A list of GNU sites can be obtained by connecting to
prep.ai.mit.edu by anonymous ftp in file /pub/gnt/GNUinfo/FTp. The cur-
rent version at the time of writing is 1.2.10 and it runs on SunOS/Solaris, HP UX,
ULTRIX, IRIX, OSF 1, LINUX, and AIX.

I am grateful to Richard Stallman, Ola Borrebæk, and Morten Hanshaugen for
their constructive criticisms.

336 Mark Burgess

References

t. M. Burgess, Cfengine, University of Oslo report, 1993.

2. cfengine was trst presented publicly at the cERN FIEPIX meeting, France,
IvÍ. Burgess, October 1994.

3. M. Burgess, Cfengine documentation, Free Software Foundation, 1995.

4. The Netscape program, lr{etscape Communications Corporation,
http :,/hone.netscape. con., 1994.

5. A. Oram and S. Talbott, Managing projects with make, O,Reilly & Assoc., 1991.
6. Sun Microsystems, The NFS automounte¡ SunOS/Solaris manual pages.

7. L. Vfall and R. Schwarz, Prograinming perl, O'Fieilly & Assoc., 1990.

A Site Configuration Engine 337

