
A Stub Generation System for
C++

Graham D. Parrington

The University of Newcastle upon Tyne

ABSTRACT: This paper describes the implementa-
tion of a Stub Generation system targeted specifically
at C++. It enables distributed C++ applications to be
constructed in a sraightforward manner with minimal
programmer assistance. The system does not require
the use of an auxiliary interface definition language
but instead processes existing C++ header files to max-
imize transparency. The generated code exploits the
power of C++ by using operator overloading for pa-
ramet€r marshalling and constructors and destructors to
drive the remote binding process. The system described
here is fully implemented and can be obtained as part
of the Arjuna programming system.

@ 1995 The USENIX Association, computing systems, vol. 8 . No. 2 . spring 1995 135

l. Introduction

Modern computing and networking hardware makes the physical interconnec-

tion of many computers relatively simple to achieve. However, programming

an application to take even limited advantage of the interconnection is still con-

sidered difficult even for the most accomplished of programmers. Much notable

research effort has concentrated upon methods by which the underlying dis-

tribution of the system can be hidden. This attempt to achieve what is termed

distribution transparency effectively reduces the burden on the programmer to

that involved in programming a more traditional centralized application. How-

ever, this transparency has generally been achieved by the creation of entirely new

programming languages or systems (for example: Emerald lBlack et al. 1987],

Clouds [Dasgupta et al. 1985], Avalon [Detlefs et al. 1988], Argus [Liskov 1988],

and Camelot [Spector et al. 1988]). Although such languages and systems often

include many other useful or desirable capabilities in addition to pure distribution

(such as transaction mechanisms), real world demands insist that applications need

to be programmed in an existing, preferably widely available, language.

Regrettably, most widely available languages (that is, available in the com-

mercial arena) have little or no direct support for programming a distributed

application. The primary reason for this focus is that existing languages have

been developed without the demands of distribution in mind and thus possess

one or more features that are either impossible, or at least impractical, to sup-

port in a distributed execution environment. Thus, although full distribution trans-

parency is typically impossible to achieve in existing languages, a partial form of
transparency is both achievable and highly desirable. Computing platforms and ar-

chitectures that support this philosophy are emerging from several sources (for

example: Integrated Systems Architecture (ISA) IAPM 19911, Open Network

Computing (ONC) [Sun 1988.24], the Open Software Foundation Distributed

computing Environment (osF/DCE) IOSF 1991], and the Object Management

Group Common Object Request Broker Architecture (CORBA) IOMG 1991]).

These latter systems tend to be targeted primarily towards applications written

in the C language and must therefore use a separate Interface Definition Language

to describe the interface to the remote service. In contrast, the system described

136 Graham D. Panington

here is targeted solely at the language c++ [stroustrup 19g6]. The choice of c++
was motivated by its use in the Arjuna system [Shrivastava et al. 1991], however,
the stub generator was deliberately designed to operate in a standalone fashion and
to distribute transparently as much of C++ as was possible (with some restrictions
which will be described in a later section). It was felt that the use of C++ might
obviate the need for a separate IDL by using class declarations as descriptions
of the interface to remote objects thus promoting increased transparency. Hence,
the input language to the stub generator is c++ and it produces c++ as its output.
This has some advantages and allows the full power of the language to be used
in the generated stub code, leading to elegant and flexible marshalling code for
example. Furthermore, in keeping to the philosophy of the c++ language, the sys-
tem deliberately does not address issues such as concunency and synchronisation
which are deemed to be the responsibility of higher level services. For example,
when used in the Arjuna system the latter's transaction mechanism supplies appro-
priate concunency control.

The remainder of the paper first describes the important design decisions made
followed by a description of the fundamental technique of stub generation (which
can be skipped by seasoned practitioners). Following that is a description of the
code the stub generator produces, showing how it copes with features of the lan-
guage that are not often necessary in the other languages distributed by this tech-
nique such as inheritance (both single and multiple), templates, and exceptions.
The paper closes with some conclusions on the effectiveness of this approach and
the use of C++ as an interface definition language.

2. Principle Design Decisions

Several important decisions governed the design and implementation of the sys-
tem, some of which have been alluded to already:

1. The stub generator should process standard c++ header files that would
normally be acceptable to any c++ compiler. Thus any stub generation
specific information would have to be placed within comments normally
ignored. Its output would also be standard c++ (preferably acceptable to
the majority of existing compilers thus precluding the use of some of the
newer features of the language).

2. The unit of distribution was to be the c++ class. This would allow indi-
vidual objects to be accessed remotely. only public operations would be
remotely invocable.

A Stub Generation System for C++ 137

3. The stub system would only handle those problems associated with dis-

tribution; that is principally parameter passing and operation invocation.

Other issues such as service sharing and synchronisation are considered to

be concerns best handled in other sub-systems.

4. Client code should remain unaltered if at all possible. That is, the original

client application should compile with either the original class declarations

or with the stub produced declarations without source changes.

5. Stub generation should be modular. That is, if a base class header changes

it should only be necessary to regenerate the stubs for that class. Stubs al-

ready in existence for derived classes should be unaffected.

3. Principles of Stub Generation

Within a distributed environment, applications may access services that are either

local to, or remote from, the node upon which the application is currently execut-

ing. Given that the service can only be accessed by invoking one of its operations,

then access to a remote service requires a mechanism that supports the remote

execution of an operation. This effectively requires the implementation of a com-

munications protocol responsible for the orderly transfer of control between the

invoker of the operation (the caller or client) and some remote server that will ac-

tually execute the operation. Besides the transfer of control a means must also be

provided for the transfer of any arguments required by the called operation and

the return to the client of any results. This mechanism is termed remote procedure

catl (RPC [Bershad et al. 1987, Binell & Nelson 1984]) and represents a natural

extension of the traditional notion of procedure call to the distributed environment.

Conceptually, a distributed application consists of several distinct fragments

split between the original calling process (client) and a remote server process

responsible for executing the requested operations locally. These fragments are

known as: the client, the client stubs, RPC transport, the server stubs, and the

server. Both the client and server are typically designed and implemented as if the

application was to execute in a traditional centralised environment. It is the func-

tion of the client and server stubs to hide the underlying distribution to as great a

degree as possible. Since production of these stubs can be tedious and complicated

the process can be automated by the use of a Stub Generator [Gibbons 1987,

Jones et al. 1985, Parrington 1992, Sun 1988.231. This parses a description of
the interface between the client and the server, written in some Interface Definition

Language (IDL), and produces the required stub code in a language compatible

138 Graham D. Parrington

with both. In many systems this interface description language has a different syn-
tax and semantics to the language in which the application is programmed. By
way of comparison the stub generation system described here is designed to 'work
with a single language and thus requires no separate IDL. Instead it processes the

original C++ header files that would normally be read by the standard compiler.
Each type of IDL has its advantages and disadvantages. An IDL that is pro-

gramming language independent may allow different parts of the distributed appli-
cation to be programmed in a different language suitable to the task. Furthermore,
since such IDLs are typically more constraining they can force a programmer to
be aware of the difference between local and remote processing and forbid use of
certain potentially dangerous constructs normally available in the programming
language. In addition, they may also augment the language with functionality
not normally provided; for example, by providing new types such as strings and

dynamic arrays, or new constructs such as exception handling. However, the

disadvantages are that the programmer is required to map the original interface
description from the host language to the IDL before the stub generator can oper-
ate, thus losing transparency; and also it becomes possible for the IDL description
not to match what is actually implemented if each is updated independently of the

other. FurtheÍnore, many IDL systems actually require that the programmer write
substantially different code for the server (by renaming the functions, for example)
to the code that would be written if the application was not distributed.

On the other hand a programming language specific IDL aids transparency
and the interface and implementation should not diverge as easily as with a sep-

arate IDL. Unfortunately, such ffansparency can lull the programmer into a false
sense of security since the whole language will typically not be distributed and the

inherent costs of distribution are not apparent.

In general, stub generation is not without its problems that principally stem

from the lack of a shared address space between the caller and the actual service
being manipulated. Potential problems include those of:

Machine Heterogeneiry. Different machines may have different binary rep-
resentations of various primitive data types. For example, different byte
orderings and floating point number representations; different arithmetic
precision (16 vs. 32bit); unusual pointer representation; etc. The common-
est solution to this problem requires the client and server stubs to convert
the native format to some common format (for example, ASN.1 or XDR)
prior to transmission. Such conversion is potentially costly and unneces-

sary between machines of the same type. However, the simplicity of the

approach often outweighs this problem in a true heterogeneous environ-
ment.

A Stub Generøtion System for C++ 139

Parameter Passing Semantics and þpes. Different languages have different

semantics governing parameter passing, such as call by value and call

by reference to name but two. Remote procedure call usually enforces a

copy-in, copy-out style of parameter passing which does not necessarily

match the semantics of the local parameter passing mechanism. Further-

more, certain types of arguments may have to be disallowed entirely, for

example, procedures.

Setf-Referential Structures. Most modern programming languages allow the

creation of linked data structures whereby a given data structure contains

pointers to other data structures. This facility provides the programmer

with a very flexible mechanism but may cause problems for stub gener-

ation systems that must usually marshall the entire structure if a single

element of it is passed as a pafameter. Circular data structures are poten-

tially even more problematic to handle.

Failures. Failure of an RPC is far more problematic to handle than failure of a

local procedure call since the latter typically only occurs when the entire

pfogram fails or the error is expected. A procedure executed remotely can

fail completely independently of the caller in many unexpected ways.

4. Implementation

4.1. Assumptions

Since the stub generator is only aimed at distributing C++ programs it tries to ex-

ploit the capabilities of the language to the full. In particular the C++ constructor

and destructor notions provide a convenient handle on remote server creation and

destruction. Furthermore, operator overloading is used in the marshalling and un-

marshalling of parameters. The input is assumed to be a syntactically correct C++

header file (that is, the stub generator is not intended to replace the compiler as a

method of error detection) describing one or more classes.

The unit of distribution is the C++ class, enabling individual C++ objects to

be distributed over the system. The interface the distributed objects support is

the public operation set of the class-all other public entities are removed (with

appropriate warnings).

4.2. Prímary Operation

The stub generator reads a standard C++ header the name of which is supplied as

a command line argument. Since this file typically contains many pre-processor

140 Graham D. Parrington

directives (#include etc.) it must first be processed to remove these. This is han-
dled by feeding the input to the standard C++ compiler (the actual compiler used
is the compiler used to compile the stub generator itself) but instructing it to pre-
process the file only. The resulting output is then read, parsed and the appropriate
stubs produced.

The standard compiler is used to ensure that any special directives normally
passed by it (usually in the form of special definitions of system variables) are used
to produce the stub generator's input. If the standard compiler cannot be found,
several alternatives are tried in sequence. These alternatives have been ascertained
based on experience porting the stub generator to various UNIX implementations.

4.3. Intefacing to the Underþing RPC

In order to be as portable as possible the stub generator places as few demands on
the underlying RPC system as it can. In particular it requires only the ability to
initiate a connection to some remote server, a means of making actual calls, and
a method of breaking the connection. This separation of the details of the actual
RPC from the interface seen by the generated stub code is important and has many
advantages. In particular, stubs can be generated without regard for the actual RPC
mechanism used providing that the RPC mechanism complies with the required
interface specifi cation.

The stub generated code uses only three classes as its interface to the RPC
mechanism: ClientRpcManager, CtientRpc, and ServerRpc. As expected
clientRpc represents the client side view of the RPC mechanism and provides
operations to initiate an RPC connection (initiate), perform a remote call
(caII), and break the RPC connection (terminate). The operation initiate
should establish a binding between the client and the server through whatever
mechanism the underlying RPC mechanism provides using the information pro-
vided by the serviceNane object supplied as a parameter. Naturall¡ terminate
breaks the binding between a client and a server, while cal-I performs the actual
RPC. The main parameters to call are an opcode indicating which operation to
invoke in the server and buffers for the call arguments and returned results, to-
gether with two status flags.

class ClientRpc
{
public:

// pundanental generic operations provided by
// tne RFC interface.

A Stub Generation Systemfor C++ l4l

ClientRpc (ServiceNane* Name) ;

ClientRpc (const char* serviceNane = 0);
virtual -ClientRpcO;

RPC-Status initiateO;
RPC-Status call(Int32 op0ode, RpcBuffer& callBuff ,Int32& errCode,

RpcBuffer& result);
virtual RPC-Status terminateO ;

];

Similarly, the server side of the connection is handled by ServerRpc which

provides operations to receive an incoming request (gettüork) and return some

results (sendResult).

class ServerRpc
{
public:

ServerRpc O;
virtual -ServerRpc O;

int initialise (int argc, char *argv[]);
void getllork (Int32& opCode, RpcBuffer& call);
void sendResult (Int32 errCode, RpcBuffer& result);

Ì;

Normally the stub generated code does not invoke any of the client side op-

erations directly. Instead this is handled by the third class ClientRpcMaaager.
The constructor for this class invokes initiate, while its destructor invokes

terminate. Naturally it exports the call operation unmodified. This approach

ensures that client/server connection and disconnection is handled simply by cre-

ating and deleting instances of the control class.

class ClientRpcManager
{
public:

ClientRpcManager (ServiceName *) ;

ClientRpcManager (CtientRpc * = 0);
ClientRpcManager (const char *);
virtual -ClientRpcManager O ;

RPC-Status call (Int32, RpcBuffer&, Int32&", RpcBuffer&) ;

void rpcAbort O const;
rpcAbortHandler s etHandler (rpcAbortHandler) ;

I42 Graham D. Parrington

private:
int initiated;
ClientRpc *rpcHandle;

];

4.4. Primary Mechanisms

4.4. L Parameter Marshallíng

Implementing remote procedure calls inevitably requires a mechanism by which
arguments and results can be transferred between the client and the server. This
typically involves packing the arguments into a buffer used by the underlying
RPC transport mechanism for transmission and then unpacking them again at the
receiving machine. These operations are frequently referred to as marshalling and
unmarshalling.

The default RPC mechanism used in testing the stub generator is a version of
Rajdoot [Panzieri & shrivastava 1988]. Rajdoot is designed for general purpose
use, and is thus not language specific. As a consequence it requires the program-
mer to convert and pack all parameters and results for a call explicitly into the
buffers used by the RPC mechanism. c++ operator overloading is used to sim-
plify considerably the code required to marshall (encode) and unmarshall (decode)
arguments to and from these underlying RPC buffers. In particular, the operators
>> and << have been adopted for this purpose (similar to their use in the c++ uo
system). Thus << is used to marshall arguments into the buffers used by the Rpc
mechanism, and >> to unmarshall arguments from the buffers regardless of the
actual type of the argument. The RPC buffer class (RpcBuf f er) provides a set of
operations that permit the marshalling and unmarshalling of all of the basic types
of C++ (int, char, etc.). The marshalling of more complex structures is simply
achieved by breaking the structure up into its component parts and marshalling
each independently. The actual encoding scheme cunently used is the same as

that used by the persistence mechanisms in Arjuna that enable a C++ object to be
stored on disk (that is RpcBuffer is derived from the class Buffer and uses its
pack and unpack operations directly). There is, however, no reason why some
other scheme (say XDR or ASN.I) could not also be used.

* Class to ha¡dle RPC buffering. Based upon the standard Arjuna
x Buffer class
*

class RpcBuffer : public Buffer

A Stub Generation Systemfor C++ 143

{
public:

/* Constructors and destructor */

RpcBuffer O;
RpcBuffer (Int32 initVal) ;

RpcBuffer (const RpcBuffer& copyFron) ;

RpcBuffer (const RpcBuffer& copyFrom, Int32 initVal);
virtual -RpcBuffer O;

/* Standard narshalling operations */

RpcBuffer& operator<< (char) ;

RpcBuffer& operator<< (unsigned char) ;

RpcBuffer& operator<< (short) ;

:n:t:tt".O
operator<< (unsigned short) ;

/x Standard unmarshalling operations x,/

RpcBuffer& operator>> (char&) ;

RpcBuffer& operator>> (unsigned char&) ;

RpcBuffer& operator>> (short&) ;

RpcBuffer& operator>> (unsigned short&) ;

:o:t:tt"to
oPerator>> (double&) ;

);

Since all C++ objects are treated as encapsulated entities, the stub generator

ensures that suitable definitions exist for these marshalling operators for all objects

passed as arguments-even class objects which must have their public operation

set augmented by the inclusion of the operations for (un)marshalling.

Arguments passed by pointer or reference require special handling. By default

these are treated as in/out parameters and are both sent in the call and assumed

to be returned as part of the result. This behaviour can be modified in two ways.

Firstly, if the argument is declared to be const then it is automatically treated as

input only. Secondly, the programmer can augment the declaration of an argument

with stub generation speciflc commands to guide the process explicitly. This topic

will be discussed and expanded further in a later section.

Thus the following class declaration and marshalling code is one sample output:

class AnAppointnent
{
public:

1,44 Graham D. Parrington

AnAppointnent O;
-AnAppointMent O;

/,/..Igo:ot" other operations here for clarÍty

// 'Ibese are the added narshalling operations
void narshall (RpcBuffer&) const;
void unnarshall (RpcBuffer&) ;

private:
tine_t start;
tine_t end;
String description;
Boolean confirmed;

Ì;

// OverLoad << to narshall insta¡ce into buffer
inline RpcBuffer& operator<< (RpcBuffer& rp,

co¡tst AnAppointnent& topack)
{

topack . narshalt (rp) ;
return rp;

Ì

// Ì{arsL;aLl each variable in turn
void AnAppointnent::narshall (RpcBuffer& rpc_buff) const
{

rpc_buff << start;
rpc_buff ((end;
rpc_buff << description;
rpc_buff ((confirned;

Ì

// Unnarshalling operations are similar only using the operator >>

4.4.2. Clíent and Server Classes

For each class declaration that it reads from its input file the stub generator will
(when appropriate) generate three new class definitions. These class definitions
represent:

1. The replacement class for use by the programmer in the client application.
This is the mechanism whereby transparency is achieved since the replace-
ment class has the same set of public operations as the original and can thus
be substituted for it without the programmer,s knowledge.

A Stub Generation System for C++ I45

2. The server stub class responsible for decoding an incoming RPC request,

unmarshalling any incoming parameters, invoking the required operation,

and marshalling and retuming any output values prior to returning control

to the caller.

3. A renamed version of the original input class that is instantiated in the

server as required.

For example, this class definition:

#include "AppointMent.h"

/ / tne following stub specific cornmands are actually the default
// @nemote, @NoMarshall
class Diary : public LockMaaager

{
public:

Diary(ServiceName AN) ;
'OiaryO;

String tr{herels(time-t now, String user);

AnAppointnent GetNextAppointnent (tine-t now) ;

int AddAppointment (AnAppointnent entry) ;

int DelAppointment(tine-t r¡hen) ;

virtual Boolean save-state(0bjectState&, ObjectType) ;

virtual Boolean restore-state(ObjectState&, ObjectType) ;

vi-rtual const TypeName tyPeO const;

private:
String user-name;
AnAppointment *aPPts;

);
would result in the generation of the definitions and supporting code shown in the

following sub-sections.

4.4.3. Client Interface

class RenoteDiary : publíc RenotelockManager
{
public:

RenoteDiary (ServiceName, ClientRpcManager *crPc = 0);
-RenoteDiary O;

String llherels (tine-t, String);
AnAppointnent GetNextAppointment (tine-t) ;

146 Graham D. Parrington

int AddAppointment (AnAppointnenr) ;
int DelAppointnent (time_t);
virtual Boolean save_state (0bjectstate&, 0bjectType);
virtual Boolea¡ restore_state (Objectstate&, ObjectType) ;virtual const TypeName type O const ;

protected:
RenoteDiary(const ClientRpcManager&, const RpcBuffer&) ;

private:
ClientRpcMân ager _ctientHa:ndle ;
RpcBuffer _nyHashVal;

Ì;
Simple renaming tricks played using the standard pre-processor enable this class
to be transparently used under its original name in the programmer,s application
code.

This generated client stub class has the same set of public operations as the
original (although any constructors have had an extra argument added to them,
this is effectively invisible and the code written to use instances of the original
class will still compile). Public instance variables, however, are deliberately not
included in the generated class for reasons that will be explained in a later sub-
section. Internally the implementation of the class is totally different. Firstly, only
variables pertinent to the establishment and maintenance of the RPC connection
are present. Secondly, all of the operations are re-implemented to perform the ap-
propriate parameter (un)marshalling and RPC invocation. Thirdly, some additional
operations are introduced including an additional protected constructor which is
used to ensure that certain information only pertinent to the RpC system is cor-
rectly propagated to the stub generated versions of all base classes (if any).

4.4.4. Client Side Code

The generated client stub code for each operation follows a standard pattern: mar-
shall arguments, send invocation, await reply, unmarshall results, and return to
caller. This pattern is illustrated below.

AnAppointment RenoteDiary: :GetNextAppointment (tine_t nor¿)
{

/* ca]-I and return buffers */
RpcBuffer rvBuffer;
RpcBuf f er caltBuf f er (_nyHashVal) ;
RpcBuff er replyBuf f er ;

RPC_Status rpcstatus = OPER_UNKNOüíN;

Int32 serverstatus = 0PER_INVOKED_0K;
AnAppoj-ntnent returnedValue;

A Stub Generation Systemfor C++ 147

/* narshall parameter */
callBuffer << noût;

/* do calL */
rpcStatus = -c1ientHandle.call(31096804, callBuffer, serverStatus,

replyBuffer);
if (rpcStatus == 0PER-D0NE)

{
switch (serverStatus)
{
case OPER-INV0KED-0K:

replyBuffer)> rvBuffer;
rvBuffer >> returnedValue;
break;

default:
-clientHandle . rpcAbort () ;

)
Ì
else

-clientHandle. rPcAbort O ;
return (returnedValue) ;

Ì

The client stub code produced exploits the C++ constructor and destructor no-

tions to ensure that the real (user) objects in the server have lifetimes that match

the lifetime of the (stub) objects in the client. At the point that the stub object

enters scope in the client (and thus the constructor operation of the object is au-

tomatically executed) then binding of client to server is accomplished using the

supplied ServiceNa.me (how this is handled is RPC system specific). Furthermore,

the first RPC sent over the connection corresponds to the invocation of the con-

structor for the real object and is passed the arguments presented to the stub by

the client application. Similarl¡ when the stub object is destroyed in the client,

the generated destructor causes an RPC request to be sent to the server causing

the execution of the remote object destructor before the connection to the server

is itself terminated. Precisely how server processes are created is a matter for the

underlying system.

4.4.5. Server Sharing and Concurrency

From the above paragraphs it can be seen that the binding of client to server is

driven by the construction and destruction of the ClientRpcManager class in-

stances. These may be either created implicitly when the stub object is created or

explicitly by the programmer prior to stub object construction. The actual server

creation process is considered to be independent of the stub generation process, in

148 Graham D. Parrington

that the underlying RPC system can freely create a new server process or share an
existing process at its discretion.

However, the generated server code must contain some limited mechanisms
needed to support server sharing. In particular, since the first call transmitted to a
newly initiated seryer will be to invoke the object constructor (to preserve C++ se-
mantics), there is the possibility that the object will already have been constructed
in a shared server by some other client. solving this requires either invoking a
constructor that does nothing (impractical since which constructor is invoked is
driven by the client) or supporting a form of multiple construction and destruction.
The generated code supports this latter policy in that if a consffuctor invocation
is received by the server and no object exists then the constructor is obeyed and
the incoming arguments, returned results and an indication of which constructor
was invoked are saved. If another constructor call arrives then providing that it
would duplicate the actions of the prior constructor (i.e., it is the same constructor
with the same arguments) then the saved results are returned. Otherwise, an erïor
indication is returned.

4.4.6. Server Side Interface

The generated server class has operations that primarily correspond to those of the
original input class except that each is responsible for parameter (un)marshalling
and calling the equivalent operation on the real object. In addition this server class
has operations for server initialisation and two operations that implement the code
that determines from the incoming call which seryer operation to actually call (the
so-called operation dispatch code).

class ServerDiary : pubtic ServerlockMaaager
{

public:
ServerDiary O;
-ServerDiary O;

void Server (int, char xx);
Int32 DíspatchToClass (LocalDiary,r, Int32, RpcBuffer&, RpcBuffer&) ;

private:
/ / ltlain server dispatch operation
fnt32 DispatchTo0per (LocalDiary *, Int32, RpcBuffer&, RpcBuffer&) ;

/ / Operatíons corresponding to those callable in the clj_ent
Int32 0iary119360965(LocalDiary *,, RpcBuffer&, RpcBuffer&) ;
ïnt32 Diary262355078(LocalDiary *,, RpcBuffer&, RpcBuffer&) ;
rnt32 Wherers1g6673735(LocalDiary *, RpcBuffer&, RpcBuffer&) ;

A Stub Generation Systemfor C++ I49

Int32 GetNextAppointnent31096804(Loca1Diary *, RpcBuffer&, RpcBuffer&) ;

Int32 AddAppointnent 10I964452(LocalDiary x, RpcBuffer&, RpcBuffer&) ;

Int32 DelAppointnent2229673}0(LocalDiary *, RpcBuffer&, RpcBuffer&) ;

Int32 save-state140478901 (LocalDiary i', RpcBuffer&, RpcBuffer&) ;

fnt32 restore-state93}779t(LocalDiary *, RpcBuff er&, RpcBuff er&) ;

Int32 type117319830(LocalDiary *, RpcBuffer&, RpcBuffer&) ;

// Poi-tter to real object
LocalDiary *,theRealObj ect ;

Ì;

Each routine in the server class effectively has the same set of arguments. The

first is a pointer to the object to be manipulated which is passed to ensure that the

semantics of multiple inheritance are obeyed. The second is an RpcBuf f er that

contains all of the call information (incoming parameters, for example), and the

third is an RpcBuf f er into which the results (if any) can be placed. All opera-

tion names in this class are generated by combining the original name with a hash

value computed from the original full operation signature (class name, operation

name, and types of all parameters). This scheme ensures that operations over-

loaded in the original class can be correctly resolved in the server (otherwise the

standard overloading mechanism in the compiler would not be able to tell them

apart). This computed hash value is also used in the server dispatch code when

determining which operation in the server to actually call.

4.4.7. Server Side Code

Int32 ServerDiary : : GetNextAppointment31096804
(LocalDiary *theObject, RpcBuffer& work, RpcBuffer& result)

{
RpcBuffer rvBuffer;
Int32 errCode = OPER-INVOKED-0K;

/* unpack inconing argunent */
tine-t nor'r = -1;
work)) now;

/*. perforn the real caLI */
AnAppointment returnedValue = the0bj ect->GetNextAppointnent (nor¿) ;

/* send back result */
rvBuffer << returnedValue;
if (rvBuffer.lengthO > 0)

result ((rvBuffer;
return errCode;

Ï

150 Graham D. Parrington

4.5. Coping with RPC Failure

Failure of an RPC is far more problematic to handle than failure of a local pro-
cedure call since the latter typically only occurs when the entire program fails or
the error is expected. A procedure executed remotely can fail completely inde-
pendently of the caller in unexpected ways. The handling of RPC failures is the
major problem in stub generation. This problem is actually exacerbated by the
use of C++ since return values may be arbitrary complex objects. Unfortunately,
there is no automatic solution to this problem. The stub generator only knows that
operations pass and return instances of particular types when invoked and relies
on being able to initialise a return value by unmarshalling it from the RPC reply.
If the RPC fails the stub generator has no way of automatically producing code
to return an efror instance of the return type since it has no knowledge of how
to construct such an instance (even though it knows the signature of all of the
object's constructors, they may not necessarily be accessible due to C++ access

rules).

The most likely additional causes of failure in a distributed system over those
found in a non-distributed one will be caused by failure of the RPC system for
some reason. RPC failure typically comes from two sources. Firstly the RPC itself
fails for some reason (that is, the server does not respond to the client request for
a variety of reasons including crashed server machine or process, network parti-
tion, or server overload). Secondl¡ the RPC succeeds (in the sense that the call
is delivered) but the server process rejects it as invalid. This latter case can be
caused by mismatches between the client and server interfaces for example. In
either case a call to the ctientRpcManager operation rpcAbort is made by the
generated stub code. This routine checks to see if the programmer has established
a handler routine for RPC failures through this particular connection and if one
exists then it is called. If no such handler exists then the global rpcAbort opera-
tion is called. This routine determines if the programmer has established a global
handler for all RPC failures and calls it if it exists. Otherwise if a global handler
has not been established then an exception is raised (until the proposed c++ ex-
ception handling mechanism is available this is simulated using UNIX signals).

4.6. Coping with Inheritance

To ensure that the stub code for each class can be compiled independently from
any of its parents and so that a change in a base class need not necessarily force
a regeneration and recompilation of the stub code for any derived class, the stub
generator preserves the inheritance properties of the input classes in its output
classes. That is, the server dispatch code (implemented in this example by the

A Stub Generation System for C++ 151

generated routine ServerDiary: :DispatchTo0per) will only directly invoke the

operations defined in the Diary class-not any operations from any class from
which Diary might have been derived. If an operation inherited from some base

class needs to be invoked the request is passed to the appropriate base class by the

routine ServerDiary : : Dispat chToClass (in this example).

Ínt32
ServerDiary: :dispatchTo0per (LocalDiary *theObject,Int32 funcCode,

RpcBuffer& work, RpcBuffer& resutt)
{

switch (funcCode)

{
case 119360965:

return Diary119360965(theObject, work, result) ;

case 262355078:
return Diary262355078(the0bject, work, result) ;

case 186673735:
return tfherels186673735(theObject, tíork, result) ;

case 31096804:
return GetNextAppointment31096804(theObject, I^rork, result) ;

case 101964452:
return AddAppointnent101964452(the0bject, work, result) ;

case 2229673QQ:,

return De1Appolntment22296t300(theObject, work, result) ;

case 140478901:
return save-stateL404789}t(the0b¡ect, work, result) ;

case 9807781:
return restore-state98O7781(theObject, work, result) ;

case 117319830:
return type117319830(the0bject, work, result) ;

default:
return DISPATCH-ERR0R;

Ì
Ì

Int32
ServerDiary: :dispatchToClass (LocalDiary *the0bject, Int32 funcCode,

RpcBuffer& work, RpcBuffer& result)
{

Int32 classCode;

work)) classCode;

sr^ritch (classCode)
{
case -1:

152 Graham D. Parrington

return dispatchTo0per
(theObject, funcCode, work, result) ;

case 53946306:
return ServerlockManager : : dispatchToClass

(the0bject, funcCode, work, result) ;

default:
return DISPATCH_ERROR;

Ì
)

4.6.1. Multiple Inheritance Complications

The above code at first seems unnecessarily complex, however, this is because
it must also cope with the complications introduced by multþle inheritance.
Had c++ been limited to single inheritance then the Dispatchroclass opera-
tion would not have been required and the default action of DispatchroOper
would have been to propagate the call to the immediate parent class if one existed
or return an elror otherwise (note that this latter condition should never occur in
practice).

The DispatchToClass routine is responsible for resolving the potential am-
biguities on which routine to call in the server that can arise when multiple inher-
itance is used (the ambiguity cannot exist in the original client code otherwise the
C++ compiler would have rejected it). It does this using information built when
the client object is constructed and which is transmitted as part of each call. Con-
sider the following trivial example of multiple inheritance:

class Base
t
public:

int f O;
);

class Derivedl : public Base {};

class Deri.ved2 : public Base {};

class MostDerived : public Derivedl, public Derived2
{
public:

void anOpO;
Ì

In this example any instance of the class MostDerived will contain two in-
stances of the Base class-one in Derivedl, and another in Derived2. From the

A Stub Generation System for C++ 153

application programmer's point of view this is potentially harmless and compli-

cations only arise if f O is called from an operation in MostDerived (say mOp)

since the compiler cannot determine unaided upon which of the sub-objects f o
should be invoked. In this scenario the programmer must explicitly qualify the call

(for example as Derivedl : : f ()). This explicit qualification uniquely identif,es

which of the Base sub-objects are being operated upon in the client. Naturally it is
the job of the stub generator to ensure that this qualiûcation is also reflected in the

server by the generated stub code.

However, since the stub generator treats all of these classes as independent

then the operation Base: : f O will be assigned only one operation code (in this

particular example 59307398) and it is this value that will be sent in the RPC

message. Without an auxiliary mechanism the server dispatch code cannot decide

based solely on operation code upon which sub-object the operation should be in-
voked. To solve this problem the stub generator associates a hash code with each

class. As a client stub object is constructed a list of these codes is dynamically

built and stored at each level of the hierarchy as each constructor in the hierar-

chy is invoked. The list for any given class thus consists of the class's own code

combined with the list of codes passed as an argument to the class's constructor.

This list is prepended to all outgoing calls and effectively acts as a routing map

allowing the server dispatch code to navigate the inheritance hierarchy.

Thus in the preceding example, the dynamically built hashcode lists are:

MostDerived : -1
Derivedl :21Q816977 : -t

Base : 21081 6977 : 297 t09 t -L
Derived2 : 2t08t6978 : -t

Base : 21081 6978:297tQ9-t

Thus, if Derivedl : : f O is invoked, then the list 210816977 :297I09: -1 is
sent in the RPC buffer along with the code representing the operation (59307398).

The server's DispatchToClass routine extracts this list one entry at a time. On

reading the flrst element (2L08I6977) it calls ServerDerivedl: :DispatchToClass,
which extracts the code 297LOg and then in turn calls ServerBase : : DispatchToClass.
This extracts the code -1 and thus invokes the DispatchTo0per routine which fi-
nally calls the operation requested on the correct sub-object.

4.7. Template Classes

At first sight simple template classes seem to cause surprisingly few complica-

tions. On reading a template class the stub generator proceeds exactly as it would

I54 Graham D. Parrington

for any other class, only instead of producing normal classes to replace the orig-
inal, it produces template classes and the appropriate templated operations. For
example, the trivial class:

tenplate (c1ass T> class Test
t
public:

Test O;
T *example (const T*);

Ì;

produces the following client side class:

tenplate (class T) class RenoteTest
{
public:

RenoteTest (ClientRpcMa¡âger * = 0);
T *example (const T+);

private:

);

and this example implementation for the operatio¡ sli",np1eO.

tenplate (class T)
T *RenoteTest(T>::example (const f* _par_O_)
{

RpcBuffer rvBuffer;
RpcBuff er callBuf f er (_nyHashVal) ;
RpcBuffer replyBuff er;
RPC_Status rpcStatus = 0PER_UNKN0ïJN;
Int32 serverStatus = 0PER_INV0KED_0K;
T *returnedValue = 0;

callBuffer << now;

rpcStatus = _c1ientHand1e.call(1811442L2, callBuffer, serverstatus,

if (rpcstatrs == 0PER-D0NE)
replybuffer);

{
switch (serverStatus)
{

case 0PER_INV0KED_OK:

replyBuffer)) rvBuffer;
rvBuffer >> returnedValue;
break;

A Stub Generation Systemfor C++ 155

default:
-clientHandle . rpcAbort () ;

Ì
Ì
else

-clientHandle . rpcAbort () ;

return (returnedValue) ;

Ì

There is, however, one complication and that lies in the area of server class

instantiation. For non-template classes creation of an instance of a client class

cf ientx will always cause the creation of a matching class serverX in the gen-

erated server code. However, for a template class, the actual instantiated type of
the class in the client (and thus the server) is not determined until the client code

is compiled. Since the stub generator only reads header files and not client code it
cannot determine what server type to instantiate. In this situation the programmer

must write the code to instantiate the server type explicitly.

4.8. Exception Handling

Although few compilers currently support the proposed exception handling sys-

tem, its adoption by the standards committee seems assured and the syntax and

semantics appear to have been frozen. Thus it is possible for the stub generator to

provide some svpport for true C++ exceptions despite the lack of compilers for the

generated code. As will be shown this support cannot be complete due to the lack

of information available to the stub generator.

Currently, the generation of exception handling code is conditional. If any

member function signature contains an exception specification then exception

handling code is generated for all member functions of the class. If no member

function has an exception specification then the code generated is as described

earlier.

Exceptions generated by a member function are treated exactly like normal

returnable parameters and have the same restrictions; that is, they must be mar-

shallable so that they can be transmitted back to the client as part of the return

RPC. When received in the client, any thrown exception is unmarshalled and then

(re)thrown so that the caller observes the correct behaviour. Thus extending the

earlier Diary example with exceptions gives the following client code:

AnAppointnent RemoteDiary : : GetNextAppointnent
(tine-t now) throw (anException)

{
RpcBuffer rvBuffer;

156 Graham D. Parrington

RpcBuf f er caltBuf f er (_nyHashVat) ;
RpcBuf f er replyBuf f er ;
RPC-Status rpcstatus = 0PER_IINKN0IIN;
ïnt32 serverStatus = 0PER_INV0KED_0K;
AnAppointnent returnedValue ;

callBuffer << now;
rpcStatus = _clientHandle.call(31096804, cal1Buffer,

serverstatus, replyBuf f er) ;

if (rpcStatus == oPER-DoNE)
{

sr^ritch (serverStatus)
{

case 0PER_INV0KED_OK:

replyBuffer)> rvBuffer;
rvBuffer)) returnedValue;
break;

case EXCEPTT0N_RAISED :

{
int exceptionNunber;
replyBuffer)) rvBuffer;
rvBuffer)) exceptionNumber;
switch (exceptlonNr¡nber)
{

anExsspf,isn eType;
rvBuffer >> eType;
thror^r eType;

)
default:

_clientHandle. rpcAbort O ;
)

]
else

_clientHandle. rpcAbort O ;
retum (returnedValue) ;

)

From this it can be seen that exceptions are returned as a pair indicating which
exception was thrown, followed by the encoded exception itself. The rvBuff er
contains either the correct returned value or the exception, with the returned
serverStatus indicating which is valid.

Similar code is produced on the server side:

case 0:
{

)
)
break;

A Stub Generation SystelnÍor C++ 157

Int32
ServerDiary : : GetNextAppointnent31096804

(LocalDiary *theobject, RpcBuffer& work, RpcBuffer& result)
{

RpcBuffer rvBuffer;
Int32 errCode = 0PER-INV0KED-0K;

tine-t nol¡ = 0;
WOrk)) now;

AnAppointment returnedValue =
theobj ect->GetNextAppointment (nor¡) ;

rvBuffer << returnedValue;
)
catch (anException -Ex-O-)
{

rvBuffer << 0;
rvBuffer << -Ex-O-;
errCode = EXCEPTION-RAISED;

]
result ((rvBuffer;
return errCode;

)

Here, a handler is established for each exception that the function has declared

it may throw, and the returned buffer is constructed appropriately.

Problems exist with functions that do not have any exception specification,

since the language specifies this to mean that the function can throw any excep-

tion. From the stub generation point of view this is akin to having an exception

specification of the (currently illegal) form thror¿ (. . .). Since exceptions have to

obey the same rules as parameters this cannot be handled in the same manner as

declared exceptions. Instead the server code establishes a generic handler (catch
(. . .)) which simply sends the status of UNEXPECTED-EXCEPTION back to the

client. V/hen the client code detects this return status it passes it to the caller via

the rpcAbort mechanism outlined earlier. An alternative approach might be to

throw a stub specific exception, however, it is impossible to (re)throw the excep-

tion that was actually thrown at the server due to the complete lack of information

regarding the exception that was actually thrown. The stub generator produces

warning messages whenever it produces this code to alert the programmer to the

possible problems.

The semantics that may be associated with exceptions is equally hard to

mimic since it depends entirely upon the actual code of the member function to

158 Graham D. Parrington

try
{

which the stub generator has no access. For example consider the following exam-
ple signature:

Iong Aclass: :doSonething (aParaneter& p1) throw (anException) ;

The generated server code can easily establish a handler for the exception
aaExceptíon, however, if that exception is thrown by the called function the sig-
nature alone is insufficient to determine whether the parameter p1 is valid or not.
By contrast, the return type is assumed to be invalid since the function did not
return normally. In this situation the generated code makes the following assump-
tions:

1. The return type is invalid and is not returned.

2. All other parameters that would have been returned if the exception had not
been thrown are valid and are returned as normal.

3. The exception itself is encoded and returned.

4.9. The Stub Generation Process

The stub generator normally generates a set of files for each class it detects in the
input file. However, this behaviour can be modified by inclusion of stub generation
specific directives in the input file.

4.9.1. Output Files

For a given input file rnput. h that contains a class called Testclass, the stub
generator will, by default, produce the following files:

Input-stub.h. Replacement header file-should be included in source code
in place of fnput . h. The contents of this file are similar to the original in-
put file except that class definitions will have been removed into separate
header files that will be automatically included. Certain other constructs
may also be removed-in particular, inline function definitions. Inline
definitions and/or extern declarations for marshalling operations may also
have been inserted.

TestClass-stubcl-ass.h. This file contains the definitions for the new
classes that replace the original class TestClass. These classes are named
LocalTestClass, Remot eTestClass, and ServerTestCl_ass. C++ pre-
processor directives attempt to hide this name change from the user.

A Stub Generation System for C++ 159

TestClass-client. cc. Client side code that provides new implementations

of all public operations of the original class as RPC calls to the server.

TestClass-server. cc. Server side code that decodes incoming RPC re-

quests, calls the original class operations, and returns the results to the

caller.

TestClass-servernain. cc. Simple main program that creates an instance

of the server class and causes it to wait for incoming requests.

Te st Cl as s - mar shal I . c c. Automatic marshalling/unmarshalling code for
instances of the class TestC1ass. Marshalling code for pointers and refer-

ences may also be present in this file.

4.9.2. Directives

To ensure that the header file used as input is still acceptable to standard C++

compilers, stub generation directives are hidden in one of two ways-either within
comments or as pragmas. When used in comments they are treated as declaration

specifiers by the grÍrmmar (that is, like static or const, etc.) and thus should

immediately precede the declaration to which they apply. The pragma form of
directive only needs to appear earlier in the file. More than one directive may be

given at a time, though some conflict with each other' The current set is:

@Renote. Indicates that the following class will be accessed remotely so

the stub generator should attempt to produce client and server code and

definitions to accomplish this.

@NoRenote. The negation to the above. In this case no RPC code will be

generated for this class. However its public interface may still be aug-

mented with the addition of marshalling code depending upon the setting

of the following options.

@AutoMarshall. Attempt to generate marshalling code for this class auto-

matically. This enables instances of the class to be passed as arguments in
RPC calls.

@UserMarshall. Assume that the class already contains appropriate defini-

tions for the operations marshall and unmarshall but still generate defini-

tions of the marshalling operators.

@NoMarshall. No marshalling is allowed on instances of this class.

@Delete. Applicable only within a class declaration and only to member

functions. This option is provided to allow more explicit control over the

160 Graham D. Parrington

de-allocation of memory in the server. consider some operation that re-
turns a pointer as a result. This pointer may have several possible seman-
tics associated with it with regard to memory allocation. Firstly, it may
simply be a copy of an internal pointer that remains valid only while the
object upon which the operation was performed exists. Secondl¡ it may
be a copy of an internal pointer but by returning it the object has passed
responsibility for freeing the object it points at to the caller. Finally, it may
point to a freshly allocated object allowing independent deletion by both
parties. Both caller and callee must know which policy is in effect if the
application is not either to fail (the wrong party deletes what the pointer
points at) or to use memory inefficiently. However, even if both parties
follow the same semantics, the separation of client and server into disjoint
address spaces can cause the server to use memory inefflciently since the
automatically generated code is unaware of which semantics are in effect.
It thus errs on the side of caution and will not delete memory unless this
option is in effect.

The following directives are only applicable in the declaration of a parameter
list for a member function. They modify the default parameter passing behaviour
appropriately.

@In. Mark parameter as input only. This is the default for all parameters ex-
cept pointers, references and arrays unless they are marked const.

@0ut. Mark parameter as output only. Never a default, but useful in those
cases where the parameter is set by the called operation but invalid before
the call (so an attempt to transmit it in the call could fail).

@rnOut. The default for pointers, references and arrays. causes such param-
eters to be passed by value result (copy-in, copy-out) as an approximation
to call be reference.

The default options for a class are @Renote, @NoMarshall. Note that due
to limitations in the current implementation, classes that can be accessed remotely
cannot be marshalled and passed as parameters.

4.9.3. Command Line Options

The stub generator supports a small set of command line arguments. All command
line arguments that start with a minus sign (for example -r, -D, etc.) are passed
directly to the pre-processor unaltered, while those that start with a plus sign (+)
affect the execution of the stub generation process in some way. The current set of
options includes:

A Stub Generøtion System.for C++ 16l

+S Indicates that the pre-processed output should be saved in a file suffixed by

. i. This file can later be used as input to the stub generator directly.

+r¡ï Enable the printing of warning messages. By default only error messages

are printed.

+idl Generate OMG style IDL instead of C++ stub code.

5. Processing Caveats

Initially, the input file must be pre-processed before parsing commences to re-

move all C++ pre-processor directives. By default this pre-processing is done by

invoking the compiler used to compile the stub generator itself (as specified at

configuration time) and passing it the -E (pre-process only flag). However, some

compiler driver programs produce no output when given header files (. h files) as

input (Cfront-based systems typically suffer from this). In an attempt to overcome

this the stub generator linlæ a temporary file that has a . C suffix to the original

header and pre-processes this file instead. The link is broken when the stub gen-

erator terminates. If compilation with the default compiler fails the stub generator

attempts to compensate further by running an alternative pre-processor (such as

/l-iio/ cpp) on the input file in this case. While this should produce compilable

output it rnay not necessarily be correct if the driver program normally invoked

the C pre-processor with extra arguments (typically -D and -U flags).

This pre-processing can also cause problems if, for example, array sizes were

defined using pre-processor #def ine directives rather than C++ language facilities

since the generated output file will no longer contain such directives.

6. Marshalling Complex Structures

So that complicated data structures that contain pointers (such as lists and trees)

can be (un)marshalled automatically the routines that do the real work of en-

coding the data attempt to keep track of whether a pointer has been packed into

the buffer already, in which case it is not packed again. Instead a special flag is

inserted that the unpacking routines can recognise and can thus compensate appro-

priately. This helps to ensure that arguments get encoded and decoded only once.

Note that since by default the generated marshalling routines encode entire objects

this is equivalent to a so-called deep copy of any object that contains pointers to

162 Graham D. Parrington

other objects. Furthermore, the detection of whether a pointer has been packed al-
ready is not based solely upon the value of the pointer but also upon a calculated
checksum of what the pointer actually points at. This ensures that if the contents
change for whatever reason during the encoding process a new copy will be made.

The same pointer tracking technique also helps to ensure that pointer aliasing
is correctly preserved. For example, consider the following simple (but contrived)
code fragment:

char *s1, *s2;

s1 = "hello";
s2 = s1;
an0bj->oper(s1, s2);

Here, in the call to anObj->oper the two pointers actually point at the same
area of memory in the client and it is important that when the operation is invoked
at the server this situation is preserved. The parameter encoding and decoding
routines ensure this.

To ensure that c++ reference semantics are obeyed the stub generator im-
plicitly converts references into pointers at the client and marshalls the resulting
pointer. Server code ensures that the user is still passed a reference as it expects.
Note that this implicit conversion only occurs if the reference is to a fundamental
type (int, char, class instance, etc.). other references (for example, reference to
pointer) are passed unmodified.

Finally, the programmer can suppress the automatic generation of marshalling
code and provide alternative implementations if required through a command
(@userMarshall) embedded in the header file describing the class.

7. Problems with Stub Generation

Stub generation is not without its problems caused primarily by the lack of a
shared address space between the client and the server. For example, the seman-
tics of procedure call may be different (stub generation usually utilises a copy-in,
copy-out process for arguments which may have a different effect upon appli-
cation execution). Furthermore, certain types of parameters may be disallowed
altogether (procedure type parameters, for example). Such problems are not par-
ticular to the stub generation system described here but are inherent in the stub
generation process and affect all conventional languages distributed this way. Ad-
ditionall¡ since c++ was not designed for distributed programming some of its
constructs are not amenable to stub generation techniques and have to be disal-
lowed. Examples of such constructs include:

A Stub Generation System for C++ 163

Variable length argument /isrs. These cannot be marshalled automatically since

the stub generator cannot determine at the time it processes the header file

how many arguments will need to be marshalled on any given call.

public variables and friends. These break the assumed encapsulation model

and allow potentially unconstrained access to the internal state of an ob-

ject. Since that object may now be remote from the client application such

variables will typically not exist or at least not be accessible in the same

address space.

Static class members. C++ semantics state that only a single copy of a static

class variable exists regardless of the number of instances of the class in

existence. These semantics cannot be enforced in a distributed environ-

ment since there is no obvious location to site the single instance, nor any

way to Provide access to it.

No pointers to functions. Allowing pointers to functions requires the ability

for the server to call back to the client to execute the required code. The

current RPC implementation does not provide the required functional-

ity.

Limited operator overloading. This is caused by the fact that such operations

typically take instances of the same class as arguments and would thus

require object mobility (the individual instances could be on different re-

mote nodes).

Parameter Semantics. Pointer and reference arguments are currently imple-

mented as value-result. This approach has several potential problems that

arise due to a variety of causes. For example, declaring a variable to be a

pointer to some type does not imply that the variable points to a single in-

stance of that type-it might actually point to an array. This is especially

true if the type is char *-that is, a pointer to character that by conven-

tion is used to represent a string, or a list. Therefore, the stub generator

imposes certain semantics upon pointers such that a pointer to a type is

always considered to point to only one instance of that type-except for

the character pointers that retain their traditional meaning.

Failures. As described in an earlier section, failure of an RPC is far more

problematic to handle than the failure of a local procedure call since the

latter typically only occurs when the entire program fails or the error is

expected. A procedure executed remotely can fail completely indepen-

dently of the caller in unexpected ways. The provided mechanism based

upon the use of an rpcAbort operation is sufficient but inelegant. Once

the majority of compilers implement exception handling an alternate ap-

proach may be feasible.

164 Graham D. Parrington

All of these problems have the effect of lowering the overall access trans-
parency to the programmer; however, and this is the important gain, not com-
pletely to zeÍo.lVith care applications can be written that are fully location and
access transparent, while others require only minimal additional programmer
assistance. However, the point remains that stub generation relieves the pro-
grammer of a significant proportion of the burden involved in the distribution
of applications.

8. Current Status and Experience

The system as described in this paper is functional and forms one of the key com-
ponents of the Arjuna distributed programming system. As such it has been used
to support the implementation of a University-wide student registration system
which was used by the administration of the University to register all students in
the University in October 1994. Additionally it has been used as part of the imple-
mentation of a distributed database system (Stabilis [Buzato & Calsavara lg92])
and also in research on providing fault-tolerant parallel programming over a net-
work of workstations. Finally, the system is in use by students in a variety of
projects and as part of a course on distributed systems. In general it has proved
a useful tool, although as might be expected it tends to be more useful when the
original code that it processes has been written with stub generation in mind. Pro-
cessing old code can be a little problematic depending upon how old the code is
and how many of the unsupported features are used.

Due to the evolving nature of C++ the stub generation system itself continues
to evolve. However, it still makes relatively few demands on the underlying c++
compiler, particularly in its use of the newer features of the language. In particu-
lar, templates could be used in several places in the generated code but since some
compilers still have problems with templates they are not used.

Additionally, since the heart of the system is a c++ parser, it has been used to
implement a prototype C++ class to OMG IDL definition translator. The aim here
being to aid in the process of converting existing code into code that will work in
an OMG CORBA compliant system.

9. RelatedWork

The task of using c++ as a transparent distributed programming language has
exercised the minds of many researchers over the years since the language

A Stub Generation System for C++ 165

was first introduced. Their approaches can be classified into two broad ap-

proaches.

The ûrst usually extends the language in some way by adding extra keywords

and then either provides a pre-processor for the extended language or modifies

an available compiler to implement the required functionality. The latter option

is a thankless task that ties users into the particular compiler that was modifled

(undesirable since that compiler may not be available on a particular hardware

platform). Early implementarions of Sos [shapiro et al. 1989] used this ap-

proach. Alternatively using a pre-processor means that standard compilers can

be used; however, depending upon how the additional keywords are presented to

the programmer transpafency may be compromised (the modified source might be

unacceptable as C++ unless pre-processed (for example, C** [Cahill et al. 1990]).

While the stub generation approach adopted here is a pre-processor it is basically

non-intrusive in that the augmented source remains valid C++ throughout. Further-

more, if the default actions are acceptable the source remains unaltered.

The second approach effectively takes the C++ memory model of a shared

address space and spreads it across the network (the so-called Distributed Shared

Memory (DSM) approach). This has the advantage that much more of the lan-

guage becomes distributable, however, the cost is that most DSM approaches as-

sume a homogeneous environment to avoid numerous complications in pointer and

data layout, etc. Furthermore, the adoption of a global virtual address space has

potential scalability problems due to the scarcity of virtual addresses. Performance

can also be a problem in such systems. Systems that basically follow this approach

include PANDA lAssenmacher et al. 1993), Amber [Chase et a]. 19891, and Cool

[Habert et al. 1990].

Some systems are combinations of both of these basic approaches (for exam-

ple, PANDA augments C++ with keywords such as persistent and thus requires

a pre-processor but uses DSM as an underlying mechanism).

10. Conclusions

The transparent distribution of an arbitrary C++ program is impossible to achieve

in practice due to the inherent assumptions about the underlying system built into

the language itself. However, the stub generation technique described here goes a

long way in automating the process and relieves the programmer of much of the

burden involved. For example, the Stabilis lBuzato & Calsavara 1992] distributed

database system is built on top of Arjuna using the stub generator described here.

Many of the problems stem from the fact that the stub generator only reads

header files which regrettably often do not contain enough semantic information

166 Graham D. Parrington

to guide the generation process-hence the need for programmer assistance in the
fonn of stub generator commands in the header files. Nonetheless it still achieves
a high degree of fransparency with minimal programmer intervention. As such it is
a useful tool in any programmü's toolkit.

Aclcnowledgments

The work reported here has been supported in part by grants from the uK Min-
istry of Defence, Engineering and science Research council (Grant Number
GR/H81078) and ESPRIT projecr BROADCAST (Basic Research project Number
6360).

A Stub Generøtion Systern for C++ 167

References

APM, ANSA Reþrence Manuø\, Cambridge, UK, 1991. (Available from APM

Ltd., Poseidon House, Cambridge, UK.)

H. Assenmacher, T. Breitbach, P. Buhler, V. Hubsch, and R' Schwarz, PANDA-
Supporting Distributed Programming in C++, Proceedings of ECOOP93, LNCS

707,pages 361-383, Kaiserslautern, Germany, Springer, July 1993'

B.N. Bershad, D.T. Ching, E.D. Lazowska, J' Sanislo, and M' Schwartz, A

Remote Procedure Call Facility for Interconnecting Heterogeneous Computer

Systems, IEEE Transactions on Sofiiuare Engineering, vol' SE-13, no' 8, pages

880-894, August 1987.

A. D. Binell and B. J. Nelson, Implementing Remote Procedure Calls, ACM Trøns-

actions on Computer Systems, vol.2, no' 1, pages 39-59, January 1984'

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter, Distribution and Abstract

Tlpes in Emerald, IEEE Transøctions on sofi-ware Engineering, vol. sE-13, no. 1,

pages 65-76, January 1987.

L.E. Buzato and A. Calsavara, Stabilis: A Case Study in Writing Fault-Tolerant

Distributed Applications using Persistent objects, Proceedings of the Fifth In-

ternational Workshop on Persistent Objects, San Miniato, Italy, Septembet l-4,
1992.

V. Cahill, C. Horn. A. Kramer, M. Martin, and G. Starovic, C** and Eiffel**:

Languages for Distribution and Persistence, Technical Report, Distributed Systems

Group, Trinity College Dublin, 1990.

J. S. Chase, F. G. Amador, E.D. Lazowska, H. M. Levy, and R. J. Littlefield, The

Amber System: Parallel Programming on a Network of Multþrocessors, Pro-

ceedings of the l2th ACM Symposium on Operating Systems Principles' pages

t47-158,1989.
p. Dasgupta, R. J. LeBlanc, and E. Spafford, The clouds Project: Designing and

Implementing a Fault Tolerant Distributed operating System, Technical Report

GIT-ICS-85/29, Georgia Institute of Technology' 1985.

D. Detlefs, M. P. Herlihy, and J. M. Wing, Inheritance of synchronization and

Recovery Properties in Avalon/C+ +, IEEE Computer, vol. 21, no' 12, pages 57-

69, December 1988.

P. B. Gibbons, A Stub Generator for Multilanguage RPC in Heterogeneous Envi-

ronments, IEEE Trønsactions on sofnvøre Engineering, vol. sE-13, no. 1, pages

77-87,January 1987.

S. Habert, L. Mossieri, and v. Abrossimov, cool: Kernel support for object-

oriented Environments, Proceedings of the Joint ECOOP/OOPSI'A, pages 269-

277, Ottawa, Canada, October 1990

M.B. Jones, R.F. Rashid, and M.R. Thompson, Matchmaker: An Interface Spec-

ification Language for Distributed Processing, Proceedings of the l2th Annual

ACM Symposium on Principles of Programming Innguages, pages 225-235, Jan'

uary 1985.

3.

l.

11.

4.

5.

6.

1.

9.

10.

12.

13.

168 Graham D. Parrington

14. B. Liskov, Distributed Programming in Argus, Communications of the ACM, vol.
31, no. 3, pages 300-312, March 1988.

15. OMG, The Common Object Request Broker: Architecture and Specification, Ob-
ject Management Group, Cambridge, Mass., December 1991.

16. OSF, OSF DCE Vl.x Requirements, OSF DCE Reliable Computing Group, 1991.

l7. F. Panzieri and S. K. Shrivastava, Rajdoot: A Remote Procedure Call Mechanism
Supporting Orphan Detection and Killing, IEEE Transøctions on Sofñuare Engi-
neering, vol. SE-14, no. 1, pages 30-37, January 1988.

18. G. D. Parrington, Programming Distributed Applications Transparently in C++:
Myth or Reality?, Proceedings of the OpenForum 92 Technical Conference, pages

205-218, Utrecht, November 1992.

19. M. Shapiro, Y. Gourhant, S. Habert, L. Mossieri, M. Ruffin, and C. Valot, SOS:

An Objecf Oriented Operating System-Assessment and Perspectiv es, Computing
Systems, vol. 2, No. 4, December 1989.

20. S. K. Shrivastava, G. N. Dixon, and G. D. Parrington, An Overview of Arjuna: A
Programming System for Reliable Distributed Computing, IEEE Soþuare, vol. 8,

no. 1, pages 63-73, January 1991.

2I. A.Z. Spector, R. Pausch, and G. Bruell, Camelot: A Flexible, Distributed Trans-

action Processing System, Proceedings of CompCon 88, pages 432-439, February

1988.

22. B. Stroustrup,The C++ Programming Innguage, Addison-Vy'esley, 1986.

23. Sun, Rpcgen Programming Guide, Network Programming Guide, Sun Microsys-
tems Inc., 1988.

24. Sun, Network Services, Network Programming Guide, Sun Microsystems Inc.,
1988.

A Stub Generation System for C++ 169

