
A Rule-Set Approach to Formal
Modeling of a Trusted Computer
System

Leonard J. LaPadula The MITRE Corporation

ABSTRACT: This article describes a rule-set approach
to formal modeling of a trusted computer system. A
finite state machine models the access operations of
the trusted system while a separate rule set expresses

the system's trust policies. A powerful feature of this
approach is its ability to fit several widely differing
trust policies easily within the same model. The paper

shows how this approach to modeling relates to general

ideas of access control. Departing from the traditional
abstractness of discussions of formal models, the paper

also relates this approach to the implementation of real
systems by connecting the rule set of the model to the
system operations of a UNIX System V system. This
gives high confidence that a real system could clearly
derive from the elements of the formal model instead
of additionally depending on numerous design and
policy decisions not addressed in the model. Neither
are the trust policies left largely to the imagination of
the reader-the rule base has detailed specifications
of the mandatory access control policy of UNIX Sys-

tem V/IVILS, a version of the Clark-Wilson integrity
policy, and two supporting policies that implement
roles. A fundamental point established by the work
reported in this article is that formal modeling can be

moved considerably closer to implementation of real
systems, a fact that has great beneficial impact on the
possibility of building high assurance trusted systems.

@1994 The USENIX Association, Computing Systems, Vol. 7 . No. 1 . Winter 1994 113

l. Introduction

This paper describes a rule-set approach to formal modeling for a trusted com-

puter system. The approach uses a State Machine Model and a Rule Set Model.

This rule-based approach has its roots in several ideas fostered in the Generalized

Framework for Access Control (GFAC) vision (Abrams, 1990). The modeling

approach responds to the challenge of that vision, as expressed in these objectives:

. Make it easy to define and formalize access control policies besides tradi-

tional mandatory access control (MAC) and discretionary access control
(DAC), to increase the availability of diverse security policies.

. Make it easy to add new security policies to a complete formal model with-
out having to re-do the entire model.

. Make it feasible to configure a system with security policies chosen from
a vendor-provided set of options with confidence that the resulting system

security policy makes sense and will be properly enforced.

. Construct the model in such a way that it can be shown to satisfy an ac-

cepted definition of each security policy it represents.

Following an overview of the general framework, the article describes a rule-

set approach to modeling that uses a State Machine Model and a Rule Set Model.

To demonstrate the approach concretely, the article also gives examples of the

model components, describing detailed rules of operation, several security policies,

and formal expressions of the rules of operation and the policies. The remainder of
this article has five sections.

. Formal Modeling Approach: This section presents general concepts of ac-

cess control and shows how the rule-set approach relates to them.

. Interface Between the State Machine and the Rule Set: This section ex-

plains how the State Machine and the Rule Set relate to each other and

gives a comprehensive list of specific interface messages.

. State Machine Model: This section describes a state machine model based

ll4 Leonard J. LaPadula

on the architecture of a UNIX@I system and gives several detailed exam-

ples of its rules of operation.

. Rule Set Model: This section specifies a rule set model having four poli-

cies:

. Mandatory Access Control (MAC) Policy: The MAC modeled is the

policy of UNIX System Vil\4LS.

. Clark-Wilson Integrity (CWD Policy: The CWI policy provides control

over modification of information by regulating the transactions that users

can apply to files of information. This policy employs roles and types

and execute-control lists (the Clark-Wilson triples). Its inclusion shows

how the commercial data processing requirements described by Clark

and Wilson (Clark, 1987) can be modeled and integrated with the MAC
policy for a UNIX system.

. Functional Control (FC) Policy: This is a supporting policy based on

roles and types.

. Security Information Modification (SIM) Policy: This policy controls

modification of security information through roles and types.

. Conclusions: Some comments about the rule-set approach are presented.

2. Formal Modeling Approach

2.1. Background

The Generalized Framework for Access Control (GFAC) (Fig. 1) thesis asserts

that all access control is based on a small set of fundamental concepts (Abrams,

1990). Articulation of this view has been enhanced by the terminology and con-

cepts in the ISO "Working Draft on Access Control Framework." (ISO, 1990).

All access control policies can be viewed as rules specif,ed in terms of a/-

tributes by authoriti¿s. The three main elements of access control in a trusted

computer system are:

Authority: An authorized agent must define security policy, identify relevant

security information, and assign values to attributes.

Attributes: Attributes describe the characteristics of subjects and objects that

will be used within the computer system for decision making about access

control.

A RuIe-Set Approach to Formal Modeting of a Trusted Computer System 115

I
a
(5i updates

Figure 1. Overview of generalized framework for access

control.

Rules: A set of formal expressions define the relationships among attributes

and other security information for access control decision in the computer

system, reflecting the security policies defined by authority.

The ISO working draft (ISO, 1990) collectively refers to attributes, Access

Control Context (ACC) information, and other security-relevant information as

Access Control Information (ACI), and it calls rules, appropriately enough, Ac-
cess Control Rules (ACR). The generalized framework explicitly recognizes the

two parts of access control-adjudication and enforcement. The ISO draft uses the

terminology Access Control Decision Facility (ADF) to denote the agent that ad-
judicates access control requests and Access Control Enforcement Facility (AEF)

for the agent that enforces the ADF's decisions. In a trusted computer system, the

AEF corresponds to the system functions of the Trusted Computing Base (TCB)
and the ADF corresponds to the access control rules that embody the system's se-

curity policy, also part of the TCB. Figure 1 depicts the generalized framework in
the terms just described.

Rule-set modeling has a lot in common with traditional finite state machine

modeling. It differs significantly, though, in the way it sets up access rules. Models
like the Bell-LaPadula model (Bell, 1976) and the Compartmented Mode Work-
station model (Millen, 1990) include access control constraints in their rules of
operation. In these models, an Open File rule describes both access policy and

system behavior. The Open File rule describes the behavior of the modeled system

116 Leonard J. LaPadula

I
(7) access

¡
¡#

as a state transition. It uses built-in criteria to decide if it should permit the Open

File request. A typical non-disclosure criterion requires that the security level of a
subject requesting the Open File dominate the security level of the object it wants

to open. Information affected by the transition might include the set of objects

currently held open by the subject that made the request.

The rule-set approach separates the decision criteria from the state transition
descriptions. A rule set specifies the security policies of the modeled system while
a finite state machine model describes the behavior of the system. In this way we

partition the system function Open File into two operations:

. Decide if the request should be granted-is the process allowed to open the

referenced file?

. Grant the request-open the file, or not-return an error indication.

Partitioning system functions this way creates a structure in which access poli-
cies can be changed without modifying the system operations. Figure 2 depicts

this rule-set approach to modeling an Open File function.
The following steps occur when a process makes an Open request:

1. The Open function invokes the rule set, which consists of the access rules

that define the trust policies for the system.

2. The rule set adjudicates the request and returns its decision to the Open

function.
3. If the request is approved, the Open function performs the system opera-

tions necessary to enable the process to access the desired object and allows
the process to continue.

2.2. Structure of the Model

A trusted computer system built according to this modeling plan would have two
major parts inside its Trusted Computing Base (TCB):

. An Access Enforcement Facility (AEF): The AEF owns and operates the

system functions available to computer programs.

. An Access Decision Facility (ADF): The ADF keeps the rule set that ex-

presses the system's access policies.

When a program attempts a system function, the AEF appeals to the ADF for
an access decision. The AEF will provide some set of arguments to identify the

desired access. These arguments and additional access control context information
(ACC) provide the information the ADF needs for decision making.

A Rute-Set Approach to Formal Modeling of a Trusted Computer System Il7

IT

ffiffi¡ffiffiffiæffiillffiffiffiiw:ffit

IffiWffi ffiffiH|ffi.-*t
Figure 2. Rule-Set approach to modeling.

Using an AEF-ADF partitioning gives us the following modeling paradigm:

. A State Machine Model, corresponding to an AEF, describes the behavior

of the system and the interface of computer processes to the system's TCB.

. A Rule Set Model, viewed as an ADF, defines the security policies of the

system and interprets them for the operations of the State Machine Model.

An interface definition relates the State Machine and Rule Set Models to each

other. The interface enables the state machine to invoke the rule set for adjudi
cation of a process's request. The interface is defined in terms of requests and

arguments used to convey the necessary access control information. The design of
the interface depends on several critical factors:

118 Leonard J. LaPadula

. What system will the state machine model?

. How detailed is the state machine's representation of the system to be?

. Will the rule base deal with the same level of detail as the state machine, or

will it deal with abstractions of the system's elements and behavior?

These questions have been settled as follows in this article:

. The state machine targets the class of UNIX System V systems.

. The state machine model includes an operation rule for each UNIX@ Sys-

tem V system call that involves the access control policies of the system.

Each operation rule is an abstraction of its corresponding system call, but

the abstraction preserves the essential functionality of the system call. Hav-

ing a rule of operation that clearly maps to a system call provides a bridge

to the detailed design of a real system having clear correspondences to the

elements of the formal model instead of additionally depending on numer-

ous design and policy decisions not addressed in the model. Page, Heaney,

Adkins, and Dolsen (Page, 1989) have also commented on the usefulness

of emphasizing the operations that a model must support: "Another distinc-
tive aspect of the SMDE is its emphasis on the set of operations which a

model is to support. While many traditional model development method-

ologies postpone operational specifics until implementation, our experience

has shown the operational considerations as indispensable to security model

design."

. The rule set essentially addresses the same level of detail as the state ma-

chine. Still, it has enough generality that it could be useful with other state

machines. The form of its generality will become apparent in the descrip-

tion of the interface between the state machine and the rule set in the next

section.

3. Interface Between the State Machine and
the Rule Set

Imagine that a UNIX System V kernel had two parts-an AEF part, which we

call the AEF-kernel, and an ADF part, which we call the ADF-kernel. Imagine

that a process invokes the Open system call to open a file for reading. The AEF-

kernel sends a message to the ADF-kernel to find out if the process's request is

valid. The message contains or references the access control information (ACI)

A Rule-Set Approach to Formal Modelíng of a Trusted Computer System ltg

needed by the ADF-kernel to make its decision. The ACI could include many

possible items of information. Some basic information items likely to be needed

are identification of the requesting process, identification of the file to be opened,

and attributes of the process and the file. The ADF-kernel may use other access

control context (ACC) information, such as the time of day, to make its decision.

The ADF-kernel returns the decision to the AEF-kernel. The AEF-kernel then

completes the Open system call, enabling the requested access if the decision was

favorable, returning an error message if not.

Each rule of operation in the State Machine Model "invokes" the Rule Set

Model with a function called "Access-Rules." The arguments of Access- Rules

correspond to the messages exchanged between the AEF-kernel and the ADF-
kernel.

A rule of operation for abstractly describing the Open operation might be the

following:

Open (file-name, mode):

CONDITION
Access-Rules (open, mode, current-process-aci, file-aci)

EFFECT
Open-Set (current-process) = Open-Set (current-process) UNION
(tle-name, mode)

The CONDITION means that if the function Access-Rules is true, then do the

actions given in EFFECT. In this case, the EFFECT is to add the named file to the

set of files accessible by the requesting process and to set its access mode.

We define the interface between the state machine and the rule set by speci-

fying the valid arguments for Access-Rules. At each invocation of the Rule Set

Model, the State Machine Model identifies the intended action of the process and

a set of relevant attributes (ACI). So, we can define the needed interface by a set

of requests with appropriate ACL Several terms are needed, explained now so that

the interface definition will be understandable to the reader.

file

directory

ipc

a set of attributes associated with a UNIX file.

a set of attributes associated with a UNIX directory.

a set of attributes associated with a UNIX storage object used for
inter-process communication: these objects may be message queu€

or semaphores.

l2O Leonard J. LaPadula

scd a set of attributes associated with a UNIX system object that stores

system control data (therefore the acronym "scd"); the UNIX inode

is an example. When we use "scd" in the subsequent interface def-

inition, we also show what the scd is referring to-either a file or a

directory.

A final word is needed here before presenting the interface messages. The

reader will see the requests CHANGE-ROLE and MODIFY-ATTRIBUTE in the

interface. These requests have no counterpart in the set of UNIX System V system

calls, but they are needed for the security policies we are interested in modeling.

The meaning and use of these additional requests will become clear later.

Each element of the interface definition has the form "request (argument list)."
The request usually identifies the action that a process wants to do, but it also

may be used for simply sending information from the State Machine Model to the

Rule Set Model. The argument list identifies a set of access control information

(ACI). In the list that follows, terms like "process" or "object" are shorthand for
"attributes associated with a process" or "attributes associated with an object." The

requests described below seem appropriate for detailed modeling of systems like
UNIX System V. Some notable features are as follows:

. For each system call of UNIX System V as defined by Bach (Bach, 1986),

there is at least one request that relates to its functionality. on the other

hand, a single rule of operation that models a system call might use sev-

eral requests. A Create File rule of operation, for example, might invoke

Access-Rules twice. First it might need to know if the requesting process

has permission to search the directory in which the file will be located.

Then, if the search is valid, it again would appeal to the Access-Rules for a
policy decision on creating the file.

. The set of requests we have defined here is not minimal. Several requests

represent variations of writing to an object; for these separate requests we

could have substituted a single request with arguments. I believe my choice

enhances the intuitive understanding of the modeler and affords greater

flexibility in modeling the class of systems we have targeted.

3.1. Interface Messages

ALIAS (process, file). The process is attempting to create an alternate name

for the file. A state machine model of UNIX would use this request in its
rule of operation for linking to a ûle.

A Rule-Set Approach to Formal Modeling of a Trusted Computer System l2I

ALTER (process, ipc). The process wishes to access the control information
for an ipc-type object. This request relates to reading or modifying data
about the ipc-type object. This is similar to the modify-permissions-data
and get-permissions-data requests defined below for the access control
information associated with files and directories. In a UNIX environ-
ment this request would be used by the system calls that control message

queues, semaphores, and shared memory.

CHANGE-OWNER (process, scd(file/directory)). The process wants to change

the owner of the indicated object. An scd object is one that contains sys-

tem access control information. In UNIX this is the inode. The paren-

thetical remark "file/directory" means that the scd pertains to a ûle or
directory. The attribute set passed to the Rule Set Model will consist of
attributes of the file or directory and an attribute that identifies the object
to be modified.

CHANGE-ROLE (process, role attribute, role value). The process wants to
change the role of the owner of the process. The argument "role attribute"
names the attribute to modify and the argument "role value" gives the
desired role.

CLONE (processl, process2). Processl wants to creafe a clone of itself, pro-
cess2. In a UNIX environment this corresponds to a fork system call.

CREATE (process, file/directory/scd/ipc). The process wants to create a new
file, directory, scd-type-object, or ipc-type-object.

DELETE (process, fi1e/directory/ipc). The process wants to delete the indi-
cated object.

DELETE-DATA (process, file). The process wants to truncate (remove all data

from) the file.

EXECUTE (process, file). The process wants to execute the file. This request
compares to the UNIX exec system call.

GET-PERMISSIONS-DATA (process, scd(fi leldirectory)). The process wants
to read discretionary access permissions for the indicated file or directory.

GET:STATUS-DATA (process, scd(file/directory)). The process wants to read
status data about the file or directory. This corresponds to a UNIX stat

system call, which can return information such as file type, file owner,
access permissions, and ûle size.

MODIFY-ACCESS-DATA (process, scd(fi leldirectory)). The process wants
to modify access information about the object, such as the time of last
modiflcation. This compares to the UNIX utime system call.

I22 Leonard J. LaPadula

MODIFY-ATTRIBUTE (process, userþrocess/object, attribute, value). The

process wants to modify an attribute of the user, the process, or an object.

The argument "attribute" names the attribute to change and the argument
oovalue" gives the new value.

MODIFY-PERMISSIONS-DATA (process, scd(ûle/directory)). The process

wants to modify discretionary access permissions of the object. This re-

quest parallels the UNIX chmod system call.

READ (process, directory). The process wants to read data from the indicated

directory.

READ-ATTRIB UTE (process, userþrocess/obj ect, attribute). The proces s

wants to read an attribute of the user, the process, or an object. The argu-

ment "attribute" names the attribute to read.

READ&WRITE-OPEN (process, file/ipc). The process wants to open the ob-

ject for reading and writing. In UNIX the object is either a file or a mes-

sage queue.

READ-OPEN (process, file). The process wants to open the flle for reading.

SEARCH (process, directory). The AEF-part of the TCB needs to read the

directory as part of some other operation requested by the process. This

corresponds to searching a directory in UNIX; so, all rules of operation

that model system calls using the UNIX namei subroutine will invoke

Access-Rules with this request.

SEND-SIGNAL (processl, process2). Processl wants to send a signal to pro-

cess2. This parallels the UNIX kill system call.

TERMINAIE (process). The system has terminated the process. The State

Machine Model gives this request to the policy model for information

only. It empowers the Rule Set Model to update its information base, if
necessary.

TRACE (processl, process2). Processl wants to trace process2. The rule set

will interpret this to mean "read/write the memory of process2." This

equates to the UNIX ptrace system call.

WRITE (process, directory). The process wants to write data to the direc-

tory. The UNIX creat system call may have to search a directory before

creating a file. Thus, in a UNIX system built according to our modeling

paradigm, the creat system call would use this request to check the pro-

cess's permission to search the directory involved.

WRITE-OPEN (process, flle). The process wants to open the file for writing'

A Rule-Set Approach to Fortnal Modeling of a Trusted Computer System 123

4. State Machine Model

The State Machine Model reflects the kernel architecture of the UNIX System V

system as described by Bach (Bach, 1986). This article has several examples of
rules of operation of the State Machine Model, not a complete set, since its pur-

pose is to explain the modeling approach, not build a trusted system. Still, I
have tried to achieve the breadth and depth of coverage needed to make obvi-

ous how a modeler may use this approach. This section defines rules of opera-

tion that abstractly describe many of the key system calls of UNIX System V.

The selected rules are a subset of what is needed for a complete State Machine

Model.

4.1. Introduction

This model uses the term "process" where earlier models used the familiar term

"subject." o'Process" is less general than "subject" but more suitable to what is

being modeled here-the interface between a TCB and the processes it services.

The rules of operation are specifled in a programming-like language that

should be both readable and intelligible to a wide audience. This same language

will be used again later to express the policy rules of the rule set. The reader with
computer systems experience should have no trouble understanding the language

that expresses the rules. The reader who may be unfamiliar with computer pro-

gramming languages or who may want to verify the meaning of a language form
should see the Appendix, which gives a description of the language as well as the

modeling constructs employed.

The rules of operation of the State Machine Model define the valid transitions

for the modeled system. Recall that the state machine has a transition rule for each

UNIX System V system call. We validly could have chosen instead to make the

model rules more primitive than system calls. This gives the benefit of simpler

rules of operation but has the undesirable effect of moving the model another level

away from the real system. The additional level means that system calls must in
general be mapped to several rules of operation by the designer or evaluator of
the system. Since this mapping must be made constructively-that is, it is not

deducible from the speciflcation of the model-modelers can do it far more easily

at the time they create a State Machine Model. The result then is a one-to-one

correspondence of system calls to rules of operation.

An example will show the difference between the two approaches. Taking

the more abstract approach, we might define the Open rule of operation in the

following form, as we saw earlier:

124 Leonard J. LaPadula

Open (ûle-name, mode):

CONDITION
Access-Rules (open, mode, current-process-aci, ûle-aci)

EFFECT
Open-Set (current-process) = Open-Set (current-process) UNION
(file-name, mode)

The UNIX open system call is far more complicated than this. It has an option
to create the named file under certain circumstances. It also provides an option
for the process to cause the file to be truncated (have all its data erased) during
opening. The abstract form of the open rule above ignores these options. To relate
the UNIX open system call to such abstract rules of operation, then, requires an

additional specification of the open system call showing the mapping of the call's
functions to several abstract rules of operation. To represent the functions of the

open system call, these rules of operation will specify the following transitions:
searching a directory truncating a file, opening a file, and creating a file. We take
the other approach instead and show all the options of the open system call in a
single corresponding rule of operation for opening a file. This single rule invokes
the Rule Set Model as appropriate to determine the permissibility of searching a

directory, truncating a file, opening a file, or creating a file.

4.2. Rules of Operation

This section gives the specification for the following rules of operation of the

State Machine Model:

Open

Read

Fork
Kiil
Unlink

4.2.1. Open

Open (file-name, mode, truncate-option, create-option2) :

The open system call is the first operation a process performs to access data in
a file. When successful, the call returns a file descriptor that will be used by other
file operations, such as reading, writing, determining status, and closing the file.
If the file does not exist and the create-option argument indicates that the process

wishes to create the file in this case, then the call will create the tle and open it

A Rule-Set Approach to Formal Modeling of a Trusted Computer System I25

in the mode specified. The mode argument indicates the type of open, such as

reading or writing, and the truncate-option shows whether tlte process wants all
the current data in the file cleared.

IF
Access-Rules(search, directory-name[current directory or directory from specified

THEN
SELECT CASE STAruS(fi le-name)

CASE STAruS(file-name) == "active" (* the directory search was valid and the
file exists x)

SELECT CASE truncate-option
CASE ON

IF
NOT (Access-Rules(delete-data, current-process, file-name)));

THEN
error-exit;

ELSE

[x truncate the file *];

[* open the ûle *];
OPEN(cunent-process, frle-name) = OPEN(cunent-process,file-name)

SET:LTNION {mode};
set-attributes;
normal-exit;

CASE OFF
IF

(mode =- "read" AND
Access-Rules(read-open, current-process, ûle-name))
OR
(mode =- "write" AND
Access-Rules(wriûe-open, current-process, file-name))
OR
(mode == "read&write" AND
Access-Rules(read&write-open, curent-process, fi le-name))

THEN

[* open the flle *];
set-attributes;
OPEN(current-process, file-name) = OPEN(current-process, file-name)

SET-LINION {mode};
normal-exit;

ELSE
error-exit;

CASE STAruS(file-name) == "unused" (* the directory search was valid and the
file does not exist *)

126 Leonard J. LaPadula

SELECT CASE creaæ-option
CASE create-option == ON

(* create the file and open it for the type of access specified by the mode argument x)

[* create the attribuæ set for the file and set the basic values, such as object-identifier *]
IF

Access-Rules(create, current-process, file-:rame);
THEN

set-attributes;

[* create the file *]
(* check whether current-process may open the file *)

IF
(mode == "read" AND
Access-Rules(read-open, curent-process, file-name))
OR
(mode == "write" AND
Access-Rules(write-open, current-process, file-name))
OR
(mode -- "read&write" AND
Access-Rules(read&write-open, current-process, ûle-name));

THEN
set-attibutes;

[* open the flle *]
OPEN(cunent-process, file-name) = OPEN(current-process, file-name)

SET-UNION {mode};
normal-exit;

ELSE
error-exit;

ELSE
error-exit;

CASE create-option == QPP
error-exit;

CASE STATUS(file-name) =='tnaccessible" 1x the directory search failed - e.g.,
permission denied, directory non-existent, etc. *)

error-exit;
END-SELECT

ELSE
error-exit;

4.2.2. Read

Read (file-descriptor, buffet size):

The read system call causes a specified number of bytes (size) to be moved

from an open file (file-descriptor) to a data structure (buffer) in the requesting
process. The read starts at the next byte after the last byte fransferred by a read

call so that successive reads of a file deliver the file dat¿ in sequence.

A Rule-Set Approøch to Formøl Modeling of a Trusted Computer Systern I27

IF
"read" is in OPEN(cunent-process, object[identifi ed by fi1e-descriptor])
AND
Access-Rules(read, current-process, obj ect)

THEN
set-attributes;

[* read the file *];
normal-exit;

ELSB
error-exit;

4.2.3. Fork

Fork ():

The fork system call enables a process to create a new process. The created

process, called the child process, is identical to the process that creates it, the
parent process, except for their process identifiers. Also, some process-internal

variable(s) of the child are set by the kernel so that the child process can recognize
itself as the child when it runs, presumably so that it can do something different
from its parent.

[* create the new process if resources are available *];
IF

Access-Rules(clone, current-process, new-process);
THEN

set-attributes;
Open(new-process, object) = Open(current-process, object) for all objects in the system;
(* the new process inherits access to all the objects the current process can access x)

[* complete the fork operation *]
normal-exit;

ELSE
error-exit;

4.2.4. Kiu

kill (process-identif,er, signal):

The kill system call enables a process to send one of a number of signals to
another process. The SIGKILL signal causes the kernel to terminate the target
process if appropriate authorizations are satisfied.a If the signal is any of the other
valid signals, then the process(es) receiving the signal will process the signal in
accordance with thç specification established by its (their) signal system call(s) or
with the default specification for the signal.

I28 Leonard J. LaPadula

IF
(* the process-identifier and signal arguments are valid x)

TI{EN
SELECT CASE signal
CASE signal is SIGKILL (* the sending process is attempting to kill a

process or grcup of processes *)

FOR-EACH process (* speciûed by the process-identifier argument*):
(* terminate the process *)
OPEN(process, file-name) = {}s for every ûle-lame;
Access-Rules(úerminaûe6, process);

END-FOR-EACH;
normal-exit;

CASE ELSE
FOR-EACH process (* specified by the process-identifier argument *):

IF
Access-Rules(send-signal, current-process, process) == YES

TIIEN
set-attributes;
(* send the specified signal to the process *)

ELSE
error-exit;

END-FOR-EACH;
normal-exit;

ELSE
error-exit;

4.2.5. Unlink

^ unlink (file-name):

The unlink system call removes a directory enÍry for a file. In general, a num-

ber of directory entries may exist for a given file, created via the link system call.

A file is not deleted until all its names (links) have been removed.

IF
Access-Rules(search, directorylame[current directory or directory from

specified pathnamel

TT{EN
SELECT CASE STAruS(file-name)

CASE STAruS(file-name) == "active" (* the directory search was valid and
the ûle exists *)

IF
(* unlinking the file will delete the file itself *)

THEN
IF

Access-Rules (delete, current-process, file-name)

A Rule-Set Approach to Formnl Modeling of a Trusted Computer System 129

THEN
(* delete the file - remove directory entry and return file space

to system pool x);

STAIUS(file-name) = "unused";
normal-exit;

ELSE
error-exit;

ELSE
(* unlink the file - remove directory entry *);

normal-exit;
CASE STAIUS(file-name) == "unused" (* the directory search was valid and

the file does not exist *)
error-exit;

ELSE
error-exit;

4.3. Additional Remarks

The modeler has choices to make. A fundamental question is "Will the rules of
operation map one-to-one or many-to-one to system calls?" Successful modeling
can be done either way. If the rules of operation are one-to-one with the system
calls, they include a wealth of detail and make subsequent assurance efforts eas-

ier. If the rules of operation map many-to-one to the system calls, the rules can

be simpler and the model will then be easier to understand and analyze in its own
right. The modeler must decide how to approach this issue, based on an under-
standing of the modeled class of systems and the purposes of the modeling.

Having decided that issue, the modeler can then examine the expected or ac-

tual TCB interface of the system. For the model in this article, this means exam-
ining each UNIX System V system call. The modeler must figure out what each

system call or equivalent will do to the state of the system and whether it relates

to the system's security policies. Every system call potentially has relevance to
some policy defined by the Rule Set Model. Some system calls, for example, may

have nothing to do with mandatory access control but signiûcant relevance to the

Clark-Wilson Integrity Policy. Looking at the system calls in this way attracts
attention to needed constraints in one or more policies that the modeler might
otherwise overlook. An example of this kind of analysis can be found in my de-

tailed report on rule-based modeling (LaPadula, 1,991). The modeler must ensure

that the rules of operation needed to model the system calls are included in the
State Machine Model. Finally, the modeler should decide how each rule of oper-
ation will employ the elements of the interface definition to invoke the Rule Set

Model.

130 Leonard J. LaPadula

This approach gives high confidence that a system's implementation clearly

derives from the elements of the formal model instead of additionally depending

on many design and policy decisions not addressed in the model.

5. Rule Set Model

5.1. Introduction

This section describes a Rule Set Model for a trusted system that implements four
policies:

. A mandatory access control (MAC) policy

. A Clark-Wilson integrity (Cf[I) policy

. A functional control (FC) policy

. A security information modification (SIM) policy

The MAC policy represents the MAC policy of American Telephone and Tele-

graph's (AT&T) System V/Ì\{LS (Flink, 1988), Release 1.2.1. Inclusion of this

MAC policy shows that other policies can be integrated with traditional non-

disclosure security requirements. The MAC policy uses a lattice of security lev-

els as the basis for its access decisions. The CWI policy provides control over

modification of information by regulating the transactions that users can apply to

files of information. This policy employs roles and types and execute-control lists
(the Clark-Wilson triples). Its inclusion shows how the commercial data process-

ing requirements described by Clark and Wilson (Clark, 1987) can be modeled

and integrated with the MAC policy for a UNIX system. The functional control
(FC) policy implements a general role and type policy in terms of system-roles

of users and categories of objects. This policy allows the roles system adminis-
trator, security officer, and user and uses the categories general, securit¡ and

system. The security information modification (SIM) policy is based on types of
system data and system-roles of users. This policy allows only the security officer
to change the system's security information.

This article focuses on the MAC and CWI policies but includes the FC and

SIM policies for completeness. A useful trusted system must provide the kinds

of access control defined by FC and SIM, but formal models typically have not
included such policies.

I will present the four policies of this model in detail in this section, giving
the MAC and CWI policies completely but presenting only skeletal forms of

A Rule-Set Approach to Formal Modeling of a Trusted Computer System I31

the FC and SIM policies. Again, my purpose is to describe the approach, not to
provide a complete formal model. Before giving the policies, though, I need to
address the issue of why the Rule Set Model does not include the discretionary
access control (DAC) and identity-based access control (IBAC) of UNIX Sys-

tem V.

5.2. SystemV DAC and IBAC

UNIX System V controls access to resources through its Discretionary Access

Control (DAC) and ldentity-Based Access Control (IBAC). The DAC capability
enables the system and its users to decide who may access the frles they own and

in what manner. It uses the familiar read, write, and execute privileges. The UNIX
kernel ensures that the permissions defined by the users and the system will be

honored. In addition, the kernel incorporates a non-discretionary policy based

on super-user privileges and the several types of user identifiers (real, effective,
saved) that it uses. This identity-based access control (IBAC) policy and the user-

defined DAC policy are the access control of UNIX System V.7

The model in this article includes neither of these policies. The IBAC policy
of UNIX is typically not modeled although it is the kind of policy that should be

of interest to the modeler. A more elaborate IBAC policy can replace the UNIX
super-user approach in trusted systems to provide better separation of duty. In-
stead of modeling the super-user-based IBAC of UNIX, this Rule Set Model has

a functional control policy that has better separation of duty and is also far less

complicated than the IBAC of UNIX.
Formal models often do include the DAC policy. This formal model does not

because, in short, it is not an interesting policy. It should certainly be included in
the state machine representation of a UNIX system, assuming its level of detail is
appropriate to the model. But it does not belong in the Rule Set Model because,

other than the primitive "policy" of enforcing the permissions assigned by users,

UNIX DAC is not a predefined policy for the system to enforce. The underlying
"permissions policy" provides a mechanism by which users attempt to impose

their own sharing policy on the resources they own. But, there's no assurance that
they will succeed. A Trojan Horse, for example, can easily defeat a user's non-

disclosure objectives since the DAC mechanism provides no way for a user to
prohibit copying a file he has allowed to be read. Nor does the DAC mechanism

adequately support integrity objectives because it provides no way for a user to
specify how ofhers might modify objects that he owns. In summary, the DAC
mechanism does not strongly support any known, well-conceived policy objective
in which users are likely to have an interest.

I32 Leonard J. LaPadula

This model assumes that a favorable DAC check, when appropriate, precedes

each invocation of the Rule Set Model by the State Machine Model. Any of the

four policies we have included in the Rule Set Model can override a favorable
DAC decision.

5.3. Policíes of the Rule Set Model

5.3.1. Mandatory Access Control Policy

Mandatory access control is based on security levels of the processes, users, and

objects of the system and the request of the process. This policy affects access

of processes to objects-for example, reading, writing, and deleting files, di-
rectories, and message queues-and other aspects of processing-for example,
forking a process and sending signals to other processes. The policy depends on
the security-level attribute of processes and objects and on the object-type attribute
of objects. The object types defined for this policy are file, directory, ipc, and scd.

file and directory have their obvious UNIX meanings. ipc means "inter-process
communication"; the message queue and shared memory in UNIX map to this
type. scd means "system control data"-dafa the system uses to control its opera-

tions; the inode in UNIX is of this type.
In the next several tables the letter "P" stands for the security level of the pro-

cess making the request for access, the letter "O" stands for the security level of
the referenced object, ")" indicates the usual dominates relation between levels,
ând "=" indicates equality between levels. Tables 1,2,3 and 4 define the policy
for controlling access of a process to objects of type file, directory, ipe and scd
respectively.

Table 1. MAC Policy for Objects of þpe file.

If the request is then access is allowed if
create

delete

delete-data

execute

read

read-open

read&write-open
write
write-open

O is set equal to P
P=O
P=O
P>O
no conditions

P>O
P=O
no condition (see footnote on read above)
P=O

A Rule-Set Approach to Formnl Modeling of a Trusted Computer System 133

Table 2. MAC Policy for Objects of Type directory.

If the request is then access is allowed if
create O is set equal to P

delete P = O
read P>O
search P > O
writeg P = O

Table 3. MAC Policy for Objects of Type ipc.

If the request is then access is allowed if
alter
create

P=O
O is set equal to P

delete P = O
read no condition (footnote on read in table 1 applies)

read&write-open P = O
write no condition (footnote on read in table 1 applies)

Table 4. MAC Policy for Objects of Type scd.

If the request is then access is allowed if
change-owner P = O
create O is set equal to P

delete P = O
get-permissions-data P > O
get-status-data P > O
modify-access-data P = O
modify- P = O

permissions-data

The requests get-permissions-data and get-status-data could be modeled as

undistinguished reads of the system control data. Similarly the change-owner,

modify-access-data, and modify-permissions-data could be modeled as undistin-
guished writes. This model has separate requests to allow access control decisions

based on the distinctions they make. The CWI policy uses these distinctions.
Table 5 defines the MAC policy governing process management.

134 Leonard J. LaPadula

Table 5. MAC Policy for Process Management.

If the request is then access is allowed if
clone

send-signal

no condition-P2 is set equal to Pl
Pt=P2

The mandatory access control policy will be referred to as the MAC (Manda-

tory Access Control) policy.

5.3.2. Integrity Control Policy

The integrity policy comes directly from the Clark-Wilson Integrity (CWD policy.
(Clark, 1987). It reflects not only the intent of their policy but also the specific

details of their approach. In addition, I have included the ancillary policy that ap-

pears to me necessary to support their intentions. Although I assume the interested

reader will have good familiarity with the CWI model, a surnmary of the model's
certification and enforcement rules is given next for the reader's convenience.

The certification and enforcement rules of the Clark-Wilson model (Clark,

1987) are as follows:

Certification Rule 1: All Integrity Veriflcation Procedures (IVPs) must prop-
erly ensure that all Constrained Data Items (CDIs) are in a valid state at

the time the IVP is run.

Certification Rule 2: All Transformation Procedures (TPs) must be certified
to be valid. That is, they must take a CDI to a valid frnal state, given that
it is in a valid state to begin with. For each TP, and each set of CDIs that
it may manipulate, the security officer must specify a "relation," which
defines that execution. A relation is thus of the form: (TPi, (CDIa, CDIb,
CDIc, . . .)), where the list of CDIs deflnes a particular set of arguments

for which the TP has been certified.

Enforcement Rule 1: The system must maintain the list of relations specified

in Certification Rule 2 and must ensure that the only manipulation of any

CDI is by a TP, where the TP is operating on the CDI as specified in some

relation.

Enforcement Rule 2: The system must maintain a list of relations of the form:
(UserID, TPi, (CDIa, CDIb, CDIc, . . .)), which relates a user, a TP, and

the data objects that TP may reference on behalf of that user. It must en-

sure that only executions described in one of the relations are pedormed.

Certification Rule 3: The list of relations in Enforcement Rule 2 must be certi-
fied to meet the separation of duty requirement.

A Rule-Set Approach to Formal Modeling of a Trusted Computer System 135

Enforcement Rule 3: The system must authenticate the identity of each user

attempting to execute a TP.

Certification Rule 4: All TPs must be certified to write to an append-only CDI
(the log) all information necessary to permit the nature of the operation to

be reconstructed.

Certiflcation Rule 5: Any TP that takes a UDI as an input value must be cer-

tified to perform only valid transformations, or else no transformations,

for any possible value of the UDI. The transformation should take the in-
put from a UDI to a CDI, or the UDI is rejected. Typically, this is an edit
progfam.

Enforcement Rule 4: Only the agent permitted to certify entities may change

the list of such entities associated with other entities: specificall¡ those

associated with a TP. An agent that can certify an entity may not (i.e.,

must not) have any execute rights with respect to that entity.

Clark-Wilson Integrity policy provides for both external and internal con-

sistency of data. Measures for external consistency, such as their Integrity Ver-

ification Procedures (IVPs), ensure that the data stored in the computer system

correctly models the state of the real-world systems to which it relates. Measures

for internal consistency ensure that modification of data results in a valid state.

Some of the CWI rules deal with the relationship between internal and external

consistency of data. The integrity control policy in this article focuses on the rules

for internal consistency and also supports the capability to ensure external consis-

tency. Some of the Clark-V/ilson Integrity rules that deal with external consistency

are, naturally, beyond the scope of this internal system model.

Integrity control is based on the following:

. integrity-controlled programs called Transformation Procedures (TPs) and

Integrity Verification Procedures (IVPs)

. integrity-controlled objects called Constrained Data Items (CDIs)

. user permissions to apply certain TPs to speciûed CDIs and permission to

apply an IVP to a CDI

Users and objects in the computer system have the following attributes to

support integrity control:

. The object attribute "program-type" may have the following values:

means that the object is a CWI TP

means that the object is a CWI IVP
TP
IVP

136 Leonard J. LaPadula

TPICD means that the object is a special TP that operates on integrity con-

trol data

NIL means that the object is not an integrity-controlled object

The use of these attribute values for controlling execution of integrity-related
programs is discussed later.

. The object attribute "data-type" may have the following values:

CDI means that the object is a CWI CDI
CDIIC means that the object is a CWI CDI used for integrity controllO

NIL means that the object is an Unconstrained Data Item (UDI)-that is,

not integrity-controlled

. The user attribute "integrity-role" may have the following values:

TP-user means that the user is authorized to execute TPs

TP-manager means that the user is authorized to manage (create, delete, and

modify) certain integrity objects specified below

IVP-user means that the user is authorized to execute IVPs
IVP-manager means that the user is authorized to manage IVPs, as specified

below

NIL means that the user has no integrity role

These roles are static during system operation. The intent is that a system

administrator will assign integrity-roles to users, one role per user, in consonance

with the organization's policy.
The authorizations of a user with an integrity role are described in Table 6.

Table 6. CWI Policy for Execute, Create, Delete, and Modify.

A user in
integrity-role may execute may createldelete may modify

TP-user TPs

TP-manager TPICDs TPs, TPICDs,
CDIICs CDIIC11

IVP-user IVPs
IVP-manager IVPs, CDIs

Clark and V/ilson (Clark, 1987) require that the system " . . . maintain a list
of relations of the form: (UserID, TPi, (CDIa, CDIb, CDIc, . . .)), which re-

lates a user, a TR and the data objects that TP may reference on behalf of that

A Rute-Set Approach to Forn'ral Modeling of a Trusted Computer System I37

user." Further, the system " . . . must ensure that only executions described in

one of the relations are performed." The Rule Set Model given in this article has

a User-Transformation Procedures Associations (UTPA) table for representing

the relations. It consists of ordered triples of the form (user-identifier, TP, list of
CDIs). The triples impose no constraints on modes or order of access since the

CV/I model does not, but one can imagine systems in which such constraints are

useful. However, other policies may constrain the TP with respect to mode of ac-

cess. For example, when a TP attempts to open a CDI for writing, the TP must be

allowed to write the CDI by the MAC policy of the system.

The UTPA satisfies the requirement to maintain a list of relations. One can

envision several ways to ensure that only executions deflned by the UTPA

are carried out in the system. For example, define a new system call- ap-

ply(TP,list-of-CDls). "Apply" operates like the exec system call but has an ad-

ditional atgument. The second argument shows on which CDIs the requesting

process wishes the TP to operate. The kernel passes the arguments of this system

call to the rule set. The rule set then checks the UTPA to see if the list of CDIs

is valid for the owner of the requesting process. The diffrculty is that the "en-

forcement" provided by this approach is weak. Lacking any further access checks

during its operation, the TP could access some CDI for which the user is not au-

thorized. One may argue that the TP has been certified to operate correctly so that

it should only carry out correct procedures. This is acceptable if all correct and au-

thorized executions are built into the TP and certifled. Clark and Wilson suggest,

however, that o' . . . an important research goal must be to shift as much of the se-

curity burden as possible from certification to enforcement . . . " since "' . . the

certification process is complex, prone to error, and must be repeated after each

program change."

Therefore, in this model of CWI, the initial request of the process is only a

request to operate the TP. In the UNIX environment this is an exec system call in

which the process names the object to execute. When the named object is a TP, its

program-type attribute is TP. When the TP subsequently makes requests for access

to CDIs, those requests are adjudicated by the rule set in the usual manner. In

addition, the rule set keeps a record of the CDIs being accessed, ensuring at each

request that the requested access is allowed by one of the triples defined in the

UTPA. This idea needs further elaboration, provided in the following paragraphs.

When a process executes a TR one of the rules for integrity control will add

the process-identifier of the process to all triples in the UTPA having the user-

identifier of the owner of the process and specifying the named TP. This marks

all candidate executions of the named TP by this process. Note that the same user

may already have other executions of this TP in progress. When the TP (now a

process having the process-identifier of the process that executed it) attempts to

138 Leonard J. LaPadula

access an object that is a CDI, one of the integrity-control rules will remove the
process-identifier of the process from all triples in the UTPA currently marked
with this process-identifier but not having the named CDI listed. This reduces the
set of candidate executions of the named TP by this process. If after taking this
action there are no entries in the UTPA marked with this process-identifier, then
the attempted access by the TP on behalf of the user is not valid and the request
will be denied. The next sequence of tables illustrates this method.

Suppose user A is allowed to apply TP1 in any of the following ways:

. to CDIs I and 2

. to CDIs 1 and 3

. to CDIs 2 and3

as illustrated in Table 7:

Table 7 . User-Transformation Procedures Associations
(UTPA).

User TP CDIs Processes

User A TPl CDI-I, CDI-Z
User A TP1 CDI-I, CDI-3
User A TPl CDI-2, CDI-3

User Z etc. etc.

Suppose a process having process-identifier PID requests execution of TP1 on
behalf of user A. Assuming the requested action is authorized, the UTPA table is
marked as follows.

User A TP1 CDI-I, CDI-Z PID
User A TPl CDI-I, CDI-3 PID
User A TPl CDI-Z, CDI-3 PID

The process is now known as a TP-type process. If the process requests access to
CDI-2, the table is modified, with the following result.

User A TPl CDI-I, CDI-Z PID
User A TPl CDI-I, CDI-3
User A TPl CDI-Z, CDI-3 PID

A Rule-Set Approach to Formal Modeling of a Trusted Computer System 139

lf the process now requests access to CDI-3, the table is modified, with the fol-

lowing result.

User TP CDIs Processes

User A
User A
User A

TP1

TP1

TP1

CDI-1, CDI-Z
CDI.1, CDI-3
CDI-2, CDI-3 PID

If the process now requests access to CDI-I, the request is invalid.

This approach to enforcing the Clark-Wilson triples has the advantage that it
does not require a new system call or data structure in the UNIX environment.

Note, though, that it allows a TP to access any UDI in the normal manner for

access to a file by a process, subject to the constraints of the other policies imple-

mented by the rule set. The certification process must ensure that the TP accesses

only those UDIs it should access for a particular execution. But, this is not in

keeping with the spirit of moving as much as possible from certification to en-

forcement, as suggested by Clark and Wilson. One possibility for changing this is

to add the names of the allowed UDIs for a particular TP to the triples or, perhaps

better, to the TP-CDIs relation. For the latter, the TP-CDIs relation must be added

to the model. It is then no longer redundant with the triples.

The scheme just outlined describes the situation in which a process executes a

single TP. The integrity policy must also cover the cases where a TP-type process

attempts to execute another file (UNIX exec) or attempts to clone itself (UNIX

fork). If a TP-type process were to fork a child, the child would be identical

to the parent with respect to executable code and open files (e.g., the CDIs be-

ing worked on). However, it makes no sense for a TP-type child to continue

processing with the executable code of its parent since to do so would require

unwarranted complex coordination between parent and child to preserve in-

tegrity. It really only makes sense to consider the case that the child executes

new code-that is, a new TP. Allowing a TP-type process to spawn another TP-

type process in this way adds to the complexity of the certification of the original

TP code but adds no functional capability. According to Clark and Wilson, the cer-

tification task should be kept as simple as possible by having the system enforce

as much of the integrity policy as possible. The needed functionality, enforced

by the system in the scheme above, is achieved by an ordinary process cloning

a process that changes itself into a TP-type process by executing a TP-type ob-

ject. In short, it is neither desirable nor necessary for a TP-type process to clone

itself.
Thus, to carry out the intent of the clark-wilson integrity policy without sig-

nifrcantly modifying the System V system calls, the ability of a process to execute

140 Leonard J. LaPadula

(exec system call) and clone (fork system call) must be constrained in the follow-
ing ways:

. When an ordinaryl2 process executes an object of type TP, IVR or TPICD,
the process executing the object becomes the type of the object. That is, its
process-type attribute takes on the value of the program-type attribute of
the object. When an ordinary process executes a TP-type object, the UTPA
table is updated as described above. A TP-, IVP-, or TPICD+ype process is
allowed to execute only an object of its own type. lVhen a TP-type process

executes a TP-type object, no changes are made to the UTPA. Allowing the
original TP to execute a TP-type object is a convenience related to how a

TP is organized into units of executable code.

. A TP-, IVP-, or TPICD-type process is not allowed to clone (UNIX fork).

The following additional constraintsl3 are needed to support the intent of the
CWI policy in the UNIX System V/IVILS environment:

. Changing ownership of TPs, IVPs, TPICDs, and CDIs is not allowed by
CWI policy.

. Aliasing (via the link system call in UNIX) of file names is not a good
practice under the CV/I Policy. Through aliasing an ordinary user can defeat
the attempt of an authorized user (i.e., TP-manager) to remove a TP from
the system.la The policy on aliasing integrity-controlled objects is defined
by Table 8.

Table 8. CWI Policy for Alias.

If the user has the integrity role then the user may alias

TP-manager

IVP-manager
TPs, TPICDs, and CDIs

IVPs and CDIICs

Tracing (via the ptrace system call in UNIX) of TPs, IVPs, or TPICDs
should not be allowed under the CWI policy since tracing would enable
modification of a TP or IVP during its execution.

Only authorized users may acquire or modify status information about
integrity-controlled objects, as defined in Table 9.

A Rule-Set Approach to Formal Modeling of a Trusted Computer System 141

Table 9. CWI Policy on Status Information.

lf the user has the integrity then the user's process may

role read/write status information
about

TP-user

TP-manager

IVP-user
IVP-manager

TPs, TPICDs, CDIs

IVPs, CDIICS

The integrity policy of this model allows a TP-type process to receive a sig-

nal, via the kill system call in UNIX System V from a non-TP-type process, pre-

sumably the parent process that spawned the TP-type process. The danger here is

that a TP-process will be killed (terminated) at such a time that the CDIs on which

it is operating are left in an inconsistent state. A justification for allowing this is

that it preserves functionality provided by UNIX and the TP can be designed to

take appropriate action on the CDIs before exiting. This puts the burden on the

certiflcation of the TP to ensure that the TP handles signals appropriately.

This integrity control policy will be referred to as the CWI (Clark-Wilson

Integrity) policy.

5.3.3. Functional Control Policy

Functional control (FC) uses system-roles of users and categories of objects. The

system-roles are user, security officer, and administrator. The categories are

general, security, and system. A process whose owner has system-role R, re-

questing access to an object having object-category C, shall be allowed the access

only if R is compatible with C. The role-category compatibilities are checked in

Table 10.

Table 10. Definition of the Compatibility Relation.

general system security

user

administrator
security officer

This functional control policy requires that a process assume only one of
the possible roles of its user. Whether a user can be assigned more than one

role is outside the scope of this policy. But, a functional control policy should

142 Leonard J. LaPadula

be more elaborate than the one just described. For example, it should specify
who can change what attributes of what entities. It's the logical place to define
control of trusted subjects, such as daemons of the UNIX system. The simple
policy given above satisfies the goals of this article but is not adequate for a real
system.

This policy will be referred to as the FC (Functional Control) policy.

5.3.4. Policy for Modifiing Security Information

The policy for modification of security information uses types of data and system-
roles of users. The data{ype needed for this policy is si. The value si means the
object contains security information. In UNIX, for example, the letc/password file
would have this value for its data-type attribute. NIL means the object contains
ordinary user or system data. The data-attribute may have other values as well,
such as those the C'WI Policy uses. But the SIM Policy treats all values other than
si the same as NIL.

When a process requests access to data of type si in a mode that enables mod-
ification of the information, this policy permits the access only if the system-role
of the owner of the process (i.e., the user) is security officer. As with the FC Pol-
icy, the SIM Policy could encompass more elaborate rules of operation, but the
simple form given here suffices for the purposes of this article.

This policy will be referred to as the SIM (Security Information Modification)
policy.

5.4. Access Control Information

To support the policies just described, the following attributes, in three groups
of access control information (ACI) as displayed in Tables 11,12, and 13, are
needed. Attributes that are new in this model have been explained in one of the
preceding policy descriptions.

Table 11. Attributes of User ACL

USER-ACI VALUES

user-identifier (C'WD

access-approvals (MAC)
system-role (FC & SIM)
integrity-role (CWI)

a user identifier
a security level
use¡ security officer, or administrator
NIL, TP-user, TP-manager, IVP-user, or IVP-manager

A Rule-Set Approach to Formal Modeling of a Trusted Computer System 143

Table 12. Attributes of Process ACL

PROCESS-ACI VALUES

owner (pointer to USER-ACI)
security-level
process-identifier
process-type

a security level
a process identifier
NIL, TP, IVP, or TPICD

Table 13. Attributes of Object ACI.

OBJECT:ACI VALUES

security-level (MAC) a security level

object-identifier (CWI) an object identifier
object-category (FC) general, security, or system

object-type (MAC) file, directory, ipc, or scd

program-type (CWI) NIL, TP, IVP, or TPICD

data-type (SIM & CWD NIL, CDI, CDIIC, or si

In addition, the access control context information (ACC) displayed in Table

14 is deflned for the use of the rule set.

Table 14. Entities of the Access Control Context.

Access Control Context (ACC) Information

Name of Entity Structure of Entity Comment

User-Transformation set of ordered 4-tuples This set gives the CWI
Procedures (user-identifrer, TP, list of "triples" for all users in the

Associations (UTPA) CDIs (by object-identifier), system that are allowed to

list of process-identifiers) apply TPs; the fourth
element of the 4-tuple is

used for access control as

explained in the discussion

of the Integrity Control
Policy.

5.5. Rules of the Rule Set Model

Four groups of rules define the policies described above:

. Mandatory Access Control (MAC) Rules

144 Leonard J. LaPadula

. Clark-Wilson Integrity (CWI) Rules

. Functional Control (FC) Rules

. Security Information Modification (SIM) Rules

Each policy of the Rule Set Model is implemented as one or more rules.
When combined, as described later, the rules constitute the Access-Rules func-
tion.

Each rule is an expression having one of four values.

. YES: This value means that the request of the State Machine Model has
been evaluated by the rule and the request may be granted.

. NO: This value means that the request of the State Machine Model has

been evaluated by the rule and the request may not be granted.

. DC: This value means that the request of the State Machine Model has

been recognizedby the rule, but the rule's policy does not require any
checks of attribute values andlor relations among attribute values. The
rule is tolerant of the request in the sense that the policy "doesn't care"
(DC). DC is similar to YES but provides additional information useful for
analysis of a rule set.

. UNDEFINED: This value means that the request of the State Machine
Model has not been recognizedby the rule. UNDEFINED is different
from NO and DC: both NO and DC indicate that the Rule Set Model is
cognizant of the request, while UNDEFINED indicates the opposite. This
not only provides useful information for analysis of a rule set, but in a sys-
tem implementation it might serve to detect improper configurations of the
system.

In addition, a rule may specify an effect that should occur if the request of the
process will ultimately be acted on by the State Machine Model. Since all effects
are changes to attribute values, an effect is specified in the form

set-attribute(attribute name, attribute value).

For example, when a file is to be created, the MAC rule specifles an effect
that sets the sensitivity level of the ûle to the value of the sensitivity level of the
process creating the file.

To define the Access-Rules function, we need the binary operator + (pro-
nounced "and-plus") defined in Table 15.

A Rule-Set Approach to Formal Modeling of a Trusted Computer System I45

Table 15. Definition of the Binary Operator +

B A+B

T]NDEFINED YES
T]NDEFINED NO
TJNDEFINED DC

YES
NO
YES

UNDEFINED
UNDEFINED
UNDEFINED

YES

YES
YES

YES
NO
DC

YES

NO
NO
NO
NO
DC

UNDEFINED TJNDEFINED

YES NO
NO NO
DC NO

I.JNDEFINED TiNDEFINED
YES YES
NO NODC

DC DC DC

DC UNDEFINED UNDEFINED

I]NDEFINED UNDEFINED UNDEFINED
The Access-Rules function is defined as follows:

Access-Rules(request(input argument), process/objec(input argument), ...,
process/objec(input argument))) :

tunction-v¿lue = MAC (+) C\VI (+) FC (+) SIM;
IF

function-value is UNDEFINED;
TTIEN

system-error;
ELSE

return (function-value);

Each of the rules will be expressed in the following general form:

POLICY <- POLICY Rule

POLICY Rule:
SELECT CASE request

CASE request, request, ... , request
statement-block

CASE request, request, ... , request

'î'0""n

146 Leonard J. LaPadula

CASE request, request, ... , request
statement-block

END SELECT

The notation "POLICY +- POLICY Rule" means that the variable POLICY
should be set to the value of the expression in parentheses. For each POLICY
(MAC, CWI, FC, and SIM), representative CASEs are given to illustrate the mod-
eling approach. These representative CASEs were exffacted from a complete rule
set, although not one that had been verified, to ensure that they made sense.

5.5.1. Mandatory Access Control (MAC) Rules

The following logical operator is needed:

dominates(levell, level2) has the value TRUE if levell dominatesls level2,
FALSE otherwise.

MAC +- (MAC Rule 1)

MAC Rule 1:

SELECT CASE request

CASE alias
retum(Dc);

CASE alter
SELECT CASE objecrtype[object]

CASE ipc
IF

security-level[process] equals securityJevel[object] ;

THEN
retum(YES);

ELSE
return(NO);

CASE ELSE
retuni(UNDEFINED);

CASE clone
return(set-attribute(securityJevel[process2], security-level[processl]);
YES);

CASE create
retum(set-attribute(security-level[object], security-level[process]); YES);

CASE execute
SELECT CASE object-type[object]

CASE file

A Rule-Set Approach to Formnl Modeling of a Trusted Computer System 147

IF
security-level[process] dominates security-level[object];

THEN
return(YES);

ELSE
return(NO);

CASE ELSE
return(IJNDEFINED);

CASE modify-attribute (*arguments are process, qualifier, attribute,
value*)
SELECT CASE qualifier[input argument]

CASE user
IF

securitylevelþrocessl equals access-approvals[user pointed to by
qualifierl;

TTTEN

SELECT CASE athibute[input argument]
CASE access-approvals

IF
system-role[user pointed to by owner[process]l equals
security offrcer;

TTIEN
return(YEs);

ELSE
return(NO);

CASE ELSE
return(YES);

ELSE
return(NO);

CASE process

SELECT CASE attribute[input argument]
CASE securityJevel

return(NO);
CASE ELSE

IF
securityJevel[process] equals security-level[process pointed to
by qualifierl;

TITEN
return(YES);

ELSE
return(NO);

CASE object
IF

security-level[process] equals security-level[object pointed to by
qualifierl;

148 Leonard J. LaPadula

TTMN
SELECT CASE attributelinput argumentl

CASE access-approvals
IF

system-role[user pointed to by owner[process]l equals
security officer;

TI{EN
return(YES);

ELSE
return(NO);

CASE ELSE
return(YEs);

ELSE
return(NO);

CASE ELSE
retum(UNDEfINED);

CASE read
SELECT CASE object-type[object]

CASE directory
IF

security-level[process] dominates security-levelfobject];
THEN

return(YES);
ELSE

retum(NO);
CASE file, ipc

return(Dc);
CASB ELSE

return(UNDEFINED);

CASE read-open
SELECT CASE object-type[object]

CASE file
IF

security-level[process] dominates securityJevellobject];
THEN

return(YES);
ELSE

return(No);
CASB ELSB

return (UNDEFINED);

CASE read&write-open
SELECT CASE object+ype[object]

CASE file, ipc

A Rule-Set Approach to Fortnal Modeling of a Trusted Cornputer System 149

IF
security-level[process] equals security-levellobject];

THEN
return(YES);

ELSE
return(NO);

CASE ELSE
return(UNDEFINEO);

CASE write-open
SELECT CASE object-type[object]

CASE file
IF

(security-level[object] equals security-levellprocess]);
THEN

return(YEs);
ELSE

return(No);
CASE ELSE

return(UNDEFINED);
CASE change-owner, change-role, delete, delete-data, get-permissions-

data, get-status-data, modify-access-data, modify-permissions-
data, read-attribute, search, send-signal, terminate, trace, write
<omitted: note that these cases would be grouped into several

cases or treated as separate cases if specited in this
model>

CASE ELSE
return(UNDEFINED);

END SELECT

5.5.2. Clark-Wilson Integrity (CWI) Rules

To specify the rules for the Clark-Wilson Integrity Policy the following functions

are needed.

. The function Allowed-Access has the value TRUE or FALSE. It performs

the search and modify of the UTPA as described earlier under Integrity

Policy, returning TRUE if at least one triple remains in the UTPA as a can-

didate execution of the TP, FALSE otherwise.

. The function Allowed-Execute has the value TRUE or FALSE. It performs

a search of the UTPA as described earlier under Integrity Policy returning

TRUE if there is some riple in the UTPA containing the ordered pair given

as arguments to Allowed-Execute, FALSE otherwise.

150 Leonard J. LaPadula

. The function Mark-Candidates-in-UTPA places the process-identifier in
each 4-tuple of the UTPA containing the ordered pair (user-identifier,

object-identifier) given as its first two arguments.

CrilI <- (CWI Rule 1)

CIVI Rule l:

SELECT CASE request

CASE alias, get-status-data, modify-access-data
IF

data-typelobjectl is not CDI AND data+ype[object] is not CDIIC AND
program-type[object] is not TP AND program-typelobject] is not IVP
AND program-type[object] is not TPICD

TI{EN
return(DC);

ELSE
IF

((data-typelobjectl is CDI OR program{ype[object] is TP OR
program-typelobjectl is TPICD) AND integrity-role[user identified
by owner[process]l is TP-manager)
OR
((program+ype[object] is IVP OR data-type[object] is CDIIC) AND
integrity-role[user identiûed by owner[process]l is lVP-manager)

TI{EN
return(YEs);

ELSE
return(NO);

CASE alter, get-permissions-data, modify-permissions-data, read, write,
search, send-signal, terminate
return(DC);

CASE create, delete
IF

data-typelobjectl is not CDI AND data-type[object] is not CDIIC AND
program-type[object] is not TP AND program-type[object] is not IVP
AND program-type[object] is not TPICD

TI{EN
return(Dc);

ELSE
IF

((data-type[object] is CDIIC OR program{ype[object] is TP OR
program-type[object] is TPICD) AND integrity-role[user identified
by owner[process]l is TP-manager)
OR

A Rule-Set Approach to FormøI Modeling of a Trusted Computer Systern 151

((program-type[object] is IVP OR data-fype[object] is CDI) AND
integrity-role[user identified by owner[process]l is lVP-manager)

T}IEN
return(YES);

ELSE
return(NO);

CASE execute
SELECT CASE process-typelprocessl

CASE NIL
SELECT CASE program-typelobjectl

CASE TP
IF

integrity-role[user identified by owner[process]l is TP-user

AND Allowed-Execute
(user-identifier[user identified by
owner[process]1,
obj ect-identifi erlobj ectl) ;

THEN
Mark-Candidates-in-UTPA

(user-identifier[user identified by
owner[process]1,
obj ect-identifi erlobj ectl,
process-identifi er[process]) ;

return(set-atfribute(process-type[process], progr¿rm-

typelobjectl);
YES);

ELSE
return(NO);

CASE IVP
IF

integrity-role[user identified by ownerlprocess]l is IVP-user
THEN

return(set-attibute(process-type [process],program-
typelobjectl); YES);

ELSE
retum(NO);

CASE TPICD
IF

integrity-role[user identified by owner[process]l is TP-

manager
THEN

return(set-attribute(proces s-type [process],program-
typelobjectl); YES);

I52 Leonard J. LaPadula

ELSE
retum(NO);

CASE ELSE
return(DC);

CASE ELSE
IF

process-type[process] is not TP AND program-type[object] is not
TP AND
process-type[process] is not IVP AND program-type[object] is
NOt IVP AND
process-type[process] is not TPICD AND program-type[object] is
NOt TPICD;

THEN
return(DC);

ELSE
IF

process-type[process] is TP AND program-type[object] is TP
OR
process-type[process] is IVP AND program+ypelobjectl is IVP
OR
process-type[process] is TPICD AND program-type[object] is
TPICD

THEN
return(YES);

ELSE
return(NO);

CASE read-open, write-open
SELECT CASE data+ype[object]

CASE CDI
SELECT CASE objecrtype[object]

CASE file
IF

process-type[process] is TP AND
Allowed-Access(process-identifier[process], object-
identifier[object])
OR
process-type[process] is IVP

THEN
return(YEs);

ELSE
return(No);

CASE ELSE
return(UNDEFINED);

A Rule-Set Approøch to Formal Modeling of a Trusted Computer System 153

CASE CDIIC
SELECT CASE objecrfpe [object]

CASE file
IF

process-type[process] is TPICD
THEN

return(YES);
ELSE

return(NO);
CASE ELSE

return(UNDEFIMO);
CASE ELSE

return(Dc);
CASE change-owner, change-role, clone, delete-data, modify-attribute,

read-attribute, read&write-open, trace

<omitted: note that these cases would be grouped into several

cases or treated as separate cases if specified in this
model>

CASE ELSE
return(UNDEFINED);

END SELECT

5.5.3. Functionøl Control (FC) Rules

FC <- (FC Rule 1)

FC Rule 1:

SELECT CASE request
CASE alias, alter, change-owner, create, delete, delete-data, execute, get-

permissions-data, get-status-data, modify-access-datao modify-
permissions-data, read, read&write-open, read-open, search,

write, write-open
IF

(system-role[user pointed to by owner[process]l is user AND
object-category[object] is general)

OR
(system-role[user pointed to by owner[process]l is administrator AND
object-category[object] is system or general)

OR
(system-role[user pointed to by owner[process]l is security officer
AND
object-category[object] is security or general)
OR
(system-roleluser pointed to by owner[process]l is daemon AND
object-category[object] is system or general);

1,54 Leonard J. LaPadula

THEN
return(YES);

ELSE
return(NO);

CASE clone, read-attribute, send-signal, terminate, trace
return(YES);

CASE change-role
<omitted>

CASE modify-attribute
<omitted>

CASE ELSE
return(UNDEFINED);

END SELECT

5.5.4. Security Information Modification (SIM) Rules

SIM <- (SIM Rule l)

SIM Rule 1:

SELECT CASE request

CASE alias, alter, change-owner, create, delete, delete-data,
modify-access-data, modify-permissions-data, write, write-open,
read&write-open

SELECT CASE system-data+ype[object]:
CASE system-data-type[object] is si:

IF:
system-role[user pointed to by owner[process]l is security offrcer;

THEN:
retum(YES);

ELSE:
retum(NO);

CASE ELSE:
return(DC);

CASE change-role
<omitted>

CASE modify-attribute
<omitted>

CASE clone, execute, get-permissions-data, get-status-data, read, read-

A Rule-Set Approach to Formal Modeting of a Trusted Computer System 155

attribute, read-open, search, send-signal, terminate, trace

retum(Dc);

CASE ELSB
return(UNDEFINED);

END SELECT

6. Conclusion

'We
can look at the rule-set approach described in this article in light of other mod-

els of trusted systems. The scheme displayed in Table 16 will enhance our view.

This table, based on a taxonomy developed by Williams (Williams, 1990), shows

several stages in the development of security requirements for a trusted system.

Each succeeding stage has more detailed elaboration of a trust policy.

Table 16. Stages of Elaboration of Security Requirements.

Stage of Elaboration Examples

1 Trust Objectives TCSEC mandatory security objective (NCSC, 1985);

CWI: integrity objectives (Clark, 1987)

2ExternalModels Noninterference(Goguen,1982);
SMMSM: user's view of SMMS operation and the

security assumptionsl6 llandwehr, 198a)

3 Internal Models BLM: *-propertylT (Bell, 1976);

SMMSM: security assertionsl8 (Landwehr, 1984);

CV/I: certification and enforcement rulesl9
(Clark, 1987);

CMWM: maccessible expression20 (Millen, 1990)

4 Rules of Operation BLM: Open-file access checks (Bell, 1976);

CMWM: Read-file label float (Millen, 1990)

5 Functional Designs Functional specifrcation of UNIX open system call
(Bach, 1986)

'We can charactenze the five stages as follows.

156 Leonard J. LaPadula

. Trust Objective. A trust objective specifies what is to be achieved by
proper design and use of the computing system. It characterizes the de-

sired conditions for information that should be maintained by the sys-

tem. A non-disclosure objective, for example, states that there should

be no unauthonzed viewing of classified data. An integrity objective
might state that there should be no unauthorized modification of sensitive

data.

. External Model. An external model describes the trust objectives for the

system in a formal, abstract manner, in terms of real-world entities such

as people, their roles, types and groupings of information, and operations

on information. It may, for example, describe authorizations for people

to access information of various kinds. (It should be understood that the

people are potential users of the target system and the information will be

managed by the target system.)

. Internal Model. An internal model describes, in a formal, abstract manner,

how the goals of the external model are met within the system. It may do

this by specifying constraints on the relationships among system compo-

nents and, in the case of a TCB-oriented design, among controlled entities.

. Rules of Operation. Rules of operation explain how the internal require-
ments developed in the internal model are enforced. They do this by speci-

fying the access checks and related behaviors that guarantee satisfaction of
the internal requirements.

. Functional Design. Like the rules of operation, the functional design speci-

fies behavior of system components and controlled entities, but it is a com-
plete functional description. A functional design may, for example, consist

of functional specifications of the system calls or commands that will be

implemented in the system.

The traditional Bell-LaPadula Model (BLM) (Bell, 1976) addresses the

third and fourth levels of elaboration. The simple security property and the
*-property are two axioms of the model that express the mandatory access con-

trol policy as constraints on a trusted system's operation. The BLM defines

these properties as internal requirements at the third stage of elaboration. Its
rules of operation elaborate the behavior of the trusted system at the more de-

tailed level four. The proof of security in the BLM consists in showing that the

rules of operation developed in stage four are a correct elaboration of the in-
ternal requirements developed in stage three. No specific provisions are made

for demonstrating that the stage 3 requirements are a correct interpretation of

A Rule-Set Approach to Formal Modeling of a Trusted Computer System I57

a stage 2 model. Although some aspects of the work reported in the referenced

work are oriented toward the Multics system, the BLM itself is quite general.

Thus, it can have wide application to systems, but its generality also means it
provides no significant guidance in the development of a descriptive top-level

specification, a requirement for B2 or higher classes of the TCSEC (NCSC,

198s).
The more recent Compartmented Mode Workstation model (CMWM) (Millen,

1990), which essentially addresses the same stages as the BLM, is more heavily

oriented toward a particular class of computer system, in this case UNIX. Thus,

the developer finds more guidance in the CMWM for the development of func-

tional specifications. But, as with the BLM, the modeling approach employed does

not take into account the desirability of being able to show correspondence with
some external model.

The Clark-Wilson informal model (Clark, 1987) directly addresses external

consistency issues. Although it does not explicitly articulate an external model, it
describes an internal model (third stage) that appears capable of supporting a class

of external models. The class is exempliûed by an accounting enterprise in the

Clark and Wilson paper (Clark, 1987).

The Secure Military Message System model (SMMSM) explicitly gives both

an external model and an internal model. The external model is informal but is

clearly reflected in the formal internal model. In the original formulation of the

model, the Security Assertions were developed as an external model of the com-

puter system, in that they define the properties that the computer hardware and

software must ensure at the user (external) interface. In the terms defined here,

however, the Security Assertions can be viewed as an internal model. This inter-

nal model, in contrast to the BLM and CMWM, defines a set of secure transforms

rather than a set of secure rules of operation. The latter approach enhances the

model's ability to avoid choosing implementation strategies, an avowed goal of the

model's developers (Landwehr, 1984).

The modeling approach described in this paper addresses levels three, four,

and five. The description of the ORGCON policy gives the level-three require-

ments. The rule set of the Policy Model gives the level-four security requirements.

And, the rules of operation of the State Machine Model, because they correspond

to system calls, provide a basis for a complete level-five elaboration of require-

ments. The rule set provides a foundation for showing consistency of the internal

model with some external model. Because the rule set is separate from the rules

of operation, the task of proving assertions about the security policies modeled

should be easier than in the traditional approach. The separate rule set constitutes

a specification of policy in a formal language. Thus, it can be analyzed with auto-

mated tools. The model described in this paper, although similar in one respect or

158 Leonard J. LaPadula

another to other models, has the following signiflcant characteristics not shared by
the other models:

. The model draws heavily from the functional design of a UNIX System V
system for the specification of its rules of operation. A one-to-one core-
spondence exists between UNIX system calls and rules of operation.

. The rules of operation reflect far more functional design than the other
models but do not include the access checks and other operations that
guamntee satisfaction of the internal requirements. Instead, the rules of
operation appeal to the rule set, which implements the internal require-
ments. The rules of operation also specify the appropriate places in the

system's functional description for the rule set to be invoked. This can be

viewed as a generalization of the use of the maccessible Boolean in the

rules of operation of the CMWM.

. Internal requirements at stage 3 are implemented by a model in its own
right, the Rule Set Model. The Rule Set Model consists of a set of rules
that express the security policies of the trusted system. The rules of this
model play a role similar to that of the CMWM maccessible expression and

the BLM *-property, but they are far more extensive and express policies in
addition to mandatory access control. The rules have more in common with
the secure transforms of the SMMSM in that they express constraints on the

functioning of the secure system.

The model in this article includes far more detail than is usual. (Bell,1976'
Landwehr, 1984; Clark,1987; Millen, 1990). While recognizing that less detail
gives advantages of simplicity, easy comprehensibility, and availability of existing
automated tools, I believe we need detailed system models and that our collective
knowledge base of ideas and techniques supports this approach. Moreover, I be-

lieve that a model should clearly communicate its meaning to a wide audience, not
just to mathematicians. For this reason, the formal language of the rule set has the

form of pseudo-code.

Model building is a process of abstraction in which certain details are sup-

pressed to focus on those issues the model builder considers important. But what
may seem unimportant to the model builder may be of great import during sub-

sequent phases of requirements definition, when more and more detail must be

considered. Thus, the model builder may be wrong in selecting a level of ab-

straction and important details may be abstracted away. Once this situation is
recognized, the level of detail needs to be increased to include the important
details in the model. In traditional models of the BLi\{/CMWM variety, the ac-

cess rules, built on the notion of access by subjects to undifferentiated objects,

A Rule-Set Approach to Formal Modeling of a Trusted Computer System 159

are normally so abstfact that they treat the opening of a file and the opening of an

inter-process communication object as the same thing. This is a convenience for

the modeler, but a burden for all who follow in the development, implementation,

and evaluation of a trusted system. At these later stages of requirements definition

there may be important policy differences between opening a file and opening a

message queue.2l The SMMSM model takes advantage of its intended applica-

tion area by defining the type of object "message" in addition to distinguishing

between "objects" and "containers" as information entities'

The model builder of 20 years ago could not draw on experience with the

technology of trusted systems to permit modeling at the level of detail I am advo-

cating. There were many difficdt and important problems to solve at high levels

of abstraction, where few details of any real system could be considered. Not all

of those problems have been solved, but the developing security technology of

today can support modeling at a level useful for guiding the detailed design of a

trusted system.

The ultimate goal of applying formal methods to developing trusted systems

is to provide traceability from requirements and specifications all the way to im-

plementation and use. Formal methods are employed today at several high-level

points in this spectrum. The detail included in the formal model in this article is

a step toward the goal of bringing formal methods closer to the final stages of

implementation-complete functional design and coding.

Acknowledgments

In alphabetical order, I thank the following persons:

Dr. Marshall Abrams of The MITRE Corporation for his basic insights on

access control that led to this modeling effort and for his encouragement during

the writing of this article.

Edward G. Amoroso of AI&T Bell Laboratories for identifying significant

inconsistencies, errors, and ambiguities in an earlier version of this paper and for

his many helpful suggestions for improving it.

Charles W. Flink II of AI&T Bell Laboratories for his patient and compre-

hensive explanations of many of the design aspects and system calls of Sys-

tem V/IüLS.
Carl Landwehr of Naval Research Laboratory for his suggestions on improv-

ing Table 16 (stages of elaboration of requirements) and his assistance in charac-

teizingthe Secure Military Message System in this regard'

160 Leonard J. LaPadula

Professor Ravi Sandhu of George Mason University, Editorial Staff of the

JCS, for his thorough, helpful review of an earlier version of this paper, particu-
larly his diligent efforts to improve the paper's organization.

Dr. James V/illiams of The MITRE Corporation for his contribution of a view
of the stages of elaboration of requirements for trusted systems and for numerous

interactions with me on various issues of formal modeling.
This work was supported in part by The MITRE Corporation as MITRE-

Sponsored Research and in part by the U.S. Army as Mission-Oriented Investiga-

tion and Experimentation under contract DAAB07-91-C-N751. Technical direction
for the research was provided by the National Security Agency.

References

1. Abrams, Marshall D., K. E. Eggers, L. J. LaPadula, and I. M. Olson, A General-
ized Framework for Access Control: An Informal Description, Proceedings of the

1990 National Computer Security Conference, l3(1):135-143, October 1990.

Bach, Maurice J., The Design of the UNIP Operating System, Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1986

Bell, David E. and L. J. LaPadula, Secure Computer Systems: Unified Exposition
and Multics Interpretation, MITRE Technical Report 2997, The MITRE Corpo-
ration, Bedford, Massachusetts, March 1976; available from NTIS, reference AD
4023 588.

Clark, David D. and D. R. Wilson, A Comparison of Commercial and Military
Computer Security Policies, Proceedings of the 1987 IEEE Symposiutn on Security
and Privacy,184-194, April 1987.

Flink, Charles W. and J. D. V/eiss, System V/Ì\4LS Labeling and Mandatory Policy
Alternatives, AT&T Technical Journal, May/June 1988.

Goguen, J. A. and J. Meseguer, Security Policies and Security Models, Proceed-
ings of the 1982 IEEE Symposium on Security and Privacy,ll-20, April 1982.

International Standards Organization (ISO), Working Draft on Access Control
Framework, ISO/IEC JTC l/SC 2l N5045, July 1990.

Landwehr, Carl E., C. L. Heitmeyer, and J. Mclean, A Security Model for Mil-
itary Message Systems, ACM Transactions on Computer Systems,2(3):198-222,
August 1984.

LaPadula, Leonard J., Formal Modeling in a Generalized Framework for Access
Control, Proceedings of the Computer Security Foundations Workshop III, 100-
109, June 1990.

LaPadula, Leonard J., A Rule-Base Approach to Formal Modeling of a Trusted
Computer System, MITRE Paper M91-02l,The MITRE Corporation, Bedford,
Massachusetts, August 1991.

2.

-t-

5.

6.

7.

8.

9.

10.

A Rule-Set Approach to Formal Modeling of a Trusted Computer System 16l

11. Millen, Jonathan K. and D. J. Bodeau, A Dual-Label Model for the compart-

mented Mode workstation, MITRE Paper M90-51, The MITRE Corporation,

Bedford, Massachusetts, August 1990.

12. National Computer Security Center (NCSC), Department of Defense Trusted Com-

puter System Evaluation Criteria, DOD Standard 5200.28-STD, December 1985.

13. Page, J., J. Heaney, M. Adkins, and G. Dolsen, Evaluation of Security Model Rule

Bases, Proceedings of the 1989 National Computer Security Conference, 98-111,

1989.

14. Williams, James G., Stages of Elaboration of Security Requirements for a Trusted

Computer System, private communication, December 1990.

Appendix: Model Language and Constructs

A.I. Language for Expressing Rules

The method for expressing the model's rules departs from the traditional use of

mathematical notation. A mixture of programming language statements and

timited mathematical notation creates a specification language that is intuitively

understandable to a broad audience'

Both rules of operation and rules of the rule set are defined in a language that

looks like a programming language. Two basic language consffucts are used to

organize statements and show their interrelationships: SELECT CASE and IF

THEN ELSE.

The SELECT CASE statement has the following syntax:

SELECT CASE attribute
CASE attribute-valuel

statement-block-1
CASE attribute-value2

statement-block-2

CASE ELSE
statement-block-n

END SELECT

A statement-block is one or more statements. Individual statements are termi-

nated by a semicolon. The value of the SELECT CASE statement is the value of

162 Leonard J. LaPadula

the statement-block following the CASE identified by the current value of the se-

lected attribute. For example, the next SELECT CASE has the value of statement-

block-2 when the "amount" is $200.

SELECT CASE amount
CASE $1OO

statement-block-1
CASE $2OO

statement-block-2
CASE ELSE

statement-block-n
END SELECT

If the current value of the selected attribute is not identified by one of the

CASEs given, then the value of the SELECT CASE statement is the value of the

CASE ELSE statement-block.

A final word on the SELECT CASE statement. The END SELECT part of the

statement will be omitted when no ambiguity results - the use of indentation will
make clear the scope of a SELECT CASE.

The IF THEN ELSE statement has the following syntax:

IF
Boolean-expression

THEN
statement-block

ELSE
statement-block

The IF THEN ELSE statement has its usual meaning. A Boolean expression
is an expressiorr consisting of attributes and relational or logical operations and
having a value of TRUE or FALSE.

A FOR-EACH statement is also useful. Its syntax is:

FOR-EACH process:
statement-block

END-FOR-EACH

Because attributes may apply to more than one kind of entit¡ the language
clarifies an ambiguous reference to an attribute by qualifying each attribute with
the name of the entity to which the attribute belongs. For example, the attribute
"security-level" applies to processes and several kinds of objects; "security-
level(process)" refers to the security level of the process.

A Rule-Set Approøch to Formal Modeling of a Trusted Computer System 163

Rules of operation use the form "¡* . . . *]" to identify a system operation. For

example, the Open rule uses the statement [* truncate the file *] to stand for the

UNIX operation that deletes the data in a file. Rules may use the form "c' . ' . *)"

to enclose a comment, such as (* the directory search was valid and the file

exists *) appearing in the Open rule.

Boolean expressions and all statements except the SELECT CASE, the IF-

THEN-ELSE, and the FOR EACH end with a semicolon. Boolean expressions use

the Usual inequality operators "<" and ">" and use "==" for expreSSing equality.

Logical operators such as AND and OR are used in obvious ways'

Rules use the specifications "set-attribute" and "set-attributes" to manage the

values of attributes. The rules of the Rule Set Model use "set-attribute" to desig-

nate the value that an attribute should have if the current request is granted. The

syntax for this use is

set-attribute(attribute-name, attribute-value)

The rules of the State Machine Model use "set-attributes" to indicate that they

are carrying out the set-attribute specifications given by the rules of the Rule Set

Model. Suppose, for example, the State Machine Model invokes the Rule Set

Model with a create-file request. Suppose that the rules of the Rule Set Model

approve the request and give two set-attribute specifications:

set-attribute(security-level(fi le), SECRBT)
set-attribute(object-category(ûle), general)

Then, the portion of the create rule that carries out the create request will in-

clude a set-attribute statement. The meaning of the statement is that the security-

level of the file is set to the value SECRET and the object-category of the file is

set to the value general.

A.2. Constructs of the State Machine Model

A.2.1. þpes

A type is a class that is defined by the common attributes possessed by all its

members. The name of each type suggests a useful interpretation for the class.

The model uses the following tYPes:

request: {alias, alter, change-owner, change-role, clone, create,

delete, delete-data, execute, get-permissions-data, get-status-

data, modify-access-data, modify-attribute, modify-
permissions-data, read, read-attribute, read&write-open,

read-open, search, send-signal, terminate, trace, write,

164 Leonard J. LaPadula

write-open)
process
file
directory
ipc
scd

signal
object: [a file, directory ipc, or scd]
phase: {"active", "unused", "inaccessible"}
flag: {ON, OFF}
mode: {"read", "write", "read&write"}

A.2.2. Variables

A variable is an alterable entit-v. The variables of the State Machine Model define

the system states. We can think of variables as functions whose domains are types.

Just as naturally, we can regard them as records of information containing one or
more items of data. The model uses the following variables:

current-process: process

new_process: process

flle-name: file
directory-narne: directory
truncate-option: flag
create-option: flag
STALJS(object): phase

OPEN(process, object) : set(mode)

4.2.3. Constants

TRUE
FALSE
ON
OFF

4.2.4. Expressions

Access-Rules(request, process/object, process/object): Extended-Boolean

4.2.5. Effects

An effect is an action of the state machine. The model uses the following effects:

normal-eút
error-exit
set-attributes
save

restore

A Rule-Set Approach to Fortnøl Modeting of a Trusted Computer Systern 165

Endnotes

I UNIX is a registered trademark of UNIX System Laboratories.

2 The arguments used in the system calls are similar to those defined by Bach

(Bach, 1986) but I have changed the names, invented some new ones, and

sometimes rearranged them for clarity.
3I show the first argument to the open call (and others) as frle-name. This may

actually be a pathname involving one or more directories. When file-name is

used as an argument to the Access-Rules, the reader should understand that the

name of the file itself, not the full pathname, is intended.

a The real or effective user ID of the sending process must match the effective or

saved effective user ID of the receiving process, unless the effective user ID of

the sending process is super-user. Recall that we do not model super-user access

conffols or controls based on user IDs.

s {} denotes the empty set.

6 Recall from the Interface Definition that the terminate message means that the

system has terminated the process. The State Machine Model gives this request

to the Policy Model for information only. It enables the Policy Model to update

its information base, if necessary.

7 Note that the system in this context is System Y not System V/\{LS. AI&T's
System V/I\{LS additionally incorporates the mandatory access control (MAC)

policy.
8 A distinction is made between read and read-open in this model. Read-open

functionally enables the process to read the object; read actually causes the

transfer of data from the object that has been opened into the memory space

of the process doing the reading. The MAC policy for controlling read access

is, therefore, applied at the read-open and no MAC policy applies to the actual

reading of the data. However, other models can be conceived in which a floating

label policy for the sensitivity label of the object might be applied at the read,

similar to the floating information label policy of the CMW model (Millen'

1990).
9'.Write" to a directory includes addition, modification, and deletion of entries in

the directory.
10 An example is the User-Transformation Procedures Associations (UTPA) table

of this model, described subsequently.

11In this model, the integrity data is contained in the User-Transformation Pro-

cedures Association (UTPA) table. Thus, only the TP-manager is allowed to

modify the UTPA.

166 Leonard J. LaPadula

12In this context, an ordinary process is one whose process-type equals NIL.
13 Obviously a certain amount of interpretation is involved here; the constraints I

have specif,ed seem reasonable to me, but I recognize that other interpretations

of the intent of Clark-V/ilson integrity are possible.
la The UNIX unlink operation actually deletes a file only when all links to it have

been deleted.
15 The definition of (NCSC, 1985) is assumed: security level levell is said to dom-

inate security level level2 if the hierarchical classification of levell is greater

than or equal to that of level2 and the non-hierarchical categories of levell in-
clude all those oflevel2 as a subset.

16 The security assumptions part of the SMMSM reflect security constraints on the

behavior of users.

17 The BLM *-property specifies part of the mandatory access control policy
of the model. It is defined as follows: The *-property places restrictions on
current access triples (subject, object, attribute) based on the value of current-
level(subject):

if attribute is read, current-level(subject) dominates level(object) ;

if attribute is append, current-1eve1(subject) is dominated by level(object);
if attribute is write, current-level(subject) equals level(object) ;

if attribute is execute, current-level(subject) and level(object) have no required
relation.

18 The SMMSM has 10 security assertions. The classification hierarchy security
assertion is: The classiflcation of any container is always at least as high as the

maximum of the classifications of the entities it contains.
19 The CV/I model has five certification rules and four enforcement rules. Enforce-

ment rule 3 is: The system must authenticate the identity of each user attempt-
ing to execute a TP.

20 The referenced expression specifies the mandatory access control policy for
the Compartmented Mode Workstation. It is defined as follows: Maccessible(s:

Subject, o: Object, m: Mode): Boolean = m = "read" and "mac-override:ead"
e Privs(s) or m = "write" and "mac-override-write" e Privs(s) or m = "read"
and Sens-label(s) ¡= Sens-label(o) or m = "write" and Sens-label(o) ¡=
SensJabel(s) and Max-level(Owner(s)) >= Sens-label(o).

2l For example, in System VIN{LS a process can open a file for reading only but
can open a message queue (via the msgget system call) only for reading and

writing. Thus, the rules for opening a file differ from the rules for opening a
message queue: the former allows the subjeci's sensitivity label to dominate the

file's sensitivity label while the latter requires that the two labels be equal.

A Rule-Set Approach to Formal Modeling of a Trusted Computer System L67

