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ABSTRACT: The need for interoperable heterogeneous

systems has been recently realized and many interna-
tional, national and industry standards activities have
been launched to achieve this goal. These interoperable
heterogeneous systems should have the capability to
interoperate with other systems irrespective of their
suppliers and vintages. The need for interoperability
among telecommunication systems has been recognized
in Bellcore and has lead to the deveþment of a soft-
ware architecture for interoperability called the O,SCAru

architecture.t The OSCA architecture separates business
processes into three layers, called the dan Inyer, the
processing layer and the user lnyer, to maximize the
reuse and accessibility of the functionality within each

of these layers. Each of these layers are realized using
multiple deployable units called building blocks that
offer well-defined functional interfaces called contracts
to other building blocks. The OSCA architecture
requires a set of principles to be followed by the build-
ing blocks of each layer. Specifically, the functionality
of the data layer building blocks (DLBBs) is to provide

1. OSCA is a trademark of Bellcore.
*An earlier version of this paper appeared in the IEEE Computer Society Proceedings of
the RIDE-IMS '93 Workshop. We are grateful to the IEEE Computer Society for permis-
sion to include passages that previously appeared there.
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open access to complete and consistent corporate data,
maintain semantic integrity of all corporate data and
manage redundant copies of the corporate data. Each
DLBB is designated as the steward of some corporate
data and is responsible to provide open access to that
data, maintain semantic integrity of that data, and
manage redundant copies of that data. The stewarded
corporate data is always considered correct and con-
sistent, and is the primary source of updates for all
redundant copies of that data in other building blocks.

This paper addresses the problem of managing re-
dundant copies of corporate data by a steward when
these redundant copies are supported in heterogeneous
environments in other building blocks. This paper

shows the desirable categories of redundant data, estab-
lishes architectural restrictions on redundant copies,
and describes practical management schemes and al-
gorithms to manage redundant copies.

The paper briefly describes the motivation for man-
aging redundant data using the OSCA architecture, the
types of redundant data possible in the OSCA architec-
ture and the OSCA architecture principle to manage
redundant copies of corporate data. The paper then
establishes the problem constraints for redundancy
management in heterogeneous OSCA environmentso
and identifies the issues in managing redundant data.
Addressing these issues, the paper describes a set of
architectural rules for managing redundant data in the
context of the OSCA architecture, and presents two
practical management schemes and an algorithm for
managing redundant data in OSCA environments. The
paper also addresses the required contracts for redun-
dancy management and the extent of data consistency
that can be realized using various transaction models.
The data redundancy management rules, the manage-
rnent schemes and the algorithm presented in this paper
provide a practical solution for managing redundant
data in large corporations.
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1. Introduction

Data redundancy has been used in the automated systems of large
corporations as a means to achieve improved performance, higher
availability and higher reliability. The performance gains due to redun-
dant data have been best realized in an environment where application
programs frequently read data and seldom update the data. In this case

the version of the data read by an application program may not be very
important. However when updates are frequently made to the data, the
level of consistency between redundant copies of data or between
related data becomes very important for reliable business processing.

A fundamental fact today is that a significant amount of redundant
information is resident within the automated systems of large corpora-
tions. This fact alone does not fully characterize the problem; rather
the problem is worse because this redundant information frequently
becomes inconsistent and requires frequent corrections to restore con-
sistency. The data inconsistency problems that exist today can be

attributed to many reasons:

. Using manual entries to input information into systems or to
reconcile data inconsistencies between islands of automation.
This often results in conversion errors or entry errors.

. Lack of appropriate semantic checks on data either in the
application programs or in the database management systems.

Although current database management systems are improving
in providing much-needed semantic capabilities, there is very
little semantic support across platforms, much less across

heterogeneous platforms. Much of this support must still be built
into the application programs, but is frequently missing.
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. Close coupling of data with business processing functions, thus
providing only application-specific views on the data rather than
providing a generic (application-independent) access to the data
as required by an information model.2 This encourages different
applications to maintain their own redundant copies of the same
data. Maintaining redundant data consistency between these
copies is hard because of a lack of automated means of update
and because application-specific formatting and views are
imposed on the data.

The typical approach used in automated systems when data inconsisten-
cies are found is to "request for manual assistance". Initially this was
a good decision since the humans are well versed at recognizing and
doing something to resolve the data inconsistencies. unfortunately,
with the increased volume in processing, the automated systems pro-
duce and/or detect inconsistencies very rapidly requiring many humans
(in the order of thousands of employees in large corporations) in order
to resolve these inconsistencies. This reduces the overall value of the
automated systems. As the number of automated systems is ever
increasing, the data redundancy among them is also increasing. It is
crucial to manage redundant data across systems and maintain required
levels of consistency between data across systems in large corporations.
If this is not done, thg delays due to inconsistencies will result in lost
revenue and reduced levels of service.

In order to manage redundant data in large corporations, it is
essential:

. to be able to identify complete and consistent sources of cor-
porate data, and support them in appropriate vendor platforms
that satisfy the performance, availability and reliability require-
ments of these corporate data sources

' to have architectural rules (restrictions) on how redundant copies
may be obtained from these corporate data sources and used. to provide well-defined open interfaces to access and maintain
both the corporate data sources and the redundant copies of
corporate data and

2. The term information model, also called a logical data model (LDM), is used to indicate
an extended entity-refationship (EER) model which includes precise definitions of entity
meta-types_ in terms of their sets of available operations.rr8ì Thus it can be regarded as ãn
object model, since it supports modeling of data operations as well as data stiuctures.teltrol
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. to identify mechanisms by which the defined consistency
requirements on the redundant copies can be maintained.

The needs mentioned above are best rcalized in the context of open
systemstrl that interoperate with other open systems because it is often
the case that the corporate data sources and the redundant copies are
supported on different vendor platforms that satisfy the roles played by
these data. For instance, the corporate data sources may be supported
on a high performance mainframe machine while the redundant data
may be supported on a less-expensive work station. In general, because
of diverse needs of applications in large corporations, there is a need
to support data on a wide variety of computing environments, to allow
a wide choice of data base management qystems, and to be compatible
with a variety of data architectures, but yet have interoperability among
the systems built on these diverse environments. The Bellcore OSCA
architecturet2l is an interoperability architecture that supports this idea
and has been developed to satisfy the interoperability needs among tele-
communication systems. section 1.1 describes the oscA architecture,
the types of redurtdant data in the OSCA architecture and the OSCA
architecture principle to manage redundant copies of corporate data,

I.l The OSCA Architecture

The OSCA architecturet2l is an implementation-independent system de-
sign framework intended to provide corporations the flexibility to com-
bine software products in ways which best satisfy their business needs
and to provide access to corporate data by all authorized users. It does
this by promoting the interoperability of software products that consist
of large programs, transactions and databases. Interoperability is the
ability to interconnect software products irrespective of their suppliers
and vintages, to provide access to corporate data and functionality by
any authorized user, and to maintain that interconnection and access
over changes in suppliers and vintages.

Fundamental to the OSCA architecture is the requirement of
applying the notion of separation of concerns to business aware func-
tionality. Business aw¿ue functionality is functionality that is charac-
teristic of a business. It relates to an understanding of the business,
such as providing information describing the business or performing
processes characteristic of the business. The notion of separation of
concerns requires that business aware functionality be separated
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(grouped) into the "layers"3 or categories of corporate data manage-
ment functionality (dan layer), business aware operations and

management functionality (processing layer), and human interaction
functionality (user layer), to maximize the reuse and accessibility of
the functionality within each of these layers. The software which
implements the functionality in each layer is partitioned into building
blocks, and these building blocks must adhere to specific principles
described in the technical advisory on OSCA architecture.t2l Thus the
data layer is partitioned into data layer building bloclcs (DLBBs),t31

processing layer into processing layer building bloclcs (PLBBs) and

user layer into user layer building blocks (ULBBs). Each DLBB is said

to steward an allocated portion of the corporate data. Stewardship
implies that the DLBB is sold responsible for providing the complete,
consistent, and semantically valid value(s) of the data it stewards to
all authorized requests. Specifically, DLBBs must ensure semantic
integrity of the stewarded data, manage redundant copies of that data

and provide open access of the stewarded data to all authorized users.

The notion of separation of concerns in the OSCA architecture
also requires that no building block will contain business aware func-
tionality belonging to more than one layer. The building blocks are

supported by a platform of business-independent functions (called
infrastructure services that includes DBMSs, distributed transaction
processing services, directory services, etc.) and interact with each

other using well-defined interfaces called contracts. A contract is

defined by a contract specffication, which is a document precisely

defining the functionality and the way in which the functionality pro-
vided by a contract is invoked, and the support commitment(s) that
are available. Contract specifications must be delivered with the build-
ing block providing the speciûed contracts. Contract specifications
describe contracts in terms of functionality, interface syntax and

semantics, response time, availability, transaction paradigms sup-

ported, and like details. Contract specifications are implementation-
independent and can possibly be implemented using a variety of
implementation technologies. The building blocks in the OSCA archi-

3. OSCA architecture layering does not correspond to OSI layering; no hierarchy is implied.
For example, the user layer can communicate with the data layer without passing through
the processing layer.
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tecture do not need to know the implementation details of other
building blocks in order to successfully interoperate; they only need to
be able to invoke the contracts offered by other building blocks using
standard interface notations (for example, Abstract Syntax Notation
One, ASN.1t4r) indicated in their contract specifications. In this man-
ner the implementation of each building block is isolated from the
other allowing building blocks in heterogeneous environments to inter-
operate. Thus a stewarding DLBB can update a redundant copy in
another building block using an update contract defined on the redun-
dant copy even if the data in the two building blocks are supported
using heterogeneous database management systems. An update con-
tract invocation on a redundant copy may result in a single or multiple
commit actions depending on what is allowed by the contract speci-
fications and what is intended by the particular contract invocation.

For more details on the OSCA architecture, the reader is referred
to the technical reference on the Bellcore OSCA architecturet2l and
other related papers.tsl tot lzt

I.I.I Types of Redundant Datø in the OSCA

Architecture

The OSCA architecture recognizes private redundant data that are
owned within individual building blocks. Private redundant data is a
replicated copy or a partially replicated copy of some stewarded data

obtained from the stewarding DLBB at some point in time, and having
well-defined consistency requirements with respect to that stewarded

data. The redundant data are owned by a building block and should
not be visible for general retrieval and updating purposes outside the
building block owning it.

The intent of private redundant data is to give applications relevant
data that they can use and modify at will. For example, planning sys-

tems (PLBBs) may get a private redundant copy of current telephone

network traffic information and perform projections on this information
for what-if studies that determine future loads on telephone networks.
In the process these systems may manipulate their copy in any manner
they like. Obviously these changes should not be shown to other build-
ing blocks and hence should be private to the planning systems. If
another building block requires this projected load and network char-
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acteristics information, then a steward should be designated to provide
that information. This steward should provide the data after appropri-
ate semantic checks on the information.

Besides application-specific needs mentioned above, private re-
dundant copies may also be used to satisfy performance or availability
requirements that cannot be satisfied by directly accessing the informa-
tion from the steward.

Private redundant data may occur in any layer of the architecture
including the corporate data layer. we use the term private redundant
copy in this paper to refer to private redundant data owned by a
specific building block. From the point of view of controlling the
extent of data redundancy, private redundant copies are strongly
discouraged and the need for any such copy should be justified.

The OSCA architecture also recognizes shared redundant dan to
meet performance, availability, or alternate view needs. This is a
replicated copy or a partially replicated copy of some stewarded data
obtained from the stewarding DLBB at some point in time, and having
well-defined consistency requirements with respect to that stewarded
data. The shared redundant data are houseda in a DLBB and are visi-
ble only for general retrieval outside the building block housing that
data, i.e., they can only be read. We use the term shared redundant
copy in this paper to refer to shared redundant data housed in a
specific DLBB.

There are many reasons for not allowing building blocks to di-
rectly update a shared redundant copy:

. First, by definition, a shared redundant copy can be a partial
replicate and may not necessarily be always consistent with the
stewarded data. It would be meaningless to directly apply
updates to a copy that is already out of date and moreover these
updates cannot be shared with other building blocks unless the
stewarding DLBB accepts these updates.

. Second, the stewarding DLBB provides a point of concurrency
control for all updates on the stewarded data. So an additional
level of delay is avoided by sending the updates directly to the

4. Since the DLBB with shared redundant data should not make updates on that shared
data independent of the stewarding DLBB (as in the case of ownership of the data) nor
does it steward the data, we say the data is housed in the DLBB to imply neither owned
nor stewarded data.
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stewarding DLBB instead of sending updates to a shared

redundant copy.
. Third, the implementation of integrity constraints in a shared

redundant copy may differ from that of the stewarding DLBB
and further additional constraints may also be imposed on the

data. For example, a shared redundant copy may be a partially
replicated copy having information only about telephone circuits
of large centrex customers (say, with more than 500 telephone

lines) in the New York city while the steward may have telephone

circuits information of all residential and business customers in
the entire state of New York. The shared redundant copy rejects

all updates which do not satisfy these restrictions eventhough the

update may be valid for the steward. Thus a shared redundant

copy should not decide whether to accept or reject an update.

That would have to be the stewarding DLBB's decision.
. Fourth, even if the integrity constraints implemented in a shared

redundant copy are identical to that of the steward, the steward

cannot even accept a tentative update validation performed by a
shared redundant copy as it would create a dependency between

the steward and that shared redundant copy resulting in future
release dependencies and accessibility assumptions. If the

integrity constraints are changed in the steward and not in the

shared redundant copy, or vice versa, then this discrepancy

would cause confusion to the users. Hence it is not desirable to

perform validations in a shared redundant copy.

Shared redundant data is housed only in DLBBs for two reasons.

First, the security and integrity requirements associated with the

corresponding portion of the corporate data should be observed by
the building block housing the shared redundant data, as the building
blocks sharing this data assume the data to be accurate. Secondly, the
principle of separation of concerns in the OSCA architecture stresses

that the data layer that should be providing the functionality of all
shared corporate data. Shared redundant data does not cease to be

corporate data just because it is redundantly copied, and hence must

be provided in a DLBB.
Shared redundant data may lag in consistency with stewarded data

according to some predefined schedule. However, there are advantages

of having shared redundant data:
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. First, it provides another point of access to (a copy of) corporate
data besides the stewarding DLBB for that corporate data. This
reduces the load on the stewarding DLBB and could solve
performance and availability problems of the stewarding DLBB
for retrievals, and may provide an overall load balance.

. Second, certain building blocks may not need the level of con-
sistency provided by the stewarding DLBB, or may need an
alternate view (including partial views) or a distinct temporal
view of data which can be satisfied with shared redundant data.

. Third, the total extent of redundant data is reduced as several
building blocks can use the shared redundant data instead of
obtaining individual private redundant copies. This is especially
true if a shared redundant copy is installed in the same environ-
ment as the building blocks needing a redundant copy such that
the shared redundant data can be accessed with minimum
communication delays.

. Fourth, as a consequence of the reduced number of private
redundant copies of data, the number of copies the stewarding
DLBB has to update is reduced thus reducing the load on the
stewarding DLBB.

. Fifth, a DLBB may house shared redundant data from more
than one stewarding DLBB, providing an aggregate view.

The term redundant data is used to mean shared and private redundant
data collectively. The oscA architecture allows redundant data to be
physically present among the various building blocks, whenever neces-
sary, for reasons of performance, availability, supporting alternate
views, or supporting inter-DLBB semantic integrity constraints.s pos-

sible consistency requirements for redundant data are that the redun-
dant data must be in lock-step synchronization, eventually consistent,
or in lagging consistencytttl *trn the corresponding portion of cor-
porate data. Lock-step synchronization means that any change to the
stewarded data must be reflected in the redundant copy before the
change to the corporate data is made available (for example, two-phase

5. Semantic integrity constraints are relationships between data that must always hold
irrespective of the business aware processes manipulating the data. These relationships
are typically captured in an information model. Relationships between data in different
DLBBs is called inter-DLBB semnntic integrity constraints and relationships between
data in the same DLBB are called intra-DLBB semantic integrity constraints.
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commits can be used to achieve this). Eventually consistent means that
any change to the stewarded data will be made available prior to the
change being reflected in the redundant copy, but the changes will be
propagated to the redundant copy in a short time, for example, in a
few seconds to a few minutes. The consistency synchronization win-
dow can be flexibly defined to take place within specific time periods
(for example, within a few minutes) or at specific events (for example,
after every ten updates). Lagging consistency is a degenerate case of
eventual consistency in which the redundant data may never be consis-
tent with the corresponding portion of corporate data, with propaga-
tion delays amounting to several minutes, hours, or even days. The
consistency synchronization window here can be flexibly defined to
take place at specific time intervals, at specific time points, at specific
events, or on demand from the BB having a redundant copy.

1.1.2 The OSCA Approøch to Redundant Data

The objective of the OSCA architecture is to eliminate data redun-
dancy at the logical level, and minimize and manage it at the physical
level. In order to accomplish this objective, the OSCA architecture has
the following DLBB principle called managing redundancy:

fuch DLBB must provide means whereby updates to the corporate data
that it stewards can be passed to building bloclcs hnving redundant copies
of that data, and must not propagate updates receivedfrom another
stewarding DLBB for any of its shnred redundant data.

This paper elaborates on the redundancy management rules, and de-
scribes two schemes and an algorithm for managing redundant data.

1.2 Outline of the Paper

Section 2 of this paper describes the constraints and identifies the vari-
ous issues in managing redundant data. Section 3 lays out the rules for
managing redundant data. Section 4 presents two schemes for manag-
ing redundant data that can be used for satisfying lock-step, eventual
and lagging consistency requirements on redundant data, and an
algorithm that can be used to satisfy eventual or lagging ccinsistency
on redundant data. Section 5 presents the conclusions. Most of the
material presented in this paper can be found in a Bellcore Special
Report addressing this topic.ttar
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2. The Problem Domain

The solutions proposed in this paper for managing redundant data in
OSCA environments assume the following constraints:

. System requirements: Different systems have different
performance, accuracy and reliability requirements depending
on their functionality. These in turn dictate, respectively, the

availability, consistency and recovery requirements of the data
(be it the corporate data or the redundant data) with which the

systems are working.
. Environment of the redundant data: The redundant data, in

relation to the stewarded data environment, may be supported in
a distinct homogeneous data base management system (HoDBMS)

environment, in a heterogeneous DBMS (HDBMS) environment,
in a distributed DBMS (DDBMS) environment, or in the same

environment as the corporate data (which is not often the case).

Since all the DBMS environments do not yet support compatible

transaction processing or concurrency mechanisms, the data

environment influences the solutions proposed for the problem

of managing redundant data.
. Autonomy of building blocks: The OSCA architecture principles

provide local autonomy.6 This includes communication autonomy
(freedom to schedule a response to a request when invoked via
its defined contracts) and execution autonomy (freedom to set

execution priorities for different categories of contracts invoked

from different building blocks).

Given the above constraints, this paper addresses the following issues

related to data redundancy management in the context of the OSCA
architecture. For each issue, we provide cross-references to one or
more subsections that address the issue:

1. The architectural constraints that should be followed in
managing data redundancy (see Section 3).

2. The transaction models useful for redundancy management
(see Section 4.2).

6. The term local autonomy has been defined differently in Du and Elmagarmid.tr2l Vy'e

borrow the term here, but define it slightly differently in relation to building blocks.
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The management schemes useful for maintaining lock-step
consistency, eventual consistency or lagging consistency in
redundant data (see Section 4.3).
Maintaining data consistency to suit the performance, accuracy

and reliability requirements of various classes of applications
(see Section 4.4).

3. Rules for Managing Redundant Data

This section presents rules to manage redundant data with necessary

explanations. Most of these rules are also found in the OSCA Tþchni-

cal Reference.t2l

Rule 1 - If access requirements cannot be met by the stewardíng DLBB,
then shared redundant data shoul.d be used whenever øpplicable ønd
practical, and in preþrence to private redundant copies.

Shared redundant data may eliminate the need for private redundant

copies, and should be considered as a first choice alternative prior to
considering private redundant copies. Shared redundant data may
provide less timely consistent data than stewarded data and therefore

the choice of shared redundant data must consider any risk to the accu-

racy and integrity of results of processes using the shared redundant

data.

Rule 2 - Only updates made to the stewarded data are valid updates.

Given that a stewarding DLBB is responsible for the semantic integrity
of its stewarded data, it is appropriate to say that only those updates

that have been made to the stewarded data are taken to be correct. If
updates on private redundant copies have to be also made on the stew-

arded data, then the building block with the private redundant copy

will have to send those updates to the stewarding DLBB. The steward-

ing DLBB will be the final judge to decide if these updates are appro-
priate or not. If the updates are committed in the private redundant

copy and the stewarding DLBB does not accept them, then the build-
ing block with the private redundant copy may choose to rollback to its
previous state thus undoing the action of the updates. Shared redundant

copies provide only retrieval contracts to other building blocks by
definition, and the question of updates does not arise.

3.

4.
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Rule 3 - Shared redundant copíes are obtaíned only and d.irectþ from
the stewarding DLBB.

There are two reasons for obtaining a shared redundant copy directly
from the stewarding DLBB and not from another DLBB holding a

shared redundant copy. First, the DLBB obtaining the shared redun-
dant data, by definition, is responsible for the security and integrity of
such data. Since the DLBB stewarding the portion of corporate data
has the complete and current security and integrity information on that
data, the correct information is provided toithe DLBB obtaining the
shared redundant copy from the stewarding DLBB. Secondly, this ap-
proach establishes the required consistency criterion for the data in the
shared redundant copy that is to be provided by the stewarding DLBB.

The installer of a shared redundant copy negotiates with the ad-
ministrators of the stewarding DLBB for the needed consistency crite-
rion for that shared redundant copy. The consistency requirements of
the shared redundant copies can be maintained within the stewarding
DLBB or in an infrastructure service that assists in redundancy man-
agement (for example, in a redundancy management service or strate-
gically within the DBMSs themselves). Maintaining consistency
requirements in an infrastructure service that manages redundancy
is the preferred solution.

Rule 4 - A shøred redundant copy does not propøgøte updøtes to other
private redundant or shared redundant copies.

There are many important reasons not to allow propagation from
shared redundant copies:

. Shared redundant copies need not be full replicates and need not
support the same set of integrity constraints, they can impose
additional ones. Also, they need not be in sync with the
stewarded data. This means that private or shared redundant
copies obtained or maintained from other shared redundant
copies must have similar view and integrity requirements, and
must have lesser consistency needs with respect to stewarded

data. If we extrapolate this chain, we see a series of redundant
copies with increasing fragmentation and increasing lag, a

differential that is not quite tractable. The whole scheme can go

haywire especially when failures happen in any part of the chain

298 Hassan N. Srinidhi



and the required update frequency commitments cannot be met.
It is true that failures can happen in the stewarding DLBB, but a
stewarding DLBB can be designed to handle such failures, and

since the path length from the stewarding DLBB to a copy is
just one, we have a lesser probability for failures.

. A redundancy chain like the one described above can

potentially make the data redundancy problem to proliferate as

the stewarding DLBB loses control over the copies and

innumerable private redundant copies may be made from shared

redundant copies as they can bypass the required negotiation
process for updates from the stewarding DLBB. This defeats the
objective of minimizing the extent of data redundancy (see

Section L.1.2). Moreover, as pointed out in Section 1. 1.1,
installing shared redundant copies close to the building blocks
needing it should alleviate the need for private redundant copies.

. Each shared redundant copy updating other copies must keep

track of where updates were successful and provide backup to
copies which have failed, a functionality already supported in
the stewarding DLBB, i.e., we have a duplication of
functionality.

Hence, the DLBB holding the shared redundant copy acts as a passive

source for that data. In other words, this DLBB is not responsible for

actively propagating updates (that it obtains from the stewarding

DLBB) to other building blocks who may have obtained private redun-

dant copies of data from it. It is the responsibility of the other building

blocks desiring the data to obtain it on their own by explicit requests,

if they had obtained private redundant copies from this DLBB.
This rule minimizes the progressively lagging consistency that

could result as updates are passed from one redundant copy to another,

by requiring automatic updates to be provided by the stewarding DLBB
only. Since the number of redundant copies should be limited and

closely managed, the stewarding DLBB is the primary data from
which all other copies are directly related.

Rule 5 - Updøes to ø shared redundant copy are made only by the

stewørding DLBB.

This rule is a corollary of rules 2 and 4. Rule 4 indicates that a shared
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redundant copy cannot get updates from other shared redundant copies
or private redundant copies. Rule 2 indicates that only updates made to
the stewarded data are valid updates. Hence, all updates must be re-
ceived directly from the stewarding DLBB. The stewarding DLBB has
to commit the update and provide the update to the shared redundant
copies depending on their consistency requirements. An update can be
committed by the stewarding DLBB together with a shared redundant
copy in one distributed transaction (for example, using two-phase com-
mit protocols), or the update may be committed by the stewarding
DLBB first and then propagated to the shared redundant copies. In
either case, the stewarding DLBB should handle the concurrency con-
trol across multiple updates, ensure that the semantic integrity con-
straints hold and make the update.

Rule 6 - A privøte redundant copy requíring automatìc updates must
be obtøíned from the stewørding DLBB; otherwíse a private redundønt
copy may be downloødedfrom a shared redundant copy.

If there is a need for receiving updates automatically, a private redun-
dant copy must be obtained from the stewarding DLBB and the
required consistency or view requirements must be established with
the stewarding DLBB. If a shared redundant copy is able to satisfy the
consistency or view needs of a private redundant copy, the private
redundant copy may be obtained from the shared redundant copy.
However, if further updates are necessary on the private redundant
copy, then these are refreshed from the shared redundant copy by the
building block which owns the private redundant copy by explicitly
making requests for a more recent copy.

Rule 7 - The building block having a redundønt copy is responsíble for
ils copy.

A building block containing a private redundant copy knows best the
usage of and the needs for that copy. The building block may provide
alternate views of this data, or merge this data with other data, etc.,
depending on user requirements. Hence it is best left to the building
block to manage its private redundant copy. In other words, the build-
ing block can exercise local autonomy (described in Section 2) as far
as the private redundant copy is concerned. The building block may
also establish a consistency requirement with the stewarding DLBB to
automatically update the private redundant copy.
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A DLBB housing a shared redundant copy is responsible to pro-
vide the appropriate views expected of that copy. However, a DLBB
containing a shared redundant copy cannot exercise local autonomy
entirely as the updates on the data are made only from the stewarding
DLBB as explained in Rule 5. The number of intra-DLBB integrity
constraints on a partial replicate shared redundant copy may differ
from that of the stewarding DLBB. If this is the case, appropriate
interpretation of the updates sent from the stewarding DLBB may
be the responsibility of the DLBB with the shared redundant copy if
the stewarding DLBB does not perform that interpretation.

4. Schemes for Managing Redundønt
Data

This section identifies the required contracts for data redundancy
management, describes transaction processing models for redundancy
management, illustrates two management schemes and an algorithm
that can be used for distinct consistency requirements on redundant
data and then indicates solutions that can be employed to satisfy
different application requirements.

4.1. Contracts for Redundancy Management

It was mentioned in Section I.LZ that a stewarding DLBB has to
manage redundant copies of its stewarded data. A stewarding DLBB
may be required to invoke a redundancy management contract each
time changes are processed against the stewarded data, such as when
certain attributes or entities have been changed. This is the simplest
case. A stewarding DLBB may also invoke a redundancy management
contract according to some fixed frequency schedule. This is a more
expensive process, requiring that the DLBB be invoked via timer ser-
vices at certain intervals to examine whether it should send updates to
registered building blocks. The stewarding DLBB will also have to
keep track of the date/time of an update to send updates after a certain
time. An on-demand redundancy management contract is a retrieval
request by the building block owning the redundant copy and does not
require any additional functionality.
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The processing of redundancy requests can occur in the on-line
mode or in the batch mode. Typically, lock-step consistency requires

the on-line mode. Eventual consistency and lagging consistency can

be supported by either mode.
To facilitate automatic updates from the stewarding DLBB, a build-

ing block having a redundant copy must provide appropriate contrac-
tual support on its redundant copy. If a building block supports a pri-
vate redundant copy and requires automatic updates, then pre-defined
create/updateidelete (CUD) contracts have to be offered on the private
redundant copy for the purposes of updating the copy from the stew-

arding DLBB. These CUD contracts must only be accessible by the
stewarding DLBB.

If a DLBB supports a shared redundant copy of data, then it offers
retrieval contracts on that data. In addition, pre-defined CUD contracts
have to be offered on the shared redundant copy if automatic updates

are desired from the stewarding DLBB. Again, these CUD contracts
must only be accessible by the stewarding DLBB.

4.2. Transaction Models for Redundancy

Management

Tiansaction processing is an important factor in managing redundant
data and providing the required degree of consistency in the redundant
copies. The transaction management characteristics of the interaction
paradigm among the building blocks has a great deal of bearing on the
degree of consistency that can be achieved in a redundant copy.

A transaction is a collection of actions which has the so-called
ACID properties:

. Atomicity: Either all of the actions are performed, or
(effectively) none of them are.

. Consistency: A transaction takes the database from one

consistent state to another consistent state.
. Isolation: The actions of a transaction are performed in effective

isolation from the actions of other transactions.
. Durability: Once a transaction has been completed and

committed, the effects survive any combination of system

failures.
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The usual criterion for isolation is serializability. This means that when

multiple transactions are executed concurrently, the results should be

the same as if they had executed serially in some order. The mecha-

nisms for ensuring serializability are usually called concurrency control
protocols. One of the most common of these is two-phase locking, in
which each transaction goes through two phases with regard to locking
data items accessed by it. During the first phase the transaction

acquires locks as needed to access data items. During the second phase

the transaction releases locks. Once any lock has been released, no

further locks may be acquired. This guarantees serializability.tt4r
The most well known protocol for ensuring atomicity and durabil-

ity in a distributed system is tbe two-phase commit protocol. One of
the participants in the distributed transaction plays the special role
of the "coordinator." In the first phase each participant reports to the
coordinator whether it is prepared to commit or not. In the second
phase the coordinator directs them all to commit or all to abort,
depending on whether or not øll reported that they were prepared.
When a participant reports that it is prepared, it must remain prepared
through any combination of failures. If the coordinator directs it to
commit, it must be able to commit.

In distributed systems, especially heterogeneous systems, it can be

very difficult to achieve serializability and atomicity in an efficient
manner, and redundant copies may not require them in all cases.

Therefore, sometimes the transaction properties can be relaxed
depending on the consistency requirements of redundant copies.

Four possible client-server interaction paradigms are of primary
interest to us here:

. Queued Message (QM)

. Independent Invocation (I-I)

. Dialog with Distributed Tiansaction Processing (DTP)

. Dialog with Local Tiansactions (DLI)

The first two are single request-response paradigms. An interaction
consists of a single request from the client optionally followed by a
single response from the server. No state information is retained be-

tween successive requests; each request is handled in isolation from
preceding or succeeding requests. The last two are dialog paradigms.

An interaction consists of a series of interaction steps, each consisting
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of a request and response. State information is retained throughout the
dialog, so that information developed in one step can be referred to in
succeeding steps. Typically a communications "session" or "application
association" is established to serve as the context for the dialog.

In the QM paradigm a request is sent from a client building block
to a server in a store-and-forward manner requesting the execution of
an operation by the server. The incoming message to the server, the
processing at the server, and the outgoing response from the server are
all covered by a common transaction umbrella, under the control of
the server. In the event of a system crash at the server in the midst
of processing the request, the recovery process not only rolls back any
partial processing, but also restores the incoming message on the input
message queue so that it is ready to be processed again. In the event
of a system crash at the client or the server after the request has been
processed and committed, but before the response has been delivered
to the client, the recovery process leaves the outgoing response still on
the output message queue waiting to be delivered. Once the client has
sent the request message, it will eventually get processed and the
response returned even in the event of multiple crashes at the server
and/or client. The transfer of messages from the output queue of either
the client or the server building block to the input queue of the other
building block is also assured through a handshaking protocol. Thus,
the QM paradigm is resilient to communications crashes as well as

client and server crashes.
The QM paradigm can be used for satisfying eventual or lagging

consistency requirements on a redundant copy. The characteristics of
the QM paradigm ensure that the redundant copy will certainly be
updated eventually even if multiple crashes occur at the building block
with the redundant copy. This implies that once the redundancy mes-
sage is sent from the stewarding DLBB, the stewarding DLBB is
assured that the update will be made in the redundant copy.

In the I-I paradigm a request is sent from a client building block to
a server requesting the execution of an operation by the server. The
operation may be executed as a transaction, but transaction management
is completely under the control of the server. If the server crashes after
the message is received but before the operation is executed and the
response sent, it is up to the client to discover that fact and take ap-
propriate recovery action. The server will typically have no memory
after recovery that the message was ever received. Typically the I-I
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paradigm is synchronous; i.e. the client process blocks while waiting
for a response. However, that is not necessarily the case. It depends
entirely on the client.

The I-I paradigm can also be used for satisfying eventual or lag-
ging consistency requirements on a redundant copy. However, since
an update of the redundant copy is not always assured, the stewarding
DLBB may have to resend the redundancy message if a response is not
received within a time window from the building block having the
redundant copy. It is important to use idempotentT operations in this
case as otherwise undesirable data inconsistencies may result.

In the DTP paradigm sequences of operations at the server are
executed as a subtransaction of a distributed transaction. Whenever a
subtransaction is to be committed, the server must enter into a dis-
tributed commit protocol (e.g. two-phase commit) with the client
and/or any other building blocks which are part of the distributed
transaction. Typically the client will initiate the commit process; that
is, the client will indicate to the server the points at which work should
be committed. Thus the interaction consists of a sequence of opera-
tions followed by a distributed commit, then another sequence of
operations followed by a distributed commit, etc.

The DTP paradigm can be used for lock-step synchronization of
redundant copies. Assuming that we have a valid update at the stew-
arding DLBB, two situations can arise here. First, the building block
with a redundant copy accepts to commit an update. There is no
problem in this situation and the question of reissuing the redundancy
message does not arise. Second, the building block with a redundant
copy crashes before or while processing the redundancy message, or
does not correctly participate in the distributed commit protocols
because of erroneous behavior. In this case the stewarding DLBB may
commit the update independent of the redundant copy and resynchro-
nize the redundant copy (with redundancy messages) upon recovery,
or reject the update with appropriate messages to the invoker request-
ing a retry later. Although the former approach should be the more
common approach, the latter approach may be taken depending on the

7. An idempotent operation is an operation that can be applied on some data any number of
times, but still produces the same result. For example, updating the value of ân attribute
to a specific value is an idempotent operation whereas incrementing the value of an at-
tribute by l0 is not idempotent because it produces a different result each time it is ap-
plied.
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importance of the role played by the redundant copy. For example, if
the redundant copy is being used for implementing some crucial inter-
DLBB semantic integrity constraints and if other inter-DLBB semantic
integrity constraints may also be compromised if the redundant copy is
not synchronously updated, then the business decision could be to
reject the incoming update. The DTP paradigm is supported by the
ISO TPtt61 draft standard and the X/Open DTPI171 standard.

In the DLíI paradigm the operations at the server are executed as a
stand-alone transaction, not a part of a distributed transaction. Typically
the client will indicate to the server when work should be committed,
and the server will then simply attempt to commit its own work without
any further coordination with the client or any other building block.
Thus the interaction consists of a sequence of operations followed by a
commit at the server, then another sequence of operations followed by
a commit at the ssrver, etc.

The DLI paradigm can also be used for satisfying eventual or lag-
ging consistency requirements on a redundant copy. However, since
an update of the redundant copy is not always assured, the stewarding
DLBB may have to resend the redundancy message if a response is not
received within a time window from the building block having the
redundant copy. Again, it is important to use idempotent operations in
this case as otherwise undesirable data inconsistencies may result.

4.3 . Management Schemes for Redundant
Data

This section describes a scheme and an algorithm for providing even-
tual or lagging consistency in redundant data, and another scheme for
lock-step updating of redundant data. A combination of thesq schemes
can be used by a stewarding DLBB to manage the consistency require-
ments of the redundant copies.

4.3.1 The Linked Contacts Table Scheme

This scheme is useful to maintain eventual or lagging consistency in
redundant copies. The QM, I-I or DLT transaction paradigms described
in Section 4.2 can all be used within this scheme.
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Figure l: Redundant Data Management Using Linked Contracts Täble.

Figure 1 illustrates the scheme for a building block (BB) X having
a redundant copy of the stewarded data. The Redundancy Management
Services (RMS) and the Contract Interaction Services (CIS) may be
part of the infrastructure services installed with the stewarding DLBB.
The RMS infrastructure functionality may initially be deveþed as part
of the stewarding DLBB functionality, and later replaced by an actual
vendor product or by appropriate DBMS functionality.

Each redundant copy requiring updates is responsible for establish-
ing the update frequency with the RMS. The update frequency, the
contracts to be invoked for updating redundant data and possibly alter-
nate data views of the redundant copies are maintained in the linked
contracts table (LCT). The LCT may be part of the RMS or may be
part of a data directory which is accessed by a RMS. In either case,
provisions must be present for adding, deleting or updating the con-
tents of the LCT.

The RMS uses the view information in the LCT for a redundant
copy (typically for a shared redundant copy than a private redundant
copy) to filter and provide meaningful updates to the redundant copy.
If the view information for a redundant copy is not maintained in
the LCT, then the building block having the redundant copy will
be responsible for translating and interpreting the updates sent from
the RMS.

In this scheme when an update contract is invoked, the update
contract provider in the stewarding DLBB commits the update if all
the semantic integrity rules are satisfied. The update is then provided
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to the RMS. The RMS consults the LCT to determine which redundant
copies should get the update and when, performs appropriate transla-
tions for views stored in the LCT, and provides CIS with the infor-
mation in the LCT to invoke contracts in building blocks containing
redundant copies of the stewarded data. The RMS must ensure that
each redundant copy is able to perform the update in the same order
as the stewarding DLBB and repeats a redundancy message when
necessary.

Since the stewarding DLBB makes the updates prior to sending
update contracts to the redundant copies, this scheme can be used for
maintaining eventual or lagging consistency in redundant copies.
Updates can take the form of full extraction and load or incremental
extraction and update. The process of full extraction and load is
straightforward, but involves large amounts of data and updating
redundant copies is time consuming. On the other hand, incremental
extraction and load requires a careful audit trail of the updates to be
maintained by RMS for each redundant copy, but updating redundant
copies is less time consuming. The latter approach can be used for on-
line synchronization to meet stricter consistency requirements while the
full extraction and load process is suitable for batch synchronization.
We present a practical algorithm in the next subsection that allows for
incremental updating of redundant copies that can be used for provid-
ing eventual or lagging consistency in redundant copies.

4.3.1.1 The Epoch Propagation Algorithm

In this algorithm the RMS may propagate a batch of updates, called an
epoch. The epochs provide a window of consistency for the redundant
copies. The length of an epoch corresponds to the number of update
requests (each of which may create, delete or modify a number of
entity instances) present in the epoch. Choosing a long epoch would
mean that the redundant copies would be less consistent with the stew-
ard and that may not satisfy many application requirements. On the
other hand, choosing an epoch length of one update request is equiva-
lent to the situation described above in the IPA algorithm.

There are several approaches that can be used to choose the epoch
length. We describe three possible approaches in this section. The first
and simplest approach, called the fixed epoch length approach, is to
choose the epoch length to be a fixed number of incoming update
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requests (for example, 10 incoming update requests) to the RMS such

that the epoch satisfies the consistency requirements of all copies. Here
the RMS uses the same set of incoming update requests to filter and
then propagates non-empty epochs to redundant copies appended with
a serial number. If all the update requests are filtered out from an

epoch, then RMS ignores them and assigns serial numbers in a se-

quential order only to the non-empty epochs sent to a redundant copy.
Since the filtering condition varies from copy to copy, RMS will have
to keep track of the last serial number sent to each copy and also cor-
relate the serial numbers assigned for a particular epoch across the
copies in order to determine if all the responses have been received for
that epoch from all the copies.

The fixed epoch length approach will result in filtered epochs with
varying number of update requests in them from one epoch to the next.
Receiving varying number of update requests may be a problem for
some copies because that may prevent them from optimizing their
performance for other accessing building blocks. However, the advan-
tage of this approach is that the RMS can make a simple correlation
between the responses received for the epochs with the coÍrmon epoch
formed in the RMS for all copies, thus simplifying the bookkeeping in
the RMS and the logic needed to report back to the stewarding DLBB
or the system administrator of a successful propagation of the update
requests. It may also be possible to choose an epoch length such that it
reduces the overhead in the network and the RMS, and at the same
time satisfies the consistency requirements for all copies.s

A second and equally simple approach, called the fixed time dura-
tion epoch approach, is to choose the epoch to be the incoming update
requests received during a certain fixed time duration. Here the stew-
arding DLBB sends the update requests to the RMS as and when they
are processed. The RMS saves these updates in an update log, forms
epochs by writing delimiters periodically, filters the epochs and sends

non-empty epochs to redundant copies appended with a serial number.
If all the update requests are filtered out from an epoch, then RMS
ignores them and assigns serial numbers in a sequential order only
to the non-empty epochs sent to a redundant copy. Since the filtering

8. Polyzois and Garcia-Molina report results of their test findings on epoch length.trsl But
the epoch length should be carefully chosen after taking into account the parameters of
a given network and processing environment.
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condition varies from copy to copy, RMS will have to keep track of
the last serial number sent to each copy and also correlate the serial
numbers assigned for a particular epoch across the copies in order to
determine if all the responses have been received for that epoch from
all the copies.

The fixed time duration epoch approach will result in varying
epoch lengths from one epoch to the next because the rate of update
contract invocations in the steward will vary from time to time and so
will the incoming update requests to the RMS. In addition the filtered
epochs will also be varying in length and may not be suitable for BBs
trying to optimize their performance for other accessing building
blocks. The advantage of this approach, like the fixed epoch length
approach, is that it simplifies the bookkeeping in the RMS and the
logic needed to report back to the stewarding DLBB or the system
administrator of a successful propagation of the update requests. Exten-
sive knowledge of the rates of update contract invocations in the stew-
arding DLBB is necessary in order to choose an appropriate time dura-
tion for the epoch that satisfies the consistency requirements for alr
copies.

The third approach, called the copy-based epoch approach,
provides tltered epochs to each redundant copy according to a pre-
specified propagation condition for that copy. The propagation condi-
tion can be a complex boolean condition formed based on the number
of update requests in the filtered epoch, time duration since the last
propagation, time of day, etc. For example, a propagation condition
may be to send filtered epochs that have accumulated at least 10 update
requests during the hours of 8 am and 5 pm, and to send filtered
epochs every half hour outside these hours. The RMS has to continu-
ally process the update requests as they arrive to check if the propaga-
tion condition for a redundant copy is met and send the filtered epochs
to that copy if that is the case. The Epoch Propagation Algorithm
(EPA) in Thble 1 describes the copy-based approach. The epochs for
the various redundant copies are sequentially numbered and main-
tained using pointers to a common log of incoming update requests as

described in the EPA algorirhm in Thble 1. The RMS keeps track of
the progress of update request processing in each copy by maintaining
a response pointer to the latest epoch that has been acknowledged.

The copy-based epoch approach could require considerable book-
keeping in the RMS to keep track of individual epoch limits for each
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I Receive update requests from
the steward and save the up-
date requests in a common log.

2 If the propagation condition is
met for a redundant copy,
store a pointer to the common
log to indicate a new epoch be-
ginning for that copy and the

next sequential epoch #. Filter
accumulated updates in the
previous epoch and issue them

to the copy after appending the

corresponding epoch #.

Check for timeout or responses.

rùy'henever a filtered epoch

with an epoch # is received:

If this epoch # is already
processed, go to step 4.

If there are no missing epoch

#s, then process the epoch,

save the epoch # and go to

step 4.

If missing epoch #s, save

current epoch and request the

RMS for missing epochs.

3 If copy indicates it is missing

epochs, then send missing

epochs.

If timeout (rccurs before re-
sponse and if resend limit for
that epoch has not been reached

for a copy, then resend epoch.
If resend limit is reached, then

inform system administrator.

Process all the missing epochs

and saved epochs in their
epoch # order.
If any problems in processing

an epoçh, then request RMS to

resend that epoch and process

again.

4 If successful response is re-
ceived from a copy before

timeout, then note the epoch

#(s) in the response and ad-

vance response received
pointer for that copy to the

most recent epoch acknowl-
edged.

Respond back to the RMS
about the update success for
the received epoch(s).

5 Inform the steward or the sys-

tem administrator that a partic-
ular update was successful after
receiving positive response for
that update from all the copies

that were issued the update.

Step BB with a redundant copy

Täble l: Epoch Propagation Algorithm (EPA).
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copy and logic to check if the propagation condition is met for each
copy. The previous two approaches allow update requests in entire
epochs to be reported back to the stewarding DLBB to have been
successfully propagated. since epoch boundaries and their intersection
across copies could considerably vary in the copy-based approach, the
RMS has to correlate responses for each update request (instead of a
whole epoch) and report back to the stewarding DLBB or the system
administrator of the successful propagation of that update request.
However, the advantage of this approach is that it is versatile and
caters to the tailored needs of each redundant copy.

Irrespective of the approach used, the filtered epochs that are
received are applied by the copies in the order of their epoch number.
If received epochs could not be entirely applied, then reãundant copies
may request the RMS to resend an epoch. In such a situation, it will
be up to the redundant copy to either commit the epoch to the extent it
was able to process, or commit none at all. The received epochs are
acknowledged by the redundant copies aftei successful application of
the update requests in these epochs. Responsos for multiple received
epochs can be sent together in the same message to the RMS as long
as the response is sent within a pre-specified time window.

The RMS resends filtered epochs if responses are not received
from a redundant copy. such resends are more expensive than in the
IPA algorithm because of the amount of time required in the RMS to
ûlter each lengthy epoch. In addition the lengthy epochs can also
cause overhead in network traffic. But a pre-defined number of resends
are necessary to unblock redundant copies that are blocked due to fail-
ures, and to inform the system administrator in case of repeated errors.
The performance of the EPA algorithm suffers only if there are many
epoch resends that counter the advantage of delaying the updates.
However, this is also an useful technique and a good alternative when
lock-step updates are not possible, especiaily for maintaining semantic
integrity constraints. The queued message (eM) paradigm, the indepen-
dent invocation (I-I) paradigm, and the dialog with local transactions
(DLT) paradigm can be used to implement this algorithm. A version
of the EPA algorithm has been successfully implemented using the
QM paradigm and has been demonstrated to cater for both eventual
and lagging consistency requirements of redundant copies across
heterogeneous environments.
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4.3 .2 The Synchronous Update Scheme

This scheme is useful for lock-step updating of redundant copies. The
DTP paradigm described in Section 4.2 must be used here.

If lock-step or synchronous updating of redundant data is desired,
then the update contractor of the stewarding DLBB cannot make
updates in isolation from the RMS. The information about redundant
copies requiring lock-step updates may be kept in a resident table or as

part of a data directory accessed by the RMS. Again, this information
includes the needed contracts to update the redundant copies and pos-
sibly information about the view supported by the redundant copy.
Provision must be there to add, delete or change entries in this table.

In this scheme when an update contract is invoked, the update
contractor processes the update, ensures all the semantic integrity
constraints can be satisfied, but provides the RMS with the result of
the update prior to committing the result. The RMS consults the resi-
dent table to determine which redundant copies need lock-step updates,
performs appropriate translations for views stored in the table for these
copies, and provides contractual information to CIS. CIS then uses the
transaction monitor facilities to invoke a distributed transaction across
those building blocks containing lock-step synchronous redundant
copies of the stewarded data. The scheme is shown in Figure 2 for a
building block (BB) X having a lock-step synchronous redundant copy
of the stewarded data. The transaction monitor facilities may utilize a
two-phase commit protocol to implement the distributed transaction. A
discussion on distributed transactions using the X/Open DTP model
appears in Mills.ltsl

Figure 2: Lock-step Updating of Redundant Copies.
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The transaction monitor is responsible for the coordination of
global commit/abort operations. If a two-phase commit protocol is

used, then all participating building blocks that are prepared to com-
mit must commit. Hence, a participating building block must store

the results in permanent storage prior to issuing a "ready to commit"
message. This allows the results to be committed upon recovery if the

building block were to fail prior to the actual commit.

4.4 Satisfyíng Varyíng Requirements on Data

In this section we present possible approaches that can be taken to
satisfy the system requirements (mentioned in Section 2) for different
cases.

Stewarded data can satisfy needs for highly accurate data. How-

ever, if the stewarding DLBB cannot satisfy very high performance

requirements, then possible solutions are:

. to support the stewarding DLBB on a very high performance

platform,
. to horizontally fragment the stewarded data such that the load

on each fragment can be managed,
. to off-load the stewarding DLBB for retrieval operations

(especially for ad hoc queries) with a closely consistent (see

Section 4.3.1) shared redundant copy, or
. to offload the stewarding DLBB for retrieval operations with a

lock-step synchronized shared redundant copy (see Section

4.3.2) if consistency of retrieved data should be I00Vo .

The solution used varies from case to case. A combination of the

above solutions may be used if appropriate. In general, using private

redundant copies should be considered as the last option only if no

better alternative exists for a given situation.

If lock-step synchronized updates on redundant data satisfy the

accuracy requirements, but lock out access to much needed access to

data for long durations of time, then possible solutions are to provide a

frne level of locking granularity or to use optimistic algorithms on top

of distributed transaction protocols to delay locking an item of data for

the longest duration possible.
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Low or medium accuracy requirements on redundant data can
be met by using a delayed updating scheme for redundant data (see

Section 4.3.1) or by using batch update or batch retrieval contracts
(see Section 4.1).

Very high requirements on the availability and reliability of data
can be met by supporting stewarded data on fault-tolerant systems, and
maintaining mirrored disks and frequent back-ups of the data. High
availability requirements on data can also be met by installing shared
redundant copies close to the systems needing access to the data (see

advantages of shared redundant data in Section 1.1.1). Medium or low
requirements on availability and reliability of data can be easily met by
periodic backing up of stewarded data.

5. Conclusions

We have described an interoperability architecture called the OSCA

architecture and the approach taken for managing redundant data in
the context of this architecture. The OSCA architecture favors sup-

porting the corporate data resource of large corporations in diverse

computing and data environments. The data redundancy management

rules, management schemes and an algorithm presented in the context

of this architecture offer a practical solution for managing redundancy

to suit varying needs of applications in autonomous heterogeneous en-
vironments.
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