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ABSTRACT The cooperative interaction of component
database systems and auxiliary system components is a
prerequisite to the smooth functioning of a heteroge-

neous multidatabase system. The institution of mecha-

nisms to foster such cooperative interaction is therefore
a significant factor in the development of multidatabase
systems. Issues to be considered in this regard include
establishing and managing communication channels and

information flow among system components, synchro-
nizing their executions, and detecting and recovering
from errors. This paper presents a practical solution of
these issues, illustrated with detailed examples of its
implementation in UNIX environments. Examples
drawn upon experience gained in the development of
the InterBase System l7l, an ongoing heterogeneous
database project at Purdue University. The implementa-
tion of the proposed solution in non-UNIX environ-
ments, such as IBM CMS and MS-DOS, is also illus-
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trated. Fundamental aspects of InterBase, including
logical architecture and component interoperability,
are described briefly.

1. Introduction

The computing environment found in most contemporary organizations

is characterized by distributed and heterogeneous software systems.

The distribution of these systems reflects the diverse nature of modern

business, while their heterogeneities arise in the process of fulf,lling
diverse computational and information processing requirements. Origi-
nally, these systems ran in isolation to support their individual applica-

tions. It soon became evident that more complex applications involving
multiple systems could be supported if inter-systems cooperation could

be fostered. V/hile the integrity of the pre-existing systems must be

preserved, there is at the same time an increasing demand for informa-
tion sharing on an organization-wide or region-wide basis, thus further
increasing the need for effective system integration.

Heterogeneous databases are a prime example of global applica-

tions requiring the cooperation of component software systems. A het-

erogeneous database is designed to support global applications access-

ing more than one component database or other software system.

Unfortunately, these systems were not originally designed to facilitate
such cooperation and there is as yet no general model for interoperabil-

ity among such isolated software systems. There is therefore a pressing

need for the development of an environment to support global applica-

tions involving multiple software systems.

The issue of cooperation among database systems has been exten-

sively studied and many prototype systems have been deveþed. Ex-

amples include ADDS [5], BellCore Project [2], Carnot [26], DATA-
PLEX [9], DOM [6], DQS [3], EDDS [4], Linda l27l,Mermaidl25l,
MRDSM [19], Multibase [18], NDMS [14], Odu [21], OMNIBASE

[23], Pegasus [1], Proteus [12], Scoop [13], Sirius-Delta [11], SWIFT

[16], Unibase [15], and VIP-MDBS [17]. Other approaches, such as
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Ingres Gateways [22] and Sybase Open Servers [24], have also been

offered as solutions to the problem of cooperation among database sys-

tems. Most of these methods, however, focus on high-level issues and

contain few of the practical details of low-level implementation essen-

tial to their acceptance in industrial settings.

In this paper we present a detailed implementation of the InterBase

System l7l, a practical approach to the problem of cooperative interac-
tion among multiple software systems running on different machines.

The purpose of InterBase is to provide global information sharing and

to facilitate access to local systems in a distributed and heterogeneous

environment. By allowing users to write global applications over com-
ponent local systems without modification, InterBase carries the poten-

tial for great increases in productivity and improvement in global ap-

plications processing. The following proved to be critical to the

implementation of such a distributed system:

. Coordination among system components. In a distributed
system, an application is typically carried out by several system

components running on different machines, these components

must synchronize their execution to operate effectively. While
some components must run continuouslY, others must coincide

with the life-cycles of an application. Such a dynamic system

necessitates a finely-tuned communication protocol.

Furthermore, as the underlying computer platforms may provide

inadequate support for coordination and synchronization among

system components, effective mechanisms must be deveþed to

accomplish these goals within the existing context. This issue

will form the main thrust of this paper.
. System portability. As any cooperative system will be most

useful if it is executable on a variety of computer system

platforms, portability is an important issue. InterBase is

currently implemented primarily on UNIX platforms, with some

components implemented on IBM mainframes and PCs. This
implementation has been designed to use only those UNIX
interfaces supported by all UNIX platforms, such as UNIX V5,
SUN/OS, AIX, HP-UX, and OSF/1. InterBase can therefore be

executed on different UNIX platforms with at most minor
modif,cations, as well as on MACH platforms, as MACH is a
superset of UNIX. To preserve flexibility, only UNIX network
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facilities, such as TCP sockets, have been used to implement the
communication protocol among InterBase components running
on different machines, and the more restrictive high-level
functions such as SUN RPC (Remote Procedure Calls) facilities
have been avoided. The use of TCP sockets provides several
benefits. First, they provide reliable communication among
participating processes, ensuring that all messages will be sent
to their destination, an issue critical to all distributed
applications. TCP sockets also comply with UNIX f,le I/O
operations, allowing programmers to conveniently process
network messages of different sizes. TCP sockets are supported
with a uniform format by all UNIX platforms, providing
portability across platforms. Furthermore, they are supported by
the TCP/IP network communication protocol [10], an industrial
standard provided or simulated by many computer platforms
such as UNIX, IBM VM/CMS, PC-DOS, VMS, and Macintosh
System 7. Finally, they support a client/server communication
model which is suitable for communication among dynamic
and static system components. In this model, during a

communication process, continuously running components can
act as servers, while other components can take the role of
clients.

. Experience gained in the process of implementation. A
number of significant insights were reached which should prove
to be useful in the design of further systems; all these issues will
be shared in this paper.

Though the current implementation of InterBase is in C, other pro-
gramming languages may also be used to implement components of
InterBase, as long as the object code is compatible with that generated
by the C compiler and/or provides interfaces to network facilities using
TCP/IP.

The body of this paper is organized as follows. Section 2 provides
an overview of the InterBase System and discusses cooperative mecha-
nisms among InterBase components. The implementation of these co-
operative mechanisms in UNIX environments is set forth in Section 3.
Implementation issues in non-UNIX environments are discussed in
Section 4. Finally, Section 5 presents conclusions gleaned from our
current investigations and outlines directions for future work.
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2. InterBase Components and Their

Coordination

The InterBase System is a heterogeneous multidatabase prototype sys-

tem developed at Purdue University, which has been designed to

provide an execution environment for global applications over dis-

tributed, heterogeneous, and autonomous software systems. This sys-

tem has been widely demonstrated in the last three years and has been

recently enhanced with additional features, such as a decenttalized

concurrency controller. There are two major components to the Inter-
Base System, as depicted in Figure 1: the Distributed Flex Tiansaction

Manager (DFTM), and a set of Remote System Interfaces (RSIs). The

DFTM is at the center of InterBase. It consists of a set of DFTM repli-
cas, each responsible for the consistent and reliable execution of a
global transaction over the entire system. The DFTM provides a dis-

tributed task specification language, the InterBase Parallel Language

(IPL) [8] with which users can specify a global transaction. RSIs are

specially designed InterBase agents which are superimposed on the

individual Local Software Systems (LSSs). RSIs provide a uniform
system-level interface between the DFTM and LSSs, buffering the

heterogeneity of the LSSs and thus relieving the DFTM from dealing

directly with each LSS. A user can invoke a high-level interface, cur-

rently under development, to write a query to InterBase; the interface

will translate the query into an IPL text, and the text will then be sent

to the DFTM for execution. A user with a good grasp of the LSSs and

a fluency in IPL can also write and send IPL texts to the DFTM for

direct execution. A graphical interface, InterBaseView [20], will be

also provided over InterBase to aid users in writing and executing

global transactions in IPL. The RSI Directory stores information such

as location and allowable data transfer methods for different RSIs, and

thus supports location and distribution transparency for the system.

Interactions among InterBase modules are presented in Figure 1,

where arrows indicate the data and control flow. Currently, InterBase

runs on an interconnected network with a variety of hosts, such as

UNIX workstations and IBM mainframes, and supports global applica-

tions accessing many local software systems including SAS, Sybase,

Ingres, DBS, and UNIX utilities. The InterBase System represented in

Figure 1 is a simplified logical architecture; in practice, it can be tai-
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lored to meet different physical environments. For example, if there
are several Ingres database systems incorporated into InterBase, a dis-
tinct RSI must be provided for each. More than one RSI can be run
simultaneously on a given machine.

The general strength of this architecture is its decentralized nature,
which can be seen in Figure 1. The DFTM is distributed over all the
machines from which IPL programs are executed; that is, each global

transaction is associated with a DFTM replica, which is responsible for
the consistent and reliable execution of the global transaction. For ex-

ample, IPL program Texh is executed as the global transaction GZ1,

which is in turn carried out by the DFTM replica DFTM1, as illus-
trated in Figure 1. Exchange of information within Interbase is per-
formed via computer network, and thus each module of InterBase has

location transparency. InterBase is designed to avoid direct communi-
cation among DFTM replicas; each DFTM replica can therefore be ex-

ecuted independently. The implementation of DFTM replicas is thus
greatly simplified. (Throughout this paper, DFTM replicas and global
transactions will be used as interchangeable terms.)

Each global transaction consists of subtransactions, each of which
must be executed on an LSS through its associated RSI. As the first
step in its execution, a global transaction G¡ must therefore communi-
cate with the relevant RSIs to arrange the relative execution order of
its subtransactions on the appropriate LSSs. The relevant RSIs then
execute the subtransactions of G¡ in the specified order.

An RSI consists of an RSI server and RSI services. The RSI server

accepts the execution requests of concurrent global transactions and in-
teracts with the transactions to arrange for the execution order of their
subtransactions on its associated LSS. It then creates RSI services for
these subtransactions according to the specified order. In this way, In-
terBase allows several DFTM replicas to be executed concurrently as

long as their execution is serializable, thus increasing the throughput
of InterBase. An RSI service is responsible for the consistent and reli-
able execution of its associated subtransaction and is coincident with
the life-cycle of that subtransaction. The RSI server also monitors the
status of running and completed RSI services, as an aid in scheduling
the execution of upcoming and queued subtransactions.

RSI servers are LSS-independent, in that they do not actually
make contact with their associated LSSs. RSI servers for different
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LSSs can therefore share the same codes and are independent from
their associated RSI services. On the other hand, RSI services are

LSS-specific. That is, each type of RSI service must be designed

specifically to work with its associated LSS. This versatility is an ad-

vantage of dividing the RSI function between RSI servers and RSI ser-

vices. A second benefit of this division is that it permits concurrent

execution of subtransactions in InterBase. Furthermore, all RSI servers

are capable of running on UNIX platforms, regardless of the location

of their associated RSI services. This type of RSI structure facilitates

both communication among DFTM replicas and RSI servers and crash

detection of InterBase components.
The activity of InterBase components is dynamic, in that it adapts

to suit the nature of the currently executing global transactions. As an

illustration, let us envision an instance in which there are three global

transactions 71, T2, and T^ running in InterBase. Zr consists of a sub-

transaction on Sybase database I and the UNIX shell of file system 2.

Tz consists of a subtransaction on Sybase database 1, Ingres database

n, and the UNIX shell of file system 2. Z* consists only of a subtrans-

action on Ingres database n. Assume that their execution order in each

site has been determined as follows: (1) in Site 1, Tt+ Tzi (2) in Site

2, Tt and T2 can run concurrently; (3) in Site n, Tz and 4, can run
concurrently. The dynamic state of DFTM replicas, RSI servers, and

RSI services at a given time is illustrated in Figure 2.

We see that global transaction Zr, executed by the DFTM replica
DFTMt, communicates with RSI serverr, RSI serverz, RSI seryicer,r,

and RSI seryicer,z. Ir communicates with RSI serverr and RSI serverz

to determine its execution order on Sites I and 2 and to request its ex-

ecution. RSI servicer,r ând RSI servicet,z àfa created by RSI Servorl

and RSI s€rver2, respectively, and communicate directly with Zr to ex-

ecute the corresponding subtransactions. The execution of Ir therefore

requires the coordination of DFTMT, RSI serverr, RSI server2, RSI

servicer,r, RSI service1,2, Sybase DMBS, and the UNIX shell, most of
which are independent system processes running on disparate sites.

Note that Site 3 contains only RSI server3, since there is as yet no

subtransaction on Site 3. Note as well that, because data stored in
Database 3 and Database n may not be identical, they have been pro-

vided with different RSIs, although they both are Ingres sites and their
RSIs may be identical in their codes.
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From this example, it is evident seen that RSI servers are static
components of InterBase, while DFTM replicas and RSI services are
both dynamic components. V/hile RSI servers are required to run con-
tinuously, a DFTM replica is coincident with the life-cycle of a global
transaction, and an RSI service is coincident with the life-cycle of a
subtransaction.

Figure 1 illustrates the distribution of the copies of the RSI Direc-
tory among all InterBase machines on which DFTM replicas may run.
While such distribution complicates directory updating, it does lead to
improved performance. Updates are performed only on the infrequent
occasions when an LSS is added to or removed from InterBase.

3 . Implementing Cooperative
Mechanisms among InterBase
Components in UNIX Environments

To support the InterBase architecture and interactions among InterBase
components described in Section 2, efficient mechanisms for InterBase
component coordination must be developed. In this section, we shall
provide details regarding the implementation of such mechanisms in
UNIX environments.

3.1 Generic "interbase" User and "interbase"
User Group

All InterBase components are managed on behalf of a generic inter-
base user with the login name interbase. That is, all InterBase files
in InterBase machines must be under the control of the user inter-
base. All InterBase users are assinged to user groupt interbase, and
the group ID of InterBase files is set to interbase. These files should
be executable only by their owner interbase and by InterBase users.
The set-user-ID privilege for these files should be activated, so that the
permission modes of InterBase executable files appear thus:

-rws--x-- 1 interbase interbase
53896 Oct 23 14:56 interbase . . .

1. User groups are defined in file /etc/group.
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Once an InterBase user invokes a DFTM replica for the execution

of an IPL program, that user effectively becomes the generic user

interbase. All DFTM replicas are thus run on the same effective

user ID, which is interbase, thus simplifying both the access control

and the coordination among InterBase components. Since the number

of users in a group is indefinitely expandable, InterBase can be

accessed by any user who joins the interbase user group.

3.2 Establishíng Communication Channels

between a DFTM RePlica and RSIs

As indicated in Section 2, a DFTM replica is responsible for the exe-

cution of a global transaction, while an RSI is responsible for the exe-

cution of subtransactions sent by DFTM replicas to its associated LSS.

DFTM replicas and RSIs must therefore coordinate to execute global

transactions. Because DFTM replicas and RSIs can be executed on dif-
ferent machines, communication between them must be ensured. Two

factors enter into this process. First, RSI servers are static components

of InterBase, while DFTM replicas and RSI services are dynamic com-

ponents. Furthermore, a given RSI server processes execution requests

from several DFTM replicas. The client/server model is therefore best

suited to specify the communication channel between DFTM replicas

and RSIs. In communications following this model, each RSI server

acts as a server, while a DFTM replica acts as a client. The following

gives a detailed approach to establishing such communication channels'

Each RSI server is assigned a TCP port in the file
'o/etc/services" on the machine at which the RSI server is exe-

cuted. This TCP port becomes the medium with which DFTM replicas

communicate with the RSI server. For example, if an Ingres RSI

Server named ingresl must be executed on machine ector, the fol-

lowing or a similar statement must be included in the file
" /eLc/sewices" on machine ector:

ingresl 22OO/tcp

To avoid confusion, TCP port 2200 must not be assigned to any

other server, and there is no other server named ingresl in file

" /eLc/sewices". That is, TCP port 2200 must be assigned only to

RSI server ingresl.
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After being started, an RSI server obtains a socket for its TCp
port defined in the frle " /etc/services" using C program routine
get_listen_socket2. The RSI server can execute an infinite loop,
allowing it to accept messages sent to the socket:

#include <stdio. h>
#include <netdb. h>
#include <sys/types. h>
#include <sys/socket. h>
#include <netinet/in. h>
#include <arpa/inet. h>

get_listen_socket O /* binding a socket to specified
TCP port, in server mode */

{
struct servent *sp; /x service entry *7
struct sockaddr_in sa; /* socket address *,/
struct hostent *phe; /x host entry x7
u_short port;
int fdlisten;
char localhost IMÐ<HOSTNAME+11 ;

/x assume RSI_name specify the name of the RSI server */
if ((sp : getservbyname(RSI_name, "tcp"¡, :: NULL)

Error_Handler ( " getservbyname'r ) ;

gethostname ( localhost, IvIAXHOSTNAME) ;

if ( (phe : gethostbyname(Iocalhost) ) : = NULL)
Error_Handler ( " gethostbyname " ) ;

sa. sin_family : phe->h_addrtype; /* network type x/
sa. sinjort : sp->s3ort;
sa. sin_addr. s_addr : INADDR_ANy;

/* accept corurection from aII */
¡* get the port *7

if ( (fd : socket (phe->h_addrtype, SOCK_STREAM, 0) ) < 0)
/*create a TCP socket*,/

Error Handler ("socket") ;

2. The 
-C 

program routines and segments used in this paper are simpliñed to emphasize
specific points; the actual programs are much more complicated.

2I8 J. Chen, O. Bukhres, and A. Elmagarmid



/x assi€ins a name to the socket */
if (bind(fdlisten, &sa, sizeof (struct sockaddr-in) ) < 0)

Error_Handler ( "bind" ) ;

if (listen(fdlisten, SoMAxcoNN) < 0)

/* set up for listening x7

Error-Handler ( " I isten" ) ;

return (fdl,isten);
Ì

The TCP port assigned to each RSI server must also be known to

the DFTM replicas, because this port presents the dedicated communi-

cation medium between these two components. This may be accom-

plished by deûning the same port in the file " / etc / services" for the

RSI server on the machines where DFTM replicas are generated. A
DFTM replica can thereby obtain the TCP port for the corresponding

RSI server by invoking a system call getservbynane and can connect

to the socket of the relevant RSI servers, by using C program routine

connect_to_RsIs:

#include <stdio. h>
#include <netdb. h>
#include <sys/types. h>
#include <sys/socket. h>
#include <netinet/in. h>
#include <arpa/inet. h>

extern struct subtransaction xsubtransQueue;
/* t}:re head of subtransaction queue i'l

connect_to_RSls O /* th.e routine for a DFTM

replica to connect to RSI servers x/
{

struct subtransaction *sup;
struct sockaddr_in sa; /x socket address */
struct hostent *phe; /* host entry x,/

struct servent *pse; /* service entry x/

/* fot al1 subtransactions x/
for (sup : subtransQueue; suP ! = NULL,
süp = sup->t-nextSubtrans) {

Cooperative Mechanisms in Heterogeneous Multidatabase Environment 219



/* obtaining the TCP port for the
specified RSI server */

if ( (pse : getservbyname (sup->rsiName,
"tcp")) := NULL)

Error_Hand1er ( " getservbyname " ) ;

/* error handling x7

eLse
sup->tcpPort : ntohs (pse->s_port) ;

if ( (phe : gethostbyname (sup->hostName) ):: NULL)
Error_Handler ( " gethostbyname " ) ;

sa. sin_family : phe->h_addrtype;
/* network type x7

sa. sin_addr = x ( (struct in_addr *)
(phe->h_addr) ) ;

sa. sin_port = htons (sup->tcpPort) ;

¡* get the port x7

if ( (sup->tcpFd : socket (phe->h_addrtype,
SoCK_STREAM, 0)) < 0)

Error_Handler ( t' socket " ) ;

/* error handling x7

,/* connect to corresponding RSf server x/
if (connect (sup->tcpFd, &sa, sizeof (struct

sockaddr_in)) < 0) {
perror ('r connect " ) ;

activate_Rsl (sup, &sa) ;

/* aclívate the RSI server */
Ì

Ì

The DFTM replica can then use file I/O operations to send/receive
information tolfrom relevant RSI servers. Although communication is
established between DFTM replicas and RSI servers, the generation of
an RSI service by a relevant RSI server using a f ork system call dele-
gates all the resources of the RSI server to the RSI service. The com-
munication channel set up between the DFTM replica and the RSI
server is thus inherited by the RSI service. This UNIX property
greatly simplifies the implementation, although potential confusion
must be avoided by the following careful coding:

220 J. Chen, O. Bukhres, and A. Elmagarmid



if (forkO !: 0) { /x parent process, still
RSI server */

close (fdConn) ;

,/* close the comrnunication channel between the
DFTM replica and granted subtransaction */

Ì
else { /* child process, RSr service */

close (fdl,isten) ; /* close the TCP porL * /

Ì

That is, RSI server must close its communication channel to a
DFTM replica, after generating an RSI service for that DFTM replica.

The RSI service must in turn close the socket for the TCP port.

3.3 RSl Server Activation

If an RSI server can be activated as a standard server of its underþing
computer system when the system starts, that RSI server is statically
activated. The static activation of an RSI server can be specified with
the appropriate shell statement in file " /etc/rc"; the file is executed

automatically when the computer system is booted. However, because

the static activation of RSI servers cannot always be guaranteed, we

have provided a mechanism to allow the DFTM to dynamically acti-
vate an RSI server whenever necessary. After activation, RSI servers

are left continuously operating. The dynamic activation of RSI servers

also provides support for RSI server crash recovery. In UNIX, dy-

namic activation is easily implemented, as illustrated in the following
description.

InterBase maintains an RSI directory containing the execution files

of the DFTM. The RSI directory holds communication parameters of
various RSIs, including their locations, the proper communication pro-

tocols, allowable data transfer methods, invocation formats, and time-
out parameters. For example, information regarding locations may take
the form of an Internet hostname. Timeout parameters are used to

handle timing problems and can usually be obtained from application

statistics. The RSI directory therefore provides a systematic approach

to the creation of location and invocation format transparency of RSIs
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among different networks. The following is a sample entry from the
RSI directory for an Ingres RSI on UNIX. The first column of each

item is the keyword for the item:

ingresl@ector { /* the RSI name used as key x7
PROTOCOL: tcp, ftp; /x support both tcp and ftp

Protocols */
HOSTNAME: ector. cs. purdue. edu;

,/x cornmunication channel x/
TCPPORT : 22OO;

/* t}:e tcp port used for commrmication */
USERID : 'tinterbaserr; /* renote RSI user id

and encr¡pted password * /
PASSWD :''KHGCHLEAEIDLMKGEJKII;
CMD : " /usr/ínterbase/rsi_ingres/start" $PASSWD;

/* invocation path *7
TIMEOUT : 60 seconds;

/* maximum response time for the RSI */
RETRY : 3; /* the number of retries

for tineout before giving up */
Ì

The following is the shell script file

/ usr / ínterbase /rs i_ingres / start
for the activation of the Ingres RSI:

#l /bin/sh
# activaLe an Ingres RSI
# change to the correct directory
DIR:'/bin/echo $0 | sed -e s,/start/. /'
# if the directory exists
if t -d $DrR l;
then

cd $DIR
# send the directory message back

echo $DIR
# if the executabfe file for the RSI exists

if [ -f ingres.rsi ];
then

# execute the file with the database ingresl
and the given password

nohup ingres.rsi ingresl $1 >
LOGFILE 2>&1- &
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# send the execution message back
echo nohup ingres.rsi ingresl $1 tt¡n

LOGFILE II2\&1 &II
exit

fi
fi
# send the failure message back
echo no ingres RSI for database ingresl

With the help of the RSI directory, an RSI server can be easily

activated remotely by a DFTM replica, using C program routine
activate-Rsr to execute the specified shell script file:

activate_RSl (sup, sa) /* used to activate an
unstarted RSI */

struct subtransaction *sup;
struct sockaddr_in *sa; /* socket address */
{

int i;

if (connect (sup->tcpFd, sâ, sizeof (struet
sockaddr-in)) < 0) {

perror ( "connectt') ;

for (i : 0; i < sup->RSI_entrY->RETRY;
i+) {

RsiRestart (sup->RSI-entry) ;

if (connect (sup->tcpFd, Sâ,
sizeof (struct sockaddr-in) ) < 0)

perror ('rconnect") ;

else
break;

Ì
if (i >: sup->RSI_entry->TIMEOUT)

Error_Handler ( " connect " ) ;

/* error handling *7

Ì
ì
t

RsiRestart (rsi-entry) /* íry to start an RSr renotely x/
struct rsi-direetorY *rsi-entry;

/* L}re entry of RSI directory */
{
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int fd, Ien;
char buf IBLJFSIZEI ;

char xdeeryptedO;
/* routine to decrypt encrypted password */

struct servent *sp;
,/* service entry x7

if ((sp = getservbynarne(rrexectr, "tcp")) :: NLJLL)

/* find the rexec' Þort *7
Error_Handler ( " getservbyname " ) ;

/* error handling *7

f d : rexec (&rsi_entry->hostName, sp->sjort,
rsi_entry->USERID,

decrypted (rs i_entry->PASSWD ),
rsi_entry->Cl\dD, 0);

if (fd < 0)
Error_Handler ( rrrexec rr ) ;

else { ¡* grab and print output from the
remote execution */

while((len: read (fd, buf, sizeof (buf) - 1))
>o) {

buf[1en] : r0r;
OutPut (r'rexec output: Tostt, buf );

Ì
close (fd) ;

Ì
Ì

The RSI directory acts as another source from which a DFTM
replica can obtain the TCP port for a specific RSI server, as this
information can be specified in the appropriate entry in the RSI direc-
tory, as illustrated by the sample entry. The C program routine
connect_to_RSrs for DFTM replicas described in Section 3.2 can
therefore be modified as follows:

connect-to-RSls O /* L}ne routine for a DFTIVT replica
to connect to RSI servers */

{
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/* for a1l subtransactions x,/

for (sup : subtranQueue; suP !: NULL,
sup : sup->nextSubtrans) {

/* obtaining the TCP port for the specified
RSI server */

if ( (pse : getservbyname (sup->rsiName,
"tCp") ) :: NULL)

Warning ("No server Eos in the table
/etc/ services", name) ;

else
sup->tcpPort : ntohs (pse->sjort) ;

)

3.4 Communication Primitives for DFTM
Replicas and RSIs

Using TCP sockets as the communication medium between DFTM
replicas and RSIs takes advantage of UNIX file I/O operations. How-
ever, these operations are designed for untyped byte streams and

provide no means to distinguish among various network messages. If
more than one network message has arrived at a TCP socket, a read
system call might read in all available network messages, but if the
network message is large, the read system call might read only a por-
tion of the message. For this reason, read system calls cannot be used

directly to receive network messages, and communication primitives
are therefore needed to permit DFTM replicas and RSIs to distinguish
among different InterBase messages. The following offers a simple
solution:

the length of the message(4 bytes) | the body of message(a command or data)

Here, each InterBase message consists of two partsr the length of
the message and the body of the message, which consists of a com-
mand or data and will be interpreted by the appropriate InterBase
component. The C program routines read_from_socket and

write_to_socket are thus developed to receive/send an InterBase
message from/to a socket:
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#include <malloc.h>
#include <sys/types. h>
#include <netinet/in. h>

char *read_from_socket (soc)
int soc; /* t'he file descriptor for a socket */
t

u_long nsize, size, len;
char *buf; /* t}:e memory buffer for

storing network package x/

if (read (soc, &nsize, 4) l: 4)

¡", get the size of the message */
Error-Handler ( "read" ) ;

/t error handling *7

else {
size : ntohl (nsize);

/* convert the size from network format
to host fotmat- */

if ( (buf : malloe (size) ) :: NULL)
' /* get a free block of nenory */

Error-Handler ("nalloc') ; ::
/* error handling *7

for (i : 0; i < size; i l: len)
¡* get. the message */

if ( (len : rêâd (soc, &buf lil , size - i) )

<0)
Error-Handler ( I'read" ) ;

/* error handling *7

Ì

return (buf) ;

)

void write_to_socket (soc, message)
int soc; /* th.e
le descriptor for a socket */
char *buf; /* the memory buffer for storing

network package */
{

u_long i, j;
i = strlen (message) ; ¡'r geí the size of the

InterBase package */
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j : htonl (i) ; /* convert it fron
host fornat to network forrnat */

if (write (soc, &j , 4) l,: 4)
Error_Handler ("write") ; /x error handling

else if (write (soc, message, i) !: i)
Error Handler ( "write" ) ; ,/* error handling

Ì

As various formats may be used by different machines to present

integers, the size of an InterBase message must be transformed from
the corresponding host format to network format before it is sent to a
remote socket. It must then be transformed from network format to
the appropriate host format after it is received. These transformations
allow the incompatability in integer representation among different
computer systems to be resolved.

3.5 Handling Parallel Access to RSIs

InterBase allows subtransactions within a global transaction to be exe-
cuted in parallel whenever possible, improving global transaction re-
sponse time and increasing InterBase throughput. This feature requires
a DFTM replica to simultaneously handle multiple communication
channels with several RSIs, which can be implemented through several
approaches. A fairly inefficient solution would be to have a DFTM
replica create a process to handle a communication channel. Still better
would be to use the UNIX system call select, which can examine
multiple I/O descriptors, such as sockets and returns to the caller,
whenever there is anIlO descriptor ready for reading. After sending
messages to the relevant remote RSIs, a DFTM replica can use the C
program routine waitForEvents to handle multiple communication
channels simultaneously:

#include <sys/types. h>
#include <sys/time. h>

WaitForEvents(TimeOut)/* wait for an event to occur;
if timeout, return TIMEOUT. '(/

int
t

TimeOut;

struct subtransaction *sup;
fd_set fd_Iist; /* file descriptor set x/
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int i;
struct timeval tineout; /* tine out structure */

timeout. tv_sec : Timeouti /* set timeout parameters *,/
timeout. tv_usec : 0;
FD_ZERO (&fd_list) ;

/* inítialize all descriptors for the list */

/* add those descriptors with pending replies x7

for (sup : subtransQueue; suP !: NULL;
sup : sup->t-nextSubtrans) {

sup->t-event : FALSE; /* unnark all flags x7

if (sup->t_socket>0&&
sup->t_status = : WAIT_FOR_DATA)

FD_SET (sup->t_socket, &fd_list) ;

/* set a file descriptor *7

Ì

/* wait for one of the pending replies to arrive */
if ( (i : select (MA)GILEDES, &fd-1ist, 0, 0,

&tineout) ) < 0)
Error_Handler l"select") ; /x error handling x7

else if (i :: 0) { /* time Out */
return (TrMEouT) ;

)

for (i : 0; i < MA)GILEDES; #i)
/* be very specific */

if (FD_ISSET(i, &fd_list) )

/* there is a pending message */
for (sup : subtransQueue;

sup !: NULL; süp : sup->t-nextSubtrans)
if (sup->t_socket -- i) {

sup->t_event : TRLIE;

,/* mark the flag x7

break;
Ì

return (OK);

Ì

The t_event field of data structures for different subtransactions,
generated by a successful call to the waitForEvents routine, informs
the DFTM replica as to the source of any RSI messages it has
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received. It then receives and processes the messages in some pre-

defined order, after which it may call the routine again or move on

to another process.

3.6 Communicatíon between an RSI Server,
RSI Services, and DFTM Replicas

As mentioned in Section 2, an RSI server coordinates the concurrent
execution of DFTM replicas on its associated LSS; an RSI service, on

the other hand, acts on behalf of a DFTM replica to execute a sub-

transaction of the DFTM replica on the LSS. An RSI therefore con-

sists of a group of coordinating processes, with the RSI server as their
parent. Since all RSI services are created by the appropriate RSI
server, communication between the RSI server and its RSI services is

easily established, often through a UNIX pipe. The situation is compli-
cated, however, by the need of an RSI server to communicate with its
RSI services and DFTM replicas simultaneously. As a polling strategy

is excessively time-consuming, an approach similar to that described in
Section 3.5 is preferable. The C program segment based on this strat-

egy is as follows:

struct DFTM xheadDFTM; /* t}:le head of DFTM replica list */
struct Rslservice xheadRSIS; /* tl:e head of RSI service list x/

main(argc, argv) /* the main routine for an RSr server x/
int argc;
char xargv[] ;

{
fd_set fd_list; /*
struct timeval timeout;
struct DFTM *dp; /*
struct Rsfservice *rp; /*
int i, fdConn, fdl-isten, si
struct sockaddr_in isa;

file descriptor set */

DFTM replica */
RSI service */
: sizeof (isa) ;

/* socket address */

fdlisten : get_listen_socket O ; ¡* ge1" a TCP socket x/
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for (; ; ) { /* do forever x/
FD_zERo (&fd_list) ;

/* initialize the file descriptor set */
FD_SET (fdl-isten, &fd_list) ;

/x pending the TCP socket x/

f or (rp : headRSIS; rp !: NLILL; rp = rp->nextRSlS)
FD_SET (rp->pipe, &fd_list) ;

7r, pending the pipe of an RSI service *,/

for (dp : headDFTM; dp !: NULL; dp = dp->nextDFTM)
FD_SET (dp->socket, &fd_list) ;

7x pending the socket of a DFTIvI replica *7

timeout.tv_sec : Tineout; /* set timeout interval */
timeout. tv_usec : 0;

/* wait for messages come from one of the
Pending files */

if ( (i : select (MA)<FILEDES, &f d-list, 0, O,

&timeout) ) < 0)
Error-Handler ("se1ect") ; /x error handling x7

else if (i : 0) {
TineOut-HandleO; /* time out handling *¡
continue'

Ì

if (FD_ISSET(fdlisten, &fd_list)) { /* a message
from a DFTM replica */

,/* accept a connection on the socket x/
if ((fdConn : accept(fdlisten, -&isa, &si)) < 0)

Error-Handler("accept") ; /* error handling *7
,/x processing a connection request from a

DFTM rePlica */
process_DFTIVl_start (f dConn) ;

Ì

for (rp = headRSIS; I.p I = NULL; I.P = rp->nextRSlS)
if (FD_ISSET(rp->pipe, &fd_list) )

process_RSl_message (rp ) ;

/* process a message from an RSI service x/

for (dp : headDFTM; dp ¡: NULL; dp : dp->nextDFTM)
if (FD_ISSET(dp->socket, &fd_tist) )
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/* process a message from a
connected DFTM replica */

process_DFTM_message (dP) ;

Ì

An RSI service can also use a similar technique to communicate

with its RSI server and its DFTM replica.

3.7 Communication between RSI Services

and LSSs

As mentioned in the previous subsection, an RSI service is used to

execute a subtransaction for a DFTM on its associated LSS. The com-

munication by which input is delivered to the LSS, output is collected,

execution is monitored, the necessafy format transformations are per-

formed, falls within the responsibility of the RSI service. While com-

munication among DFTM replicas, RSI servers, and RSI services is

homogeneous, communication between RSI services and LSSs is

heterogeneous, in that it is necessarily very-LSS specific, requiring

detailed information about the workings of a particular LSS. This

specificity rests upon the fact that such communication proceeds only

through the standard interfaces provided by individual LSSs. For ex-

ample, some LSSs, such as Sybase and Ingres DBMS, provide both
query and programming interfaces, while others, such as the UNIX
shell, provide only a command interface. Using either a programming

interface or a query (command) interface has a different effect on the

implementation of the RSI service.

Most Unix software systems allow applications to specify their

sources of input data and command text and the destination of the

output. For example, University Ingres lets users specify a command

text and input data to be obtained from a text file, with the output to

be redirected to another file. An RSI service can thus activate an

execution of Ingres DBMS by combining the command text and input

data into a file of its choosing, redirecting it to Ingres DBMS, and

then redirecting the output to another frle. When the execution of
Ingres DBMS completes, all the output is in a file, available for
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dispatch as needed. This UNIX property allows RSI services to use

the query (or command) interface to an LSS. The C program routine

Rsr-rngres Exec provides an approach for such communication
between University Ingres DMBS and its associated RSI service:

#include <stdio. h>
#include <sys/file. h>
#include <sys/wait. h>

/* a routine of University Ingres RSI service */
RSI_Ingres Exec (outfile_des, cmdtext, input-data)
char *cmdtext, *input_data;
int outfile-des; /* output file descriptor x7

{
union wait status;
int i, cpid, ifd, ofd, efd;
char *i_path, *o_path, *e-path;
char xMakeTempO, *SetlngreslnputO ;

if ((cpid : fork0) -: 0) { /* child process */
e_path : MakeTemp ("ingres_e");
o_path : MakeTemp ("ingres-o");
i_path : Setlngreslnput (cmdtext, input-data) ;

/* set the input for ingres */

if ((ifd: open(i_path, O_RDONLY)) < 0)
Error_Handler ( "open't ) ;

dup2 (ifd, 0) ; /* redirect stdin x/

if ( (ofd : open(o_path, W_FLAGS, OUT_FILE-MODE) ) < 0)
Error_Handler ( "openrr) ;

dup2 (ofd, 1) ; /* redirect stdout x/

if ((efd: open(e_path, W_FLAGS, OUT_FILE_MODE)) < 0)
Error_Handler ( " open" ) ;

dup2 (efd, 2); ,/* redirect stderr x,/

for (i : 3; i < getdtablesizeo; *.li)
/* close ALL files from 3 */

close (i) ;
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execl (INGRES, rringresrr, INGRES-ARGS, INGRES-DB' 0) ;

/* DO rr */
Error_Handler ( "execl " ) ;

)

/* error happens during the execution of rngres */
if ((cpid : wait(&status)) : -1 I I status.w-status !: o)

return (process-ingres-error (e-path) ) ;

else
return (process-ingres-output (o-path, outfile-des) ) ;

Ì

However, although RSI services using query (or command) inter-
faces can be easily designed and implemented,'there are several draw-

backs. Because LSSs tend to output a combination of useful data and

auxiliary explanatory data, the output tends to be difficult to interpret.

Furthermore, error message arising from an error that occurs during

the execution of an LSS will also pose interpretation problems to the

RSI service. Finally, since different versions of an LSS may use differ-
ent output and error message formats, an approach must be found to

smooth this heterogeneity.
Unless the nature of the output and error message formats of an

LSS is of no concern, it is preferable, for the above reasons, to use

the programming interface of an LSS. Such an approach also permits

an RSI service to use application programming facilities to support

a larger number of applications. The C program routine

RSr-sybase Exec provides a method for instituting such cornmun-

ication between Sybase DMBS and its associated RSI service:

#include <stdio.h>
#include <sybfront. h>
#include <sybdb. h>
#include <syberror. h>

/* Forward decl-arations of
handler. */

int err_handler O ,

the error handler and message

msg_handler O ;

LOGINREC xlogin; /x The
DBPROCESS xdbproc; /* The
DBVARYCHAR obuf [BUFSIZEI;

login inf ornation. 'ß /
connection with the \*S.
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RSf_Sybase Exec (of_des, cmdtext, input_data) ,/* a routine
of a Sybase RSf service x/

char *cndtext, *input_data;
int of_des i / * output file deseriptor *7
{

char *i_cmd, SetSybaselnput O ;
int i, j, ncol, ret_code;

i_cnd : SetSybasefnput (cmdtext, input_data) ;

/* set the input for sybase */
dbcnd (dbproc, i_cmd);
dbsqlexec (dbproc) ; /* Send the cornmand. to Sybase

for execution. */

,/* Process the output */
white ( (ret-code : d.bresults (dbproc) ) != NO_MORE_RESLTLTS)

if (ret_code :: SUCCEED) {
ocol : dbnurncols (dbproc) ;

for (i : 1; j <= ncol; a¡j)
dbbind(dbproc, j, VARYCHARBfND, O, &obuf tj I ) ;

/* Binding columns */

while (dbnextrow(dbproc) t= NO_MORE_ROWS) {for (i = 1; i <: ncol; #li)
/* for each row of output */

process_sybase_output (obuf [i] . str, of des)
/* a column x/

process_sybase_output (il\n't, of_des) ;

/* end of a row *,/
)

)
else

process_sybase_error (ret_eode ) ;

Ì
Ì

Login (passwd)
/*login to the Sybase DBMS, must be called prior to

routine RSI_Sybase Exec*lchar xpasswd;
{

if (dbinito :: FAIL) /* Initialize DB-Library. t(/
return (ERROR);

234 J. Chen, O. Bukhres, and A. Elmagarmid



/x Install user-supplied error-handling and
message-handl ing routines.

x The code for these is ornitted from this example
for conciseness. * /

dberrhandle (err_handler) ;

dbrnsghandl e (ms g-handl er ) ;

login : dbloginO; /* Get a LOGINREC. */
DBSETLPWD (login, Passwd) ;

DBSETLAPP (IOgiN, SYBASEAPPCMD) ;

/x Get a DBPROCESS structure for communication
with SYbase */

if ((dbproc : dbopen(login, NULL)) == NULL)

return (ERROR);

return(OK);

3.8 System Component Crash Detection

The TCP communication protocol makes possible reliable communica-

tion channels among InterBase components, narrowing concerns re-
garding reliability within InterBase to the reliability of InterBase com-
ponents. Such InterBase components run on different computer

systems, and it is unavoidable that errors of various types may arise

during the execution of a global transaction. Some can be dealt with
readily; for example, software errors can be avoided by careful debug-

ging, while LSS error messages can be handled by carefully designed

RSIs. On the other hand, many unpredictable errors may arise from
the crash of some system component.

The many causes of a system component crash fall outside of this
paper, only the topic of crash detection will be addressed here. Upon
the detection of a crash, recovery may be undertaken through the ap-

propriate action. For example, the procedures discussed in Section 3.3

can be used to reactivate crashed RSI servers; other approaches have

been developed to recover InterBase from a crashed DFTM replica, a
crashed RSI service, or a crashed LSS, as presented in [7].
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While the timeout technique can provide a general indication re-
garding the crash of a system component, a combination of rsh and
ps commands can be used in the UNIX environment to detect the run-
ning status of a particular process on a remote machine. The param-
eter concerned with process status can be substituted by a global trans-
action G¡ and the relevant RSI servers in determining the relative
execution order of G¡. Therefore, if it is suspected that an InterBase
component carrying process number 24426 on machine
ector. cs. purdue. edu is down, a shell command can be issued

to that machine for execution:

/usr /ucb/ rsh -1 interbase ector. cs. purdue. edu /bin /ps 24426

If the execution of this shell command returns the process status

string which matches that earlier obtained, it can be concluded that
this process is alive; otherwise, it is down. This shell command can
be invoked within a C program routine using the C library routine
system with redirected stdout and stderr.

If this command is executed on the machine where the suspected

crashed process was run or is invoked using system call rexec, the
rsh command is not necessary, although other parameters must be ob-
tained to execute a rexec system call. For the previous example, the
shell command can be modified to:

/bin/ps 24426

Unfortunately, the shell command /bin/ps may have a different
synopsis on different UNIX platforms, appropriate minor changes may
be required when InterBase is ported from one platform to another.

In order to use the rsh facility, file . rhosts for user interbase
on all machines executing InterBase should have their rsh facility
enabled for user interbase on all such machines. For example, if the
InterBase system is installed on machines ector. cs. purdue. edu,
arthur. cs. purdue. edu, maggie. cs. purdue. edu,
lisa. cs. purdue. edu, . . . , the contents of file . rhosts for user
interbase on these machines should include the following statements:

ector. cs. purdue. edu interbase
arthur. cs. purdue. edu interbase
maggie. cs. purdue. edu interbase
lisa. cs. purdue. edu interbase
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Any InterBase component can use the above strategy to detect a
possibly crashed component and to take the appropriate action if that
component is crashed. These actions may include reactivating the
crashed component, or aborting itself, following the protocols de-
scribed in [7].

4. Implementing RS/s in Non-UNIX
Environments

At present, DFTM replicas are implemented only on UNIX platforms,
while RSIs are implemented on UNIX, IBM CMS, and MS-DOS plat-
forms. Because all RSIs follow the design principle illustrated in Sec-
tion 2, we discuss only those issues particular to the implementation of
RSIs on IBM CMS and MS-DOS platforms. These difficulties, which
are not present in the implementation of RSIs on a UNIX platform,
render the use of IBM CMS and MS-DOS platforms much more com-
plicated and less efficient and flexible.

. IBM CMS and MS-DOS platforms are both single process
environment; in that each user can run only one process at a
time. The division of an RSI into an RSI server and an RSI
service is therefore impossible on these platforms, and an RSI
must be executed as a single process. As a consequence, at any
given time, an RSI can either be involved in processing
incoming requests from DFTM replicas or in executing a
subtransaction, and subtransactions must thereby be executed
sequentially. The execution of lengthy subtransactions may
therefore cause incoming requests to be lost. It is preferable, as

illustrated in Section 2, to develop the RSI server on a UNIX
platform and the RSI service on a corresponding non-UNIX
platform. The RSI server processes incoming requests and
passes them in turn to the RSI service, which executes
subtransactions for the incoming requests on the corresponding
non-UNIX platform.

. As these two platforms do not allow one application program to
directly invoke another, an RSI service must be developed as

two separate application programs. The first one obtains an
incoming request from the RSI server on a remote UNIX site
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and prepares all the necessary parameters for the execution of
the associated LSS. The second one processes the output from
the execution of the LSS and sends the result to the associated
DFTM replica. A batch execution file must therefore be

deveþed for the execution of an RSI service. The following
provides the logical execution sequence of this file:

do forever
execute the first part of the RSI service that

1) make network connection to the
associated RSI server,

2) obtain an incoming request fron
the RSI server,

3) put comm. parameters to the appropriate
DFTM replica into file LSS.DFTM,

4) put transformed execution params fron
the inco¡ning request into f ile LSS. EI(EC;

execute the associated LSS using file LSS. EXEC as
the execution parameter and put the

output into the file LSS. OUT;

execute the second part of the RSI service that
1) use the files LSS.OUT and LSS.DFTM

as input parameters,
2) make network connection to the associated

DFTM replica,
3) process the output data in file LSS. OUT,
4) send the result to the associated DFTM

repl ica.
enddo

. IBM mainframes use EBCDIC character set, which is
incompatible with the ASCII character set used by UNIX
platforms. The characters in InterBase messages must be

transformed to the appropriate character format when they are

processed.
. These two platforms do not provide mechanisms similar to the

rexec and rsh facilities of the UNIX platform. It is therefore
impossible to remote-activate an RSI service and to
remote-detect the crash of an RSI service on either platform.
Although the timeout technique can provide an indication of the
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crash of an RSI service, only the human operator can reactivate
a crashed RSI service, greatly reducing flexibility.

. These two platforms provide no built-in TCP/IP protocol. A
TCP/IP simulator must therefore be used, and a communication
protocol compatible with UNIX file I/O operations based on the
TCP/IP simulator must be deveþed. For example, in the case

of an IBM mainframe, a TCP/IP simulator, knet, can be used as

the basis of a communication protocol compatible with UNIX
file I/O operations.

5. Conclusion and Future Work

UNIX network facilities provide the necessary foundation to construct
mechanisms for cooperative interactions among component database

systems and auxiliary system components in heterogeneous multidata-
base systems. Implementation details of such mechanisms have been
presented in this paper. Such cooperative interactions are much more
difficult to achieve in IBM-CMS and MS-DOS platforms. Although
better solutions may be developed using advanced UNIX facilities such

as RPC and MACH threads3, the method presented here does offer an

innovative, portable, and effective practical approach to the institution
of cooperative mechanisms among system components of heteroge-
neous multidatabase systems. The practicality of this solution has been
demonstrated through a trial implementation of InterBase in the Qual-
ity Control Department of Bell Northern Research, Inc. for more than
two years.

3. Inputs from several sockets can be handled simultaneously, permitting the most efficient
use of sockets. Their lowlevel implementation, however, makes the program difficult to
understand and to debug. Because the format of RPC calls resemble that of local proce-
dure calls, using RPC facility avoids the difficulties caused by sockets. Current version
of RPC is, however, restricted by the fact that each RPC call is blocked until a value is
returned. Although parallel execution of several RPC calls can be implemented using
UNIX processes, it is however time-consuming and requires unnecessary inter-process
communication. If MACH threads can be used instead of UNIX processes, these extra-
costs can be reduced to minimum. Moreover, using MACH threads has the advantage of
reducing the creation cost of RSI services and communication cost between an RSI server
and its associated RSI services. However, since several threads are allowed to share a
common memory, mutual exclusion among these threads must be addressed to avoid
mutual interferences. Furthermore, RPC and MACH threads may not be available to
some UNIX machines and there are incompatible versions of RPCs for various platforms.
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InterBase is currently based on a UNIX platform; porting InterBase

to other computer platforms will be the subject of future research. Ad-
ditional LSSs will be incorporated into InterBase, permitting the sup-

port of a larger number of applications and of a larger community of
users.

At present InterBase uses IPL, a low-level language, as its pro-
gramming interface. This will be extended in the future with an inter-
active user-friendly graphical interface, which will render the syntax of
individual local applications highly transparent to the user. An initial
version of this graphical interface has been demonstrated to a group of
industrial affiliates. An object-oriented user interface, also under de-

velopment, will provide an object-oriented SQL interface to InterBase.

A detailed performance evaluation of the InterBase System is also

planned as a part of our future investigations.
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