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ABSTRACT A multidatabase system (MDBS) is an in-
tegrated collection of local database systems (DBMSs)
that allows users to access and manipulate data dis-
tributed among the DBMSs. In this paper, we analyze
the performance of two concurrency control algorithms
that ensure global serializability. The first algorithm
imposes no restrictions on the structure of the concur-
rency control mechanisms used by local DBMSs, ex-
cept that transactions' execution order must coincide
with their serialization order. The second algorithm re-
quires each local DBMS to use the strict two phase
locking protocol. The performance results presented
here demonstrate that regardless of the algorithm, the
concurrent processing of global transactions always
outperforms the serial execution of these transactions.
The first algorithm may cause a significant number of
global transaction rollbacks, as compared to the second
algorithm. rüe show that for the second algorithm, the
number of global transaction rollbacks is quite small for
reasonable multiprogramming levels, and that the mul-
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tidatabase transaction management system performs al-
most as well as a distributed homogeneous database
system.T

1. Introduction

A Multídatabase System (MDBS) is a software system that allows
transactions to access and manþlate data located in a number of au-
tonomous local databases distributed among nodes of a computer net-
work. Each local database is controlled by a local database manage-
ment system (DBMS).

An MDBS creates the illusion of a single database system and pro-
vides a uniform access to preexisting local databases without requiring
users to know either the location or the characteristics of different
databases and their corresponding DBMSs.

An MDBS is built on top of local DBMSs that manage local data
sources. Each local DBMS operates autonomously. The desire to pre-
serve the autonomy of local DBMSs is a major characteristic of a mul-
tidatabase system that separates it from conventional distributed data-
base systems. Another important distinction between a multidatabase
system and a conventional distributed database system is that in the
multidatabase system there are two types of transactions: local and
global. The local transactions are executed by a local DBMS outside of
the MDBS system control, while the global transactions are executed
under the MDBS system control.

These two characteristics cause significant difficulties in designing
concurrency control schemes that ensure global serializability. Multi-
database concurrency control algorithms fall into two basic categories:

tThis material is based in part upon work sponsored by the Center for Manufacturing and

Robotics of the University of Kentucky, the National Science Foundation under grants

No. IRI-8904932 and No. RRI-8610671, and a grant from Hewlett-Packard Corporation;
and upon work supported by the Texas Advanced Technology Proggm under Granl No.

ATP-024, the Natiónal Science Foundation under Grant IRI-9106450' and grants from
the IBM and Hewlett-Packard corporations.
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1. Algorithms that require the multidatabase system to obtain some

local DBMS control information (such as a wait-for-graph, a

local schedule, a DBMS log, etc.) ([Pu87], ISKS9ll).
2. Algorithms that do not require any local DBMS control

information ([AGM87], [8588], [BLS91], [UI89],
tMRBKSe2l).

Algorithms of the first type infringe on the local autonomy of a
DBMS, and, thus, are not applicable to the MDBS model we are con-
sidering here.

The performance characteristics of centralized DBMS concurrency
control mechanisms have been studied extensively ([4D83], [Car83],
[GST83], tTS84l). Most of these studies concentrate on the perfor-
mance of either a specific concurrency control algorithm, such as lock-
ing (e.g., [RS77], [Lin82]), or a comparison of different concurrency
control algorithms in a centralized DBMS (e.g., [4D83], [ACL85]).
Performance characteristics of distributed concurrency control al-
gorithms have been studied also ([GM79], [KJ85], [Li87], tCL86l).
However, the performance characteristics of a multidatabase environ-
ment have not as yet been sufficiently studied. In [BKST84] we re-
ported the results of our performance evaluation of a retrieval-only
multidatabase system. We are not aware of any performance studies

conducted in a multidatabase environment where updates are also

permitted.
One of the difficulties in conducting performance evaluation in a

multidatabase environment is designing a simulation model that is ca-
pable of simulating interactions between the MDBS and local systems

that, in general, can use any type of concurrency control mechanism.
To overcome this difficulty, we restrict our attention to the case where

all local DBMSs use a locking mechanism to handle the concurrent ex-

ecution of local transactions. Following the performance study results
provided in [ACL85] and [CS84], we claim that such a restriction
should not affect significantly our performance evaluation results, since

in [ACL85] and [CS84] it was shown that as far as transaction
throughput is concerned, basic concurrency control algorithms behave

quite similarly.
In this paper we analyze the performance of two multidatabase

concurrency control algorithms. The first algorithm [8588] does not
impose any restrictions on concurrency control mechanisms of local
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DBMSs or the types of multidatabase transactions that can be used, ex-

cept that global transactions execution order coincides with their serial-

ization order at local sites. The second algorithm [BLS91] assumes

that each local DBMS uses the strict twophase locking protocol

tEGLT76l. In the performance study we present here, we address the

following question:

How does the multidatabase multiprogramming level (the number of
concurrently executed global transactions) and the number of database
bcal sites effect global tansaction throughput, the number of global
transactions rollbacks, resource utilization, and average response time?

The performance of these two algorithms is compared using exten-

sive simulation studies. Our results demonstrate that regardless of the

algorithm, the concurrent processing of global transactions always out-

performs the serial execution of these transactions, except in the fully
replicated multidatabase case where the first algorithm is used. The

first algorithm may cause a significant number of global transaction

rollbacks, which makes it a less desirable concurrency control scheme

for multidatabases. In the case of the second algorithm, we show that
the number of global transaction rollbacks is relatively small for rea-

sonable multiprogramming levels, and that the multidatabase transac-

tion management system performs almost as well as a distributed ho-

mogeneous database system.

The remainder of the paper is organized as follows. Section 2 de-

scribes the multidatabase model used in this study. Section 3 outlines

the two concurrency control algorithms whose performance is studied

here. In Section 4 we describe our simulation model and simulation
parameters. The simulation results are presented in Section 5. Section

6 concludes the paper.

2. The MDBS Model

A global database is a collection of local databases distributed among

different local sites sl , s2, . . . , sÈ interconnected by a communication

network. Transactions considered in our model consist of operations

read (denoted by r), write (denoted by w), commit (denoted by c),
and abort (denoted by a).4 transaction results from the execution of a
user program written in a high level programming language (e.g., C
or PASCAL).
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A commít operation is used to install permanently in the local data-
bases the results of a global transaction . An abort operation, on the
other hand, removes all the changes that were caused as a result of the
execution of the transaction issuing the abort. A read copies a data
item into the user address space and a write causes a new value of the
data item to be written into one or more local databases. We assume

that each data item can be read only once by the transaction and if a
data item is read and written by the transaction, then a read occurs
before a write. We define the notion of serializable global (local)
schedule in the usual manner [BHG87], and use serializability as a
correctness criterion for the MDBS and local DBMS concurrency con-
trol mechanisms.

We assume that the MDBS software is centrally located. It pro-
vides access to different DBMSs that are distributed among various lo-
cal sites interconnected by a network. The model discussed in this pa-
per is based on the following assumptions:

(1) No changes can be made to the local DBMS software. This
means that local DBMSs cannot be modif,ed in a manner that
will provide the MDBS with local control information.
Consequently, while the MDBS is aware of the fact that local
transactions may run at local sites, it is not aware of any
specifics of the transactions and what data items they may
access. In addition, a local DBMS is not able to distinguish
between local and global transactions which are executing at the
local site. This assumption ensures local user autonomy. Local
and global transactions receive the same treatment at local sites.

Therefore, global users cannot claim any advantage over local
users.

(2) A local DBMS at one site does not communicate directly with
local DBMSs at other sites to synchronize the execution of a
global transaction at several sites.

(3) A local DBMS may abort any transaction at any time. The
decision to abort a transaction is made based entirely on local
control information, without taking into account whether a
transaction is local or global. For example, if a local DBMS is in
a local deadlock, it selects a victim to abort based on the local
DBMS strategy of victim selection.
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(4) Each local DBMS ensures local serializabllity and freedorn from
local deadlocks.

Thus, only the MDBS is capable of coordinating global transaction ex-

ecution at different local sites. However, such coordination must be

conducted in the absence of any local DBMS control information-

Hence, the global transaction manager must make the most pessimistic

assumptions about the behavior of the local DBMSs in order to ensure

global database consistency and freedom from global deadlocks.

The MDBS system consists of the following three major compo-

nents:

1. Global Transaction Manager. The global transaction manager

(GTM) is responsible for users' interactions with the MDBS

system. For each operation of a user's transaction, the GTM,
using the MDBS directory, prepares all information required to

access the data item to which the operation refers. The GTM
controls the execution of global transactions. For each global

operation to be executed, the GTM selects a local site (or a set

of sites) where the operation should be executed. At each such

site, the GTM allocates a server, (one per transaction per site)

and the operation is sent to the scheduler for scheduling and

further execution at the selected site. Once the GTM allocates a

Server to the transaction, it is not released until the transaction

either aborts or commits. A server allocated to a transaction at

a local site acts as a global transaction agent at that site. All
transaction operations that are to be executed at the site are

eventually sent to the server. The next operation of the

transaction is submitted for scheduling and execution only after

the GTM receives a response that the previous operation of the

same transaction has comPleted.

2. Scheduler. The scheduler manages the order of execution of the

various read, write, cornmit, and abort operations of different

global transactions. The scheduler receives the next entry from

the GTM and then determines whether the operation should be

executed, whether the transaction issuing the operation should

be aborted, or whether the transaction issuing the operation

should wait until it can be executed.
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3. Servers. A server is a process generated by the transaction
manager to act as an agent for the global transaction at the local
site. Each server is responsible for translating global operations
into the appropriate query language operations of the local
DBMS, and submitting these operations for execution to the
local DBMS. Each time a global transaction operation is

scheduled and is submitted for execution, it is eventually
received by the server. Results of the operation execution by
a local DBMS are reported to the GTM.

The general structure of the system is depicted in Figure 1.

Each global transaction is submitted from a single central site,
where the MDBS system software is located. For each local site at

which a global transaction manipulates the local data, the GTM gener-
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Figure 1: General Structure of the MDBS system
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ates a subtransaction that is run by the server allocated to the transac-

tion at the local site. Similar processing of distributed transactions in

a homogeneous distributed environment is considered in System R*

tlinS4l and Distributed Ingres [Sto79].

3. Scheduler Algorithms

In this section we present a brief description of the two concurrency

control algorithms whose performance characteristics are the subject of

this paper.

3 .1 . The Transaction-Graph Algorithm

The algorithm is described in [BS88]. No assumptions are made con-

cerning the nature of local DBMSs' concurrency control algorithms,

except that it is required that if two global transactions are executed

serially, then their execution order coincides with their serializable or-

der at each local site where they execute together. The algorithm uses

a transaction graph that is defined as follows.
A transaction graph TG : (V, E) is an undirected bipartite graph

whose set of vertices V consists of a set of global transactions (called

transaction vertices) that are being processed by the MDBS, and a set

of local sites (called síte vertices). Edges in E may connect only trans-

action vertices with site vertices. An edge (4, Sr¡ is in E if and only

if the transaction 4.has a Server at site ,S; and has executed at least one

operation at the site.
The algorithm employs the transaction graph to ensure global data-

base consistency. The algorithm works as follows. For each readlwrite

operation submitted to the scheduler, the scheduler attempts to find

local site(s) to execute the operation such that the addition to the trans-

action graph of new edges that connect the transaction with these local

sites does not create a cycle in the graph. If such site selection is not

possible, then the transaction is aborted. The aborted transaction is

restarted at some later time. Otherwise, the appropriate edges are

inserted into the transaction graph and the transaction operation is

scheduled for execution at the site(s).

In the selection of sites to execute a read operation, the algorithm

always selects a site where the transaction has already accessed some
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data item. If there are several such sites, the algorithm selects any site

where the transaction has executed at least one write operation, if such

site exists. If no such site exists, then the algorithm selects any site

from the set of sites where the transaction has already executed at least

one of its operations.
If a transaction has completed its operations at each local site, the

transaction node along with all incidental edges are removed from the

transaction graph, provided that there is no path between the transac-

tion and any other transaction that is not yet completed its operation at

at least one local site.
In [8588] we proved that the above algorithm ensures global seri-

alizability for any set of local and global transactions. This algorithm
is nonblocking, since no transaction is waiting at the scheduler level.
Therefore, no global deadlock may occur. However, local deadlocks

are possible. As a result of a local deadlock, a global transaction can

get aborted. Consequently, the scheduler aborts the transaction at all
other local sites where the transaction is or was executing and removes

the transaction along with all incidental edges from the transaction
graph.

3.2 Two-Phase Locking Algoríthm

The algorithm is described in [BLS91]. The algorithm assumes that
each local DBMS uses the strict two-phase locking protocol [BHG87],
and ensures freedom from local deadlocks. The scheduler in such an

environment submits all global transaction operations (except commit)
as they arrive. The commir operation for transaction 7i is scheduled

only after each local DBMS has completed an execution of 4 at its
site. In [BLS91] we observed that such execution guarantees global

serializability. Unfortunately, global deadlocks may occur. The

algorithm assures freedom from global deadlocks by using a special

data structure (called potential conflict graph) along with a timeout
mechanism. In order to describe the algorithm, let us first introduce
the notions of active and waiting transactions and potential conflict
graph.

A transaction T¡ is active at site Sj if it has a server at S; and the

s€rver is either performing the operation of 7i at the site, or has com-
pleted the current operation of ?,r and is ready to receive the next oper-

ation of transaction 7,1. A transaction that is not active at site S; is said
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to be waiting at site $, provided that it has a server at the site, and
at least one operation of the transaction was submitted to the site. A
transaction that is either active or waiting at a local site is said to be
executing at the site.

A potential conflict graph (PCG) is a directed graph with a set of
vertices V consisting of all global transactions executing in the system,
and a set of edges E such that edge T, + 4 is in E if and only if there
is a site at which T¡ is waiting and T¡ is active.

The algorithm works as follows. For each readlwrite operation
submitted to the GTM, the GTM requests local locks to execute the
operation. If locks are granted, the operation is submitted to local sites
for the execution and the transaction status at these sites is active.
Otherwise, the transaction status at these sites is waiting. The GTM
allows the transaction to wait for a local lock until timeout occurs. If
during that time the lock is still not obtained, the GTM checks for a

cycle in the potential conflict graph.If the graph contains a cycle, the
transaction is aborted and restarted at some later time. Otherwise, the
transaction continues to wait until the next timeoul occurs.

We proved in [BLS91] that if a global deadlock exists, then there
is a loop in the potential conflict graph. However, not every loop in
the potential conflict graph implies a deadlock. Since the local DBMSs
do not report to the MDBS the transactions waiting queues, it is possi-
ble that the global transaction manager aborts the transaction, assum-
ing that the deadlock occurred, where, in fact, no deadlock exists.
Such situations are unavoidable in a multidatabase environment where
local autonomy must be preserved. For this reason, we coupled the po-
tential conflict graph with a timeout technique that, in some cases, al-
lows us to minimize the number of false deadlocks in the system.

4. Global Simulation Model

The simulation model for studying the performance of multidatabase
concurrency control algorithms consists of a single global component
and a set of local components. A global component consists of a model
of a global database, a set of randomly generated global transactions
that are executed under the control of the MDBS system, and a model
of the global scheduler. Each local component consists of a model of
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a local database, a local DBMS, and a set of randomly generated local

transactions that are submitted to the local DBMS outside of the

MDBS control.
Local components communicate with the global component via

messages. A local DBMS places information about a transaction

operation execution on a response queue that is available to the MDBS

system. The MDBS submits an operation for execution by placing one

or more messages on a message queue that is available to any local

DBMS.. In our implementation we used the same data structure to

simulate both a response and a message queue (shown in Fig. 2 as

response queue).

LOCALEITÉ}

Figure 2: Global Tiansaction Simulation Diagram
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4.1. Global Database

A global database is modeled by a collection of global data items uni-
formly distributed among local sites. Each global data item could be
thought of as a relation, possibly replicated among different local sites,
managed by different DBMSs. Figure 3 summarizes global database
input simulation parameters that include the number of global data
items, the number of different local sites, the number of replicated
data items, and the number of data items in each local database. We
define the replication level of a global database as a percentage of
replicated data items. To simulate different replication levels we used
two parameters-upper and lower bounds on the number of local
sites at which a data item can be located. Replicated data items in the
model were uniformly distributed among local sites. The size of the
global database has a direct effect on performance results. In the per-
formance study we evaluated multidatabases of different sizes with
different levels of replication. Results reported here, however, are re-

ITEMCNT a number of global data items. We used ITEMCNT : 1000
to simulate a medium size global database

SITECNT a number of local sites. We conducted experiments for 10,
20, and 30 sites multidatabase

ITEMREP a number of replicated data items; for fully replicated
multidatabases this parameter is equal to ITEMCNT and
for non replicated multidatabases it is equal to 0

MAXSITE a maximum number of local sites at which each data item
can be replicated MAXSITE : 1, for non-replicated
multidaJabases; MAXSITE : SITECNT, for fully
replicated multidatabases

MINSITE minimum number of local sites at which each data item
can be replicated MINSITE : 1, for non-replicated
multidatabases; MINSITE : SITECNT, for fully replicated
multidatabases

LDBSIZEI a number of data items at the site S¡

Each local database consists of two parts: nonreplicated and
replicated data items.

Figure 3: Global Database Input Simulation parameters
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stricted to a nonreplicated multidatabase with 1,000 data items that

reflects a medium-size multidatabase.

4.2 Global Component Workload Parameters

The performance of any multidatabase concurrency control qystem de-

pends essentially on both the workload of the global component of the

model, and the workload of each local component. In this subsection

we describe the global component workload parameters that

significantly effect MDBS performance.
A fixed set of global transactions generated at the start of the simu-

lation process were circulating continuously through the simulation

model as shown in Figure 2. The set consists of 400 different transac-

tions. The size of the set ensures that during the simulation process

each transaction circulated through the simulation process approxi-

mately 8 to 9 times. The model assumes that the system is never idle

and that as soon as a global transaction is completed, another transac-

tion is always available and waiting to start processing.

We assume that any global transaction in the model cannot write a
data item unless it reads it first. We also assume that each global trans-

action accesses no more than 5Vo of the global database, and on the

average each global transaction accesses 3Vo <f the global database.

Each transaction in the system writes no more than half of the read

items. Thus, each global transaction in the system contains no more

than 7 operations with no more than two writes among them.

The performance of a set of global transactions depends on essen-

tially the number of global transaction restarts caused by:

. the global concurrency control algorithm

. the average number of transaction operations per each

transaction
. the replication level among global data items
. the maximum number of global transactions that are allowed to

be executed concurrently at the global level along with the

maximum number of transactions to be executed concurrently at

each local site.

The final number may be different at each local site. However, to sim-
plify our model we assume that each local DBMS executes the same

number of transactions concurrently at its site.
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Figure 4 summarizes the basic global transaction parameters. They
include the r¡raximum number of global transactions that can be con-
currently processed by the system (multiprogramming level of the sys-
tem), the CPU and I/O times spent by the concurrency control al-
gorithm of the MDBS system per each transaction operation, a restart
delay-the minimal time that a global transaction should wait after the

GMAXACT multiprogramming level. We conducted experiments for
GMAXACT : 1, 10, 15,25, 50,75 and 100 for the
transaction graph algorithm and for GMAXACT :
5, 10,25, 50,75 for the 2-PL algorithm. This parameter
determines a number of active global transactions that are
executed by the MDBS system.

CPUCC CPU time spent by the concurrency control algorithm per
data item. CPUCC : .007

rcCC I/O time spent by the concurrency control algorithm per
data item. IOCC : .015

GRESTRT restart delay. We assumed that the rolled back transaction
cannot be restarted for at least 120 simulations units,

MAXGR maximum number of reads in each global transaction

MAXGW maximum number of writes in each global transaction

MINGR minimum number of reads in each global transaction

MINGW minimum number of writes in each global transaction

GIOM I/O time to prepare a message from MDBS to a local site.
GIOM: .035

GCPUM CPU time to prepare a message from MDBS to a local site.
GCPUM: .015

GCOMTM time to send a message from MDBS to a local site.
GCOMTM: .7

GMDM number of messages per a data item to'be sent from MDBS
to a local site. GMDM : 2

OPDELAY delay required by a transaction to process data received
from a local site before submitting the next read/write
request from the same transaction.

Figure 4: Global Component Workload Input Simulation Parameters
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rollback before it can be restarted by the system, and the upper and
lower bounds on a number of global read and write operations for each
global transaction in the system.

After the execution of each read/write operation of a global trans-
action by the local DBMSs, the MDBS may need some time to per-
form additional operations on the data obtained (for example, these
operations may include a join of data from two relations, in the case

that the local DBMS has no capacity to perform a join). In addition,
the transaction needs some time to process the obtained information
before the next operation of the same transaction is submitted to the
MDBS. We lump all these times into a parameter OPDELAY (opera-

tional delay), i.e., the time that a global transaction should wait before
submitting the next read/write operation after the previous operation
has been completed. We performed experiments with different values
of OPDELAÍ to understand its impact on a number of global transac-
tion restarts and on global transaction throughput. We found, however,
that OPDELAY does not significantly affect either of these data. Thus,
we report the result OPDELAY : 0.

Each readlwrite and abortlcommir request that is issued by a global
transaction is translated into one or more messages that are sent to lo-
cal sites as determined by the MDBS. Thus, global transaction
parameters also include required I/O, CPU, communication times to
send a data message from MDBS to a local site, and the number of
messages required per one data item in case of readlwrite operations.
Since abortlcommit messages are relatively short, we assumed that
only one message per site for an abort operation and one message per
site for each stage of the commit operation was required.

Initial values for these parameters were selected to approximate a
realistic computing environment. The restart delay value was chosen in
a way that ensures the completion of at least one of the executing
transactions in the model. In this case, we can reduce a number of
transactions rollbacks, since the completion of a transaction in the sys-

tem creates new conditions for the restarted transaction that may elim-
inate the conditions that caused it to abort the f,rst time.

4.3 . Local Component Workload Parameters

In a multidatabase environment, the response time of a global transac-
tion depends significantly on the amount of local processing. A local
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DBMS processes transactions of two types: local transactions generated
by local users outside of the MDBS system control, and global transac-
tions whose operations are sent by the MDBS for execution to the local
site. Each local simulation model may, a priori, have its own local
simulation parameters. To simplify the multidatabase simulation
model, we assume that input simulation parameters at each site are in-
dependent of a local site.

We assume that at each local site there is a constant ratio of local
and global transactions. We simulate local transactions at local sites by
generating a system of local transactions and circulating them through
the local site simulation model. The number of generated local transac-
tions can be changed dynamically during the simulation to maintain a
constant ratio of local and global transactions. It is reasonable to as-

sume that in the multidatabase environment most transactions at a lo-
cal site are local and few are submitted by the MDBS system.

Our local simulation model is closely related to the model de-
scribed by [ACL85]. Figure 5 shows the local workload input simula-
tion parameters that include a local multiprogramming level, upper and
lower bounds for a number of local readlwrite operations, time delay
before a local transaction restarts after it has been rolled back, and lo-
cal CPU and I/O times to perform one transaction operation.

Generally, a local DBMS does not know whether a transaction is
either local or has been submitted by the MDBS. The result of a global
transaction is communicated by the server to the MDBS system. Thus,
local component workload parameters should include the I/O, CPU,
and communication times to send data messages from a local system to
the MDBS, as well as the number of required messages per one data
item in case of readlwrite operations.

When a local'or global subtransaction enters the ready queue at

site s¡, the entrance time is recorded as the start time of the transac-
tion processing. After the transaction successfully completes at the
site, transaction completion time is also recorded. The performance of
multidatabase schedulers was studied using a global transaction simu-
lation process shown in Figure 2. Initially, a fixed set of global trans-
actions is generated, and placed on a READY queue- A subset of
GMAXACT transactions is placed on the ACTIVE queue. The number
of transactions concurrently executed in the system is limited. A
transaction is considered to be executing in the system if it is either
receiving or waiting for service at a local site. Thus, an executing
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MAXACT maximum number of active transactions at a local site
(local multiprogramming level). In our experiments we

assumed that MAXACT : 15 at all local sites.

MAXLR maximum number of reads in a local transaction at a local
site. In our experiments we assumed that MAXLR : 5.

Global subtransactions may have more than MAXLR read
operations.

MAXLW maximum number of writes in a local transaction at a local
site. In our experiments we assumed that MAXLW : 2.

Global subtransactions may have more than MAXLW read
operations.

MINLR minimum number of reads in a local transaction at a local
site. In our experiments we assumed that MINLR = 2.

Global subtransactions may have less than MINLR rcad
operations.

MINLW minimum number of writes in a local transaction at a local
site. In our experiments we assumed that MINLW : I.
Global subtransactions may have less than MINLW read
operations.

Lrc local I/O time to perform one transaction operation at a

local site, LIO : .0I5

LCPU local CPU time to perform one transaction operation.
LCPU : .007

LRESTRT restart delay at the site, LRESTRT : 30 simulation units.

LIOM local system I/O time to prepare a message from a local site

to the MDBS. LIOM : .035

LCPUM local system CPU time to prepare a message from a local
site to the MDBS. LCPUM = .015

LCOMTM time to send a message from a local site to the MDBS.
LCOMTM: ,I

LMDM number of messages per a data item to be sent from a

local system to the MDBS. LMDM : 2.

LOPDELAY a delay required to process a local data item by a local
transaction before the next transaction operation is

submitted.

Figure 5: Local Workload Input Simulation Parameters
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global transaction in the model is either on the ACTIVE or the local
BLOCKED queue (see Fig. 6). At any time during the simulation, the
system maintains GMAXACT concurrently executing global transac-
tions in the system.

The first transaction on the ACTIVE queue makes its request to the
MDBS. The transaction operation is analyzed by the GTM to deter-
mine the local sites that the information should be either sent to or re-
quested from. Following this, the transaction operation is submitted to
the scheduler.

If the transaction operation is scheduled, the transaction proceeds
consecutively to the llo, cPU, and c)MMUNICATI)N queues to per-
form I/O, CPU, and communication operations, respectively, to pre-
pare and send messages to local sites where the transaction operation
should be executed.

sending messages to a local site is simulated either by updating the
global subtransaction that is already on the ACTIVE queue of the local
model with a new operation that needs to be executed, or by placing a
global subtransaction at the local site on the READy queue of the local
model, if the transaction has no operations yet executed at the local
site. The local simulation model (depicted in Figure 6) is used to con-
duct a local system simulation (local transaction processing is described
in the next subsection). The transaction then is placed on ih" À^E'-

SPO.NSE queue (see Figure 2) to wait for the response from the local
site that should execute the transaction operation. A response received
from a local site is either a requested data item (in case of the read
operation) or a conûrmation that the requested operation has completed
or failed. If a response is received before the transaction timed out and
it is either a set of data or a confirmation that the write operation has
successfully completed, the transaction is placed back on the ACTIVE
queue and it is ready to place its next operation request. If a response
is a confirmation of a comrnit completion, the transaction is placed on
the back of the READY queue as if it were a new transaction that has
arrived for execution.

An abort completion is more complex. There are two types of an
abort operation: an abort as a part of the transaction generated by the
user, and an abort generated by the system due to some system condi-
tio-ns, such as, global or local deadlock. The first type of abort is con-
sidered a normal user operation. After the abort is executed, the trans-
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action is placed at the back of the READY queue (considered to be a
new transaction without any connection whatsoever to the aborted
transaction). The second type of abort is considered as a transaction
failure; the transaction is placed at the back of the RESTIART queue. If
the MDBS decides to abort the transaction, then the abort operation is

included as a part of the transaction, and the transaction is put at the
front of the ACTIVE queue. The transaction will be actually aborted in
the next simulation unit as a result of the abort openation.

If a global deadlock is declared, then the scheduler selects the
transaction to be aborted in order to break a deadlock. The aborted

transaction is placed at the back of the RESTARI queue, and it can be

restarted after GRESZRZ restart delay by placing the transaction at the

front of the ACTIVE queue. After the transaction successfully com-
pletes all its readlwrite requests, the scheduler sends the commit oper-

ation to all sites at which the transaction has performed at least one

operation. Upon transaction completion (that is, after the transaction
commits or aborts), the systern inspects first the RESTART queue and

then the READY queue to select a transaction to place on the back of
the ACTIVE queue.

In the simulation process, the global transaction response time is

one of the parameters of interest. This time consists of the global CPU

and I/O times spent by the transaction for all its global data items, the
maximum of local response times, and, finally, the overhead of possi-

ble restarts or other delays caused by conflicts discovered either at the
global or local level. During the simulation, each global transaction
will accumulate the time spent for data item processing (I/O, CPU,
and communication) and the time spent at local sites. If transaction
processing should be stopped and a transaction should be backed out,
the cumulative CPU and I/O time required to perform a back out at

each site is recorded and the transaction is put on the restart queue.

4.4. Local Tiansaction Processing Model

Our local transaction processing model is a slightly extended version of
the model proposed by Ries and Stonebraker [RS77], and extended by
Agrawal tACL85l. For the purposes of our simulation, we assume

that each local site uses the strict two-phase locking (2PL) protocol,
specifically, the blocking algorithm described in [Gra79], to simulate
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local concurrency control in a multidatabase environment. The trans-
action-graph algorithm, however, does not take this fact into consider-
ation, although the2PL algorithm does. The global transactions that
are to be executed at a local site, along with generated local transac-
tions, are placed on the local READY queue at the start of the simula-
tion. During the simulation, there is a limit MAXACT on the number
of local and global transactions that can be active at the local site. A
transaction at the local site is active if it is on the local ACTIVE, IlO,
COMMUNICATION, or BLOCKED queues.

At any time during the local simulation, a global transaction may
send an operation to be executed at the local site. If the global sub-
transaction is already active at this site, then a requested operation is
added to the subtransaction. otherwise a global subtransaction is cre-
ated at the local site and it is placed on the local READI queue.

The simulation process starts with the first transaction at the local
ACTM queue submitting a request to the concurrency control mecha-
nism of the local DBMS. Each readlwrite operution of a transaction re-
quires a lock on a local data item. If the concurrency control module
can grant the lock, then the transaction operation is executed. If, how-
ever, the lock cannot be granted, and the local deadlock detection
algorithm has determined that no local deadlock can occur from the
transaction wait for the lock, then the transaction is placed on the
BLOCKED queue. If the transaction's wait for the lock causes a dead-
lock, then the transaction is aborted at the local site and is placed on
the local RESTART queue. Thansactions from the local RESTART queue
can be restarted only after LRESTRT delay.

If the transaction has received a lock to execute the operation, it
proceeds consecutively through local IIO and CPU queues to perform
the I/O and CPU operations required to access the local data item. The
results of the operation, in the form of messages, are placed on the
local COMMMUNICATION queue to be sent to the global component
site.

The global and local components exchange information about a
global transaction execution through a common area known as the
global RESPONSE queue (shown in Fig. 2). Messages prepared by the
local concurrency control mechanism are placed on the global RE-
SPONSE queue to simulate message sending from the local site to the
MDBS site.
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If a transaction request at a local site was either a commit ot an

abort operation, and it was successfully executed, then the transaction
is purged from the system and a new transaction is generated and

placed at the back of the local READY queue. For the purposes of this
study, we simplified this process by distinguishing between local and

global transactions. Global transactions were purged from the local
system, while local transactions were placed at the back of the local
READY queue. In either case, after a transaction has completed, the
local system checks first the local RES?}4-RZ queue and then the
READf queue to determine whether a new transaction can become

active. In addition, the BLOCKED queue is checked to determine
whether any transaction from the queue can be unblocked by granting
locks to a transaction that was released by the committed or aborted
transaction.

Figure 6: Local Transaction Simulation Díagram
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4.5. Physical Queuing Model

Associated with each transaction operation is a set of messages to be

prepared and sent from/to the MDBS to/from a local site. Preparing

the messages requires physical resources at both the MDBS site and

each local site. Both logical models are characteized by three physical

resources: CPU, I/O, and communication.
Whenever a global or a local transaction requests some services de-

scribed by their logical models, it will use one of these resources. The

amounts of I/O, CPU, and communication used by each transaction

operation are specified as input simulation parametels (global or local).

The physical queuing model is depicted in Figure 7. The physical

model is a collection of global and local I/O devices, CPU devices and

communication devices.

Figure 7: Physical Queuing Model
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In this study, we assume that a global, and each local, component
contains a single CPU, a single I/O disk and a single communication
port. The first two resources are used to prepare messages that are ex-

changed between global and local sites; the last resource is used to
simulate message sending through a network of global and local sites.

Each request submitted to the system is entered first on an I/O
queue of the global model, and after being served, is entered at the
end of the CPU queue. If any messages have been created, they were
placed on the bottom of the communication queue. For readlcommitl
abort operations, the MDBS creates a single message to be sent to a
local site. For a write operation, the MDBS creates GMDM messages

to send to a local site, new values of a data item that is to be updated.

For writelcommitlaborr operations a local site creates a single message

to be passed to the MDBS. For a read operation, a local site creates

LMDM messages containing the data requested by the MDBS.
Physical resource requests queues generally will be served on a

firstcome-first-serve basis. IVe do not exclude, howevero that a local
resource queue will assign higher or lower priority to global subtrans-

actions in experiments to clarify the impact of global subtransactions

on local transaction processing.

5. Perþrmance Results

In this section we describe the results of our performance simulation
experiments. The results presented here assume a nonreplicated multi-
database, although our complete results include data pertaining to mul-
tidatabases with different replication levels.

In our experiments, we measured global transaction throughput;
CPU, I/O, and communication times, the average global transaction
response time, the restart ratio; and the average number of global
restarts per a restarted transaction as a function of a global multipro-
gramming level and a number of local sites. The margin of error in our
experiments is within 157o.

To measure global transaction throughput, the parameter
TOTSUB 

-the 
total number of submitted transactions-was kept by

the system. The parameter TOTCOMP-the total number of com-
pleted transactions-was also kept in the system. Each time a trans-
action moved from the READY to the ACTIVE queue, TOTSUB was
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increased. Each time a transaction committed and was placed at the
back of the READY queue as a completely new transaction, TOTCOMP

was increased. We also measured the percentage of completed trans-

actions out of transactions that were submitted for execution during the

simulation process.

For each completed global transaction, we measured the transac-
tion response time. This time consists of the global CPU, I/O and

communication times spent for all global data items, the maximum lo-
cal response time for each local site where the transaction was active,
and the overhead caused by all transaction restarts due to a global

deadlock. During the simulation, each global transaction accumulated

times spent at local sites and times that a transactions waited on any of
the global model queues. If a transaction was aborted and restarted,

cumulative CPU, VO and communication times that the transaction

spent before the abort were retained and further updated after the
transaction were restarted.

The results of our tests indicate that the number of completed
transactions during the simulati'on period is much larger for a concur-
rent transaction execution than for serial execution for both algorithms
that were simulated.

For completed global transactions, we also measured the percent-

age of global transactions that were completed and restarted at least

once along with the average number of restarts per a completed global

transaction that was restarted at least once. A global transaction is

restarted for only one reason: The GTM aborts the transaction due to

the global scheduler algorithm requirements (for example, a loop in
the transaction graph is discovered). If a global transaction is aborted
at a local site (by a local concurrency control mechanism) then it is
placed on a local restart queue. After local restart delay, the transac-

tion is restarted invisible to the global scheduler. Such an assumption
is valid in our model, since we did not consider the case of failure dur-
ing transaction processing.

Finally, we measured I/O, CPU and network communication uti-
lization. These values were computed as a ratio of I/O, CPU, and net-

work communication times used by completed transactions to total
available I/O, CPU, and network communication time, respectively.

Experiments were conducted for multiprogramming levels with 10,

?-0, and 30 sites and multidatabases for 3000 simulation units. The
total number of transactions that completed during the simulation pro-
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cess as well as a percentage of completed transactions for the transac-

tion-graph and 2PL algorithms are shown in Figures 8 and 9, and 8A
and 94, respectively. In both cases, the number of completed transac-
tions increases with the increase of the multþogramming level. In the
case of the transaction-graph algorithm, the maximum is reached at

multiprogramming levels equal to 25 or 50 (depending on the number
of local sites). In the case of the 2PL algorithm, the maximum is

reached at a multiprogramming level equal to 50. In the case of the
transaction-graph algorithm, the total number of completed transac-

tions oscillates around its maximum value for larger multiprogramming
levels. In the case of the 2PL algorithm, however, the number of
transactions completed after reaching the maximum level starts to de-
crease. In both cases, the number of local sites had little impact on the
number of completed transactions.

A simple explanation exists for these facts: In the case of the trans-
action-graph algorithm, a significant number of global transactions
aborts caused by cycles in the transaction graph overshadows the effect
of local deadlocks that may also cause global transaction aborts. On
the other hand, in the case of the 2PL algorithm, there is no possibil-
ity of global transaction aborts, except for a deadlock (global or local).
The large multiprogramming levels of global transactions increase
significantly the possibility of such deadlocks. It is interesting to ob-
serve that with the increase of multiprogramming levels, the majority
of global deadlocks are false deadlocks caused by increased response
time from local sites that exceeds the predetermined value of the time-
out. These results indicate that in the multidatabase environment, with
each local DBMS using the 2PL protocol, the number of concurrently
executed global transactions should be limited in order to achieve
larger throughput.

Figures 8 and 9 also indicate that concurrent processing of global
transactions provides better throughput than serial processing. In the
case of a fully replicated multidatabase, however, the transaction-graph
algorithm simulation indicated that the serial execution of global trans-
actions provides better throughput than the corresponding concurrent
execution. However, the case of fully replicated databases in a multi-
database environment is highly unlikeþ. If data were to be fully repli-
cated then no need exists to integrate the data under the MDBS, since
the addition of different data sources does not provide users with new
information.
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Figures 8A and 9A illustrate, respectively, the percentage of com-
pleted transactions for the transaction-graph and for the 2PL algorithm.
In the case of the transaction-graph algorithm, a percentage of com-
pleted transactions rapidly decreases with larger multiprogramming
levels. For a multiprogramming level equal to 25, only about Z}Vo of
the transactions complete. Tiansaction completion remains near this
number regardless of the increase in the multiprogramming level. V/e
explain this fact by the following: With larger multiprogramming lev-
els, and under the conditions of our model, the transaction graph gen-
erates a significant number of cycles that cause a large number of
transactions aborts. Therefore, the number of completed transactions
cannot be as affected by local database aborts as it is affected by the
cycles in the transaction graph. Apparently, higher multiprogramming
levels are insigniûcant in the total number of aborted transactions.

In the case of the 2PL algorithm, the percentage of completed
transactions monotonically decreases with an increase in the multipro-
gramming level. This result reflects the fact that with large multipro-
gramming levels, the ZPL algorithm generates a significant number of
false global deadlocks that causes an increase in global transactions
aborts.

Figures 10 and 11 show the average response time for the transac-
tion-graph and the 2PL algorithms, respectively. The response time
figures are not surprising. In both cases, the average response time
increases with an increase in multiprogramming levels. On the other
hand, in the case of the 2PL algorithm, the average response time is
approximately one quarter of the average response time for the transac-
tion-graph algorithm.

In order to measure the impact of a multiprogramming level and
the number of local sites at which a multidatabase is distributed on a
total number of global transactions rollbacks, the total number of
restarts was increased each time a global transaction (that eventually
was completed) was aborted due to the global deadlock problem. A ra-
tio of the total number of global transactions restarts to the total num-
ber of global transactions completed during the simulation period indi-
cates a relative frequency of transaction aborts caused by the
algorithm. Figures 12 and,13 illustrate the behavior of this ratio as a
function of the multþogramming level. In the case of the transaction-
graph algorithm the per cent of restarts increases very fast with an in-
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crease of the multiprogramming level. Figure 12 illustrates that approx-

imately 807o of completed transactions are aborted at least once. The

significant number of global transaction aborts does not seem to de-

pend significantly on the number of local sites in a multidatabase. The

2PL algorithm, however, provides a more optimistic picture (see Fig-

ure 13). In situations where the transaction-graph algorithm causes

807o of global transactions to abort, the ZPL algorithm causes no more

than 4Vo of transactions to abort. This number of rollbacks is quite

acceptable for any practical multidatabase system.

Our next results show the average number of global transactions

restarts computed as the total number of restarts divided by the num-

ber of restarted transactions. In the case of the transaction-graph al-

gorithm (see Figure l4), each transaction can be restarted up to 5 to 6

times depending on the multiprogramming level and the number of lo-

cal sites. This high number of aborts, in all likelihood, can not be tol-

erated in a practical multidatabase system. In the case of the 2PL al-

gorithm (see Figure 15), few transactions are restarted more than

once.
Our last results pertain to resource utilization of the computer sys-

tem model used in the simulation model. These results are shown in

Figures 16, 18, and 20 for the transaction-graph algorithm and in Fig-

ures 17, 19, and 2lforthe2PL algorithms. Inbothcases' there-

source utilization is very similar: About 4O-5OVI IIO utilization, about

20-25Vo CPU utilization, and about 90-97Vo network communication

utilization. The third result indicates that in the multidatabase environ-

ment, for reasonably large multiprogramming levels, the majority of

time is spent on message exchange between local sites and the MDBS

qystem site. It appears that this fact is independent of the type of al-

gorithm being used for multidatabase concurrency control. These re-

sults are in accord with [BKST84], who obtained similar results for re-

trieval-only multidatabase systems.

Our results clearly demonstrate the advantage and, practicality of

the ZPL algorithm versus that of the transaction-graph algorithm. On

the other hand, it is likely the case that in an environment where no

information is available about local concurrency control algorithms, no

algorithm will perform much better than our transaction-graph al-

gorithm. This leads us to the following two conclusions. The good

news is that, in practically important situations, multidatabase concur-

rency control that ensures global database consistency and freedom

Two Multidatabase Transaction Management Algorithms 275



ç!o
o
rq

G!

Í<
¡{üpr
û
þ
t)
&
o
k
¡1'

.l)

az
{,
öDñþ
rt

Gcneral Modcl

2PL Casc

I 10 srrcs

tr z!isr]g:.
. lo sJIEg

I ro srÏEs.

n 20 srlEs

a J0 st'l'[s

#Activc

Figure 14

ofo2030

# Activo

Figure 15

n6 Y. Breitbart and A. Silberschaø

t.5

1

0.6.

0.

Éo
()
(\,

H
t<
û,À

þ
oú

la{
0
koêg

,z
6'
òo
dk
.J



Éo
1d
N

rã
þ
o\

60

õo

40

30

20

Figure 16

o10

Figure 17

2PL Casc

l. ro srrEs

E æ'Jg!.
a 30 sfTEs

I 10 SITES

Ú.20 srrEs

a 30 s¡ïEs

lt
J

,

I
I

20 30

# Activo

Uencral Modcl

--{=>-ø-l--r
,//.- )'

Two Multidanbøse Transaction Management Algorithms n7



Gencral Moclcl

r !q_EIIES_

tr uslTEs
a 30 srTEs

I ro srTES

E ?ËrrEs
. s glEg

ot0

Figure 19

20 30

#Activc

/':;;*::-'

278 Y. Breirbarr and A. Silberscharz



Éo
d
N

Þ
co
d
{J
r:1
ë
É
oo

100

80

oo

40

20

o

Figure 20

20

#Active

General Modcl

2Pl, Cass

I 10 SITËS

tr z$lrEs
. J9 SJIE:,

--Æ- =Â<-l---..// --O- - -- ' ---rl
/-"

Two Maltidatabase Transaction Management Algorithms 279



from global deadlocks is a viable option. In fact, the 2pL algorithm is
implemented in a pilot version of the ADDS sysrem tBOTS6l. The bad
news is that without any information about local concurrency control
mechanisms, there is little hope a practical multidatabase concurrency
control mechanism exists.

6. Conclusions

In this paper we have studied the performance characteristics of multi-
database concurrency control mechanisms using a general performance
evaluation simulation model to compare the performance of two con-
cunency control algorithms. V/e studied the impact of the global mul-
tiprogramming level and the number of local sites on global transaction
throughput, the number of global transactions rollbacks, and resource
utilization for both algorithms. In terms of performance, we deter-
mined that the ZPL algorithm outperforms the transaction-graph al-
gorithm in terms of both global transaction throughput, and the num-
ber of global transactions restarts. rile also determined that the number
of local sites has little impact on algorithm performance. Both al-
gorithms exhibit similar resource utilization. our results clearly indi-
cate a general trend: The more information that is available to the mul-
tidatabase concurrency control, the better the algorithm performance.
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