
GroupD esign : Shared Editing
in a Heterogeneous Environment

Alain Karsenty, Christophe Tionche

and Michel Beaudouin-Lafon

Université de Paris-Sud

ABSTRACT: This article describes GroupDesign, a
multi-user drawing tool that runs in a heterogeneous

environment (a network of Apple Macintosh computers

and Unix workstations). From the perspective of the

users, we present a number of functions that we have

developed for supporting the collaborative aspect of
work-Graphic & Audio Echo, Localization, Identif,-
cation, Age, History, Teleconference, Private Editing-
and the new user interface issues raised by the shared

editing of a document. From the perspective of the de-

signers, we introduce the notion of purely replicated

architecture and we describe the tools we have devel-

oped to implement this architecture in a heterogeneous

environment. We also demonstrate the possibility of
creating a multi-user application from a single-user
one and address the issues in developing synchronous

heterogeneous groupware.

@ Computing Systems, Vol. 6 ' No. 2 ' Spring 1993 L61

1 . Introductíon

Within the field of CSCW, a number of systems have been developed
to support synchronous communication between geographically dis-
persed participants. Some systems provide teleconferencing facilities
such as audio and/or video links, while other systems provide com-
puter artifacts that can be shared by the participants. Shared editors
fall in the latter category. A shared editor allows several users to edit
simultaneously the same document (e.g. text, graphics, bitmap), hence
supporting the work practices that we have developed when working
together in the same location: shared usage of a blackboard, annota-
tion of a paper document by several people, etc.

As an interactive system, a shared editor introduces a new dimen-
sion from the perspective of the user, namely the dimension of the
group. An important consequence is that the user is no longer the only
agent modifying the document. The document "modifies itself" when
other users change it. With the exception of process control systems,
few interactive systems exhibit such a behavior. In addition, whereas a
process control system merely updates its state in response to changes
in the environment, a shared editor must support a group activity. As
a consequence, a shared editor must be designed to make each user
aware not only of the modifications of the document but also of the
activity of the other participants. As emphasized in [Tang91], a

shared document not only stores information, it also mediates
interaction.

The development of a shared editor raises a number of implemen-
tation issues. As an interactive system, a shared editor must feature a
good response time, which means that the system must respond to a
user's action in less than a tenth of a second. Since a shared editor is
inherently a distributed system (the users are sitting at different work-
stations), the requirement for a short response time will be a key

168 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

factor in the design of the architecture of the system. In addition, we

see as essential the ability for the system to be used in a heterogeneous

environment, i.e. in a situation where the different participants use

different hardware and software platforms. A user working with a PC

should be able to edit a shared document together with users working
on Macintoshes and Unix workstations. This raises the question of
knowing whether shared editing of a document is still a viable concept

when the participants use different interfaces for editing the document.

In order to investigate these issues, we have designed and imple-
mented a synchronous shared drawing tool called GroupDesign. The

first version of the system worked on a network of Macintoshes

[Beau92]. Our recent work has concerned the implementation of
GroupDesign in a heterogeneous environment, namely Macintoshes

and Unix workstations. The reasons for choosing a drawing tool are

two-fold. First, most existing real-time groupware tools are pixel edi-
tors or text editors. Our tool is a structured graphics editor, which we
feel is more representative of direct manipulation systems. Second, we

did not want to create the system from scratch. Instead we used an ex-

isting single-user extensible drawing tool from each environment. This
gave us an opportunity to understand the issues involved in turning a
single-user application into a multi-user one and to get some insight
into an appropriate architecture for synchronous groupware.

Many shared editors only support tightly coupled groups in situa-
tions such as brainstorming and design. These tools are not used to
produce a document per se but instead a solution or set of ideas shared

by the group. As a consequence most of these tools are bitmap editors

[Stef87b, Minn91] that facilitate the creation and annotation of draw-

ings. GroupDesign is not meant to be used in such situations. Instead it
is meant to be used for collaboratively producing documents that hap-
pen to be schemas, e.g. Petri nets, SADT diagrams, PERT diagrams,
organigrams. Hence this work is of interest to designers of shared edi-
tors as opposed to designers of meeting support systems.

This article presents this work from two perspectives: the users',
and the designer's. From the perspective of the users, we present a

number of functions that we feel necessary in any shared editor. This
can be paralleled with the functions that have been identified for sin-
gle-user systems, such as help, undo, semantic feedback, etc. From the
designer's point of view, we demonstrate the possibility of creating a
multi-user application from a single-user one, and we present the

GroupDesígn: Shared Editing in a Heterogeneous Environment 169

notion of a purely replicated architecture. In particular, we describe
the issues involved in deveþing the heterogeneous version of
GroupDesign and the implementation technique that we have used.

2. An Overview of GroupDesign

GroupDesign is a multi-user drawing tool for structured graphics. It
runs on Apple Macintosh computers connected by Apple LocalThlk or
Etheflalk and on Unix workstations connected by Ethernet/IP. The
architecture is replicated: an instance of the application (a replica)
runs on the computer of each user.

A GroupDesign diagram is a set of pages, either independent or
connected in a hierarchical way. V/ithin apage, graphical objects (e.g.
rectangles, texts) and connectors (i.e. links between objects) can be
edited as in MacDraw. The complexity of a diagram is such that one
can have alarge number of users working on different pages. Group-
Design uses a relaxed WYSIWIS (What-You-See-Is-What-I-See)
paradigm [Stef87a], since a strict WYSIWIS approach would not have
allowed users to work independently on different diagram areas. The
document is the same for all replicas but each user has his or her own
view of the diagram. For example, users have independent control
over the scroll bars and window placement.

GroupDesign sessions can last indefinitely with participants enter-
ing and leaving during the session. As a consequence, a user may en-
ter a session without knowing the recent history of the document. If
changes have been made to the diagram, and the user does not agree
with the changes, he or she needs a means of identifying the user(s)
who made the change to discuss it with them. The features we provide
to address these issues are History, Age and Identification, which
allow one to be informed of when, how and by whom changes have
been made to the diagram. We have also developed a set of features to
provide the group with a means of understanding simultaneous actions
on the document. These features are Graphic & Audio Echo, Localiza-
tion, and Teleconference. Finally, we have introduced the notion of
Private Editing to support a more asynchronous editing style.

Most features use color to identify each user. The name of the
users and their associated colors appear in a menu. The menu can be
displayed permanently, so that there is no need to remember the col-

170 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

ors. Moreover, we use light colors to avoid cluttering the display and

interfering with the application's use of color. Although it works fine

for small groups, this color coding does not scale well: it is difficult or
even impossible to generate a large number of visually distinct colors

and memorizing/recognizing them puts an additional cognitive load on

the user. Displaying the user's name provides an alternative to using

colors. However this may raise other problems such as cluttering the

display.

2.1 Graphíc & Audio Echo

We define Echo as the representation of a user's action upon the other
users' interfaces; it is the equivalent of feedback for the other users.

The echo is graphic if users share a common view of the diagram or
audio if operations occur out of the window. The goal of the echo is to
provide a peripheral awareness of the activity of the group similar to
that of several users working in the same office and mutually aware of
each other. It must be comprehensible yet not too distracting so that
one can choose to observe the group at work or decide to focus on a
task without being disturbed. Showing small-grained changes such as

cursor motion is useful in situations where the group is engaged in a
cooperative design task [Tang9l] but proves distracting when the group

works in a more loosely coupled way, which is frequent when editing
large documents. This is why our echo is different from ordinary
feedback.

Graphic Echo is a two-phase process, illustrated in Figure 1. The

first phase takes place when an operation is initiated. It displays an

icon indicating that a change is about to be made by another user.

This icon has the same function as the busy signal of the Colab

lStef 87b]. The shape of the icon indicates which operation is underway

and the color indicates the author of the operation. While the icon is
displayed, the object is partially locked. A user can still modify the

object unless the operations are not compatible, such as moving an ob-
ject that is already being moved. The second phase of Graphic Echo

takes place when the operation is completed and uses animation to
make it easy to understand the operation.

Audio Echo complements Graphic Echo, since the latter does not
cover modifications occurring outside of the window view. A sound is

associated with every operation that changes the document. We use

GroupDesign: Shared Editing in a Heterogeneous Environment l7l

User Group

Phase I presses the mouse
on the rectangle.

*move" icon diqplayed
on ûop of the recøngle.
The icon has the user's
color aüribute.

drags therecøngle
to the new
position.

the icon is still
displayed

Phase 2 releases the mouse.
The recøngle is
drawn to thenew
position.

the icon is erased and
therecøngle is moved
smoothly to tl¡e ne\4'
position.

Phase l: busy iconPhase l: busy icon Phase 2: animation

Figure 1: Graphical echo

two kinds of sampled sounds: percussive sounds for short operations
(e.g. creation, destruction) and continuous sounds for long operations
(e.g. move, resize). V/hen possible, the sounds match the operations
they describe. For example, we use a breaking sound for destruction, a

scraping sound for moving and a spring sound for resizing. The sounds
for other operations are more arbitrary; we chose them to be consistent
with the "style" of the other sounds and yet easy to distinguish. In or-
der to provide an effective peripheral awareness, the sounds must be
easy to recognize even when played at a low level. Conveying more
semantic information would be valuable. \W'e plan to explore this fur-
ther by using synthesized auditory icons [Gave93] and simple spatial-
ization using a stereo output.

Both graphic and audio echo are modes that users can enable or
disable. Users can also control the set of operations for which an echo
is provided.

172 A. Karsenty, C. Tlonche, and M. Beaudouin-Lafon

2.2 Localization and ldentffication

Localization makes it possible to coordinate views with another user.
In this mode, the participants' front windows are displayed as rectan-
gles in each participant's color so that users can see each other's cur-
rent view (Figure 2). This gives the users a sense of territory-when
they modify objects, they can see whether other users are currently
viewing the changes. Selecting a user's name from the menu
"teleports" one's view to the area currently viewed by that user.

Figure 2: Three users in the same session viewing an overlapping
part of a page. Christophe is in Localization mode and thus can see
Alain's and Michel's views

Alain's view

Christophe's view

Michel's view

GroupDesign: Shared Editing in a Heterogeneous Enyironment 173

Thus, one can both have an independent view of the diagram and be

able to synchronize views with another user.

Localization alone is not sufficient to identify who has just

modified a diagram, since several users can view the same part of the

diagram. Moreover, once the changes are done, there would be no

means to identify each user's operations. The Identification feature is

used to identify the users who modified the diagram. Identification is

done through colors: every object is displayed with the color corre-
sponding to either the user who created it or to the last user who
modified it. This is useful for discussing design issues on a particular
area of the diagram without disrupting the session participants. For
instance, using ldentification, one can contact the specific users who
made the changes.

Both Localization and ldentification are modes. They do not inter-
fere with the drawing activity, but add information about users to the
participants. While they are active, the display is updated in real-time
to reflect the state of the users' locations and authorship as they
change.

Other techniques have been used to locate other users [Gree92).
Gestalt views display the whole document in a small window together

with the users' locations. A gestalt view has the advantage of display-

ing the locations of all users at once, while our Localization mode only
displays the users working in the area being viewed. On the other
hand, gestalt views require additional windows which clutter the

screen and may distract the user. Another localization technique is

view-slaving which allows a user to follow another user's view in real-

time. View-slaving stands between our Teleport command and the
Tþleconference mode described below. \il/e believe that Teleconference
is more intuitive to use than several users view-slaving to each other,
and that Teleport is valuable for peeking at someone else's view with-
out having to slave to it.

2.3 Age and History

The only time-related information usually available concerning a dia-
gram is the last time it was saved into a file. No information is given
about the last date of modification of the objects in the diagram or the

history of the document. In a multi-user application this information is

important: accessing the history of the document has proved useful for

174 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

supporting the cooperative process and bridging the gap between syn-

chronous and asynchronous work [Rhyngz]. If many objects in the
same area have been recently modified, this area is probably a hot spot

of the group's activity. We provide two features to support such access

to the document: Age and History.
In Age mode, the age of objects is displayed using colors which

vary from red (recently modified) to blue, in a way similiar to GROVE

lElligl]. This allows one to find out when objects have been modified,
but not how. This is why we also provide a History feature. The last
actions of the group can be replayed using a control panel similar to a
tape recorder. The actions and user's names are displayed when an op-
eration is replayed either forward or backward. 'Whenever one enters

History mode, the system is off-line. It stores the other user's actions

in a queue and processes them as soon as the user closes the control
panel.

History is a command, which means it cannot change the diagram
while replaying the last actions. On the other hand, Age is a mode.
When it is active, the display is updated to reflect the age of objects as

they are modified.

2.4 Teleconference and Private Editing

GroupDesign defaults to a tight coupling in time (all users see the same

state of the document at any point in time) but no coupling in space

(different users may view different parts of the document). Instead of
providing a variety of coupling schemes as in Suite [Dewa9l], we have

chosen to provide two additional coupling modes: a tighter coupling
called Tþleconference and a looser coupling called Private Editing.

Tþleconference allows one or several subgroups to work under a

more strict WYSIWIS interface. This is useful when some members of
the session want to work in a tightly coordinated way. This usually re-
quire additional communication channels such as audio/video links so

that the users can coordinate their actions. In Tþleconference mode,
the users see each other's windows modifications (resize, scroll, etc.),
but not the movements of the cursor. Ideally the cursors of the other
users should be visible in order to support "gesturing" [Thng9l], but
this proved to be too difficult to implement given our software envi-
ronment. Similarly the current version does not provide telepointers,
although it is possible to use a GroupDesign object as a telepointer.

GroupDesign: Shared Editing in a Heterogeneous Environment 175

Private Editing relaxes WYSIWIS in time. In this mode, the user's
modifications do not appear on the other participant's windows. V/hen
satisfied with the resulting diagram the user can decide to commit
himself or herself and the other participant's diagram is then updated.
This feature is useful in a variety of situations. For example, if a user
is not familiar with the application, it might be inhibiting to show
his or her clumsiness to the group. Another example is when a user
modifies the diagram and is not satisfied with the result. He or she can
cancel the modifications without disrupting the session. More gener-
ally, this mode gives the users a way to get some privacy during a

session. Users in Private Editing mode are showed to the other users
via the menu of participants.

3. Architecture

Distributed groupware systems generally use either a fully centralized
architecture or a partially replicated architecture. For example, the
LIZA tcibbSgl toolkit uses a central process with replicated clients
while RendezVous [Patt9O] is a centralized system. In a centralized ar-
chitecture, only one process interacts with the different users through
a generic agent such as the X Window system [Sche86]. Partially
replicated architectures also use a centralized process, but each user
runs an application that talks to the central application-dependent pro-
cess. This is similar to a client-server model. Depending on the sys-

tems, the division of labor between the server and the clients varies.
At one extreme, the server can be used only for the serialization of
events. At the other extreme, the server can manage most of the state
of the application while the clients only manage the display and low-
level interaction.

A centralized or moderately replicated architecture has the advan-
tage of simplifying the deveþer's task since there is no need to man-
age a distributed state. In particular, synchronization and concurrency
control are trivial. However there are two major drawbacks to such an
architecture. The first is the unpredictable response time of the inter-
face. If every user's action has to go to the central process before giv-
ing any feedback to the user who initiated it, then the response time
depends on the networks and the load of the central process. The
second is that the system is not likely to be fault tolerant to server

116 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

crashes. Both aspects contrast with single-user applications, whose

performance and reliability only depend on the workstation on which
they are running.

These drawbacks become of prime importance when one looks at

the scalability of groupware systems: when shared editors become

widely available, it is likely that (i) the numbers of participants per

session will grow (ii) the geographical distribution and hence the num-
ber of networks involved in a session will grow and (iii) the overall
number of sessions will grow. It then becomes crucial to devise an ar-

chitecture that does not break down when the qystem scales up, and it
is clear that a centralized architecture cannot work in such a context.

3.1 Purely Replicated Architecture

We have implemented what we call a purely replicated architecture. A
replica of the application runs on each computer. GroupDesign does

not use any central process for the coordination of the replicas nor
does it give a special role to the user who first launches a session. All
replicas play the same role, and no other process is required. As dis-
cussed later on, intermediate processes manage the flow of data for
better efficiency under the Unix environment, but they are application
independent and the system could run without them. On Macintoshes,
the replicas communicate by sending each other events through
LocalTalk, using the facilities of the Apple Event Manager of Apple's
new System 7.0 [Appl9l]. Under Unix, and between Unix and Macin-
toshes, the replicas send each other events with datagrams using the
UDP protocol.

The events that a replica sends to and receives from other replicas
allow it to maintain a state of the document that is consistent with the
other replicas. More precisely, when no event is in between two sites,

the states held by all replicas are identical. This is achieved by a dis-
tributed algorithm that implements the concurrency control needed to
ensure this property.

This concurrency control algorithm is based on the semantics of
the application, and the ability to define a total order of the events us-

ing timestamps [Lamp78]. The timestamp of an event is a logical
clock, i.e. a counter incremented each time an event is sent and

adjusted each time an event with a higher timestamp is received. The
total order is defined by the order of timestamps, plus an arbitrary

GroupDesign: Shared Editing in a Heterogeneous Environment ll7

order of the replicas for events with the same timestamp. Ideally,
every replica should receive the same events in the same order, and
no concurrency control would be needed. But in practice, because of
network latency, events may arrive in different orders at the replicas.
Handling events in the correct order could be achieved by holding
back events that arrive in advance while waiting for late events. How-
ever, this would be incompatible with an optimal response time since
the local actions of a user could be delayed by his or her replica
because of late events sent by other replicas.

Our solution [Beau92] is to execute the events in a partial order
that is compatible with the total order, using the semantics of the
application to define the compatibility relation. For example, if a user
moves an object and another user changes its color, the order of exe-
cution of these actions is irrelevant: we say that the events carrying
these action commute. On the other hand, if a user changes the color
of an object to red and another user then changes it to green, the cor-
responding events do not commute. However, if 'change to green' has
been received and executed by a replica and 'change to red' arrives
later, the latter can simply be discarded: we say that the second event
(in the total order) has masked the first one. In GroupDesign, events
always commute or mask. Therefore they are always handled immedi-
ately, which provides the best response time possible for the interface.
[Kars92] describes a more general version that handles incompatible
events, i.e. events that do not commute nor mask.

Our technique is simpler than the operation transformation used in
GROVE [Elli90]. This technique consists of transforming out of date
operations so that they can be executed without disrupting the session.
If there are n operations, this requires n 2 transformation procedures,
some of which are not trivial to write. In our case, one only needs to
define an n2 matrix describing whether each couple of operations com-
mute, mask, or are incompatible.

The purely replicated architecture combined with our concurrency
control algorithm give the system two important properties. First, the
user's actions are handled immediately by the system, resulting in the
best possible response time, namely the response time of a single-user
application. In addition, incoming events are handled immediately,
giving the most up-to-date possible view on the document. Second,
the system is faulftoleraît a replica continues to work even though
another replica crashes or the network goes down.

178 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

This contrasts with a number of existing systems. For example,

MMConf [Crow9O] has an architecture close to ours, but it encourages

turn-taking floor control because when running an open floor, the

events are not guaranteed to arrive in the same order at all sites.

DistEdit [Knis90], a toolkit for programming multi-user text editors,

relies on the ISIS toolkit [Birm89] for the distributed aspect of the

architecture. This may cause performance problems, as stated by the

authors, because of the concurrency control algorithms implemented

by ISIS. AspectS [Biel9l], a commercial product for shared editing,
locks objects as soon as they are selected. This certainly simplifies

concurrency control but reduces access to the document since a user

not currently working may have inadvertantly selected objects.

3.2 Heterogeneous Architecture

The purely replicated architecture is suitable for implementation in a

heterogeneous environment. First, the overall performance of the sys-

tem only depends on the performance of the network. More precisely,

a replica connected with a low-speed network does not slow down the
whole system. Instead, its actions are seen by the other users with a

longer delay. Hence the system does not run at the speed of its slowest
component. Secondly, the architecture only requires the replicas to
comply with the protocol of the application. As long as network con-
nectivity can be assured, the replicas can run on different hardware/

software platforms, and they can be developed either from scratch or
on top of existing toolkits or applications. Indeed this is how we im-
plemented GroupDesign in both environments (Macintosh and Unix/
XWindows).

We found that in practice the implementation of a distributed
heterogeneous system was more complicated than expected. Vy'e now
describe the main reasons for this: inappropriate software tools,

complexity of data transfer and routing, variety of naming schemes

and data formats.
Widely available operating systems and computer networks provide

little support for implementing distributed systems [Patt9l]. For exam-
ple, the Unix operating system and the Ethernet network cannot guar-

antee bounded time execution. Also, most existing tools for developing
distributed systems are either not widely available, too low-level, or

GroupDesign: Shared Editing in a Heterogeneous Environment I79

not suitable for developing groupware. Most systems were developed
for applications such as f,le and message transfer. They support point-
to-point communication and focus on reliability, fault tolerance and au-
thentication, whereas groupware requires multi-point communication
and efficient transfer of usually small amounts of data. The situation is
even worse in a heterogeneous environment, where one can only rely
on the network connectivity at a very low level. As a consequence we
had to write our own tools and implement our own communication
schemes.

The performance of the network is critical for heterogeneous
groupware since, roughly speaking, the speed of a message along a
path in the network is the speed of the slowest subnetwork. With the
purely replicated architecture, a balance must be found between the
number of links a message traverses and the number of messages
(frames) transmitted through the net. Increasing the number of links
slows the transmission down (users are then more loosely coupled) but
it allows for greater flexibility and better usage of network resources.
On the other hand, minimizing the number of links traversed by a
message means that each replica must send its messages to all other
replicas, since multicasting is not available on the most widespread
network protocols (both AppleTalk on the Macintosh and TCP/IP only
provide point-to-point communication). The load of the network then
grows quadratically with the number of replicas. This is acceptable
only on a local area network with a small number of users.

In a heterogeneous environment the situation is more complex,
since different incompatible sub-networks are connected via gateways

or routers. Using the same multicasting schemes (sending each mes-
sage to all other replicas) wastes network bandwidth since several
identical messages sent by a replica to recipients on the other side of a
gateway or router traverse the same sub-networks. We addressed this
problem by introducing special processes called dispatchers. The dis-
patchers avoid duplicated messages on common sub-networks, hence
improving the overall performance and network load. The dispatchers
do not introduce a bottleneck. Even though they increase the latency
(each packet now goes through at least one additional process) we
found in practice that this additional latency is negligible as long as the
network of dispatchers is correctly configured. The typical round-trip
time on an Ethernet cable is one to four milliseconds, and a dispatcher
needs less than a tenth of a millisecond to handle a packet. Hence, on

180 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

a LAN the bottleneck is not from the dispatchers but from the replicas

themselves: a dispatcher can handle more packets per second than the

network can transmit whereas the replicas have to process each event.

This processing turns out to be especially expensive as soon as it
includes graphics. These results confirm the observations of [Gree92]
that in a real-time groupware system, communication is less of a prob-

lem than processing power. However, adding dispatchers makes the

system substantially more complex since the best performance is

achieved when they follow the topology of the network, which might

change dynamically. On the other hand, since the dispatchers handle

all the complexity of multicasting in a heterogeneous environment in
an application-independent way, they simplify the replicas: a replica

only has to send events to its dispatcher.

Finally, we have to address the variety of naming schemes and

data formats. A mechanism to address any host on a network always

exists in a homogeneous net. We need a similar functionality in a het-

erogeneous environment, even when the naming conventions are not

compatible. This raises non-trivial problems: connecting two nets with
the same name space through a third net may result in a name colli-
sion. We solved this by a global name server. The problems with data

formats are different, but not simpler. Applications exchange various

kinds of data, e.g. text, picture, sound, live video, using various for-
mats. Most of them are specific to a machine, an operating system, or

even an application. V/orking in a heterogeneous environment requires

converters for the different formats (assuming that the formats to be

converted are documented). One then has to choose between develop-

ing a quadratic number of converters, or define a new format and a

linear number of converters. Since we have only two platforms, we

used the first approach.

We are not aware of any shared editor or groupware system that

runs in a heterogeneous environment. The existing systems run on

one of the following hardware/software platforms: Macintosh under

MacOS, PC under Windows or Unix workstation under XWindows.

Although some interoperability between different systems does exist,

this does not achieve support of a heterogeneous environment. For

example, a Macintosh can run an X Window server and hence allow

users to run X applications on their displays. But then the users have

to use the look and feel of Macintosh applications and XWindows

applications at the same time, which is not desirable.

GroupDesign: Shared Editíng ín a Heterogeneous Environment 181

4. Implementation

GroupDesign is implemented in the following heterogeneous environ-
ment:

The environment is as heterogeneous as possible, since each layer is
different and incompatible. To handle this environment, we have de-
veloped an implementation model based on the concept of actor. The
programming interfaces provided us with the needed flexibility to im-
plement such a model. In the next section we describe both the pro-
gramming interfaces and the model.

4.1 Programming Interfaces

Rather than building GroupDesign from scratch or modifying an exist-
ing program, we used existing toolkits and extensible applications. on
the Macintosh platform, we used Design/oA to develop an extension
of MetaDesign [Meta89]. MetaDesign is a MacDraw-like editor with
two significant differences: a document is a set of pages, which can be
linked together, and the drawing on each page can have connectors,
i.e. links between objects. Under Unix, we used the Graph Widget
[Beau9l], a Motif widget that allows interactive editing of arbitrary
graphs.

The programming interfaces of Design/OA and the Graph Widget
both offer two sets of functions: the first set contains functions to ffe-
ate and modify a graph, providing the application with a similar set of
functions as the user for editing the graph; the second set contains a
set of functions to define so-called filters (in Design/oA) or callbacks
(in the XToolkit). Filters and callbacks give the application control
over the actions of the user: when the user issues a command, a filter

I82 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

Unix Macintosh

Hardware
Network
Intermediate Protocol
Operating System

Graphical System
Programming interface

Unix workstation Apple Macintosh
IP AppleTalk
UDP AppleEvenrs
Unix MacOS
Xll Quickdraw
Graph Widget Design/OA

or callback defined by the application is activated. A number of
non-groupware applications have been implemented with these pro-
gramming interfaces. For example, an extension of MetaDesign is a
Petri-Net simulator, and an application that uses the Graph Widget is
a file system browser.

In GroupDesign, we used the first set of functions to handle in-
coming events from the other replicas, and we used the second set of
functions to send events to the other replicas whenever changes are

made by the user. Hence, the protocol was defined so that the events

could be matched to both set of functions in both environments. This
proved to be relatively easy, compared to the task of managing the

communication between the replicas, and the limitations of both
Design/OA and the Graph Widget for implementing some of the
groupware features, which we discuss in a later section.

4.2 Implementation Model

The implementation model for the different processes that constitute

our distributed system is based on the concept of actor, as first intro-
duced by Hewitt (see for example [Agha87]). This approach is quite
natural with the purely replicated architecture: each replica is an in-
stance of the same actor model. We describe in this section the Reac-

tive Engine, a C*+ library that we have developed to implement our
actor model.

The reactive engine provides high-level primitives to describe

communication with and naming of remote actors or group of remote

actors. An actor is an instance of an actor model (or actor class). An
actor model has two sections: a specif,cation which describes the name

of the actor and the messages it can respond to, and an implementa-

tion. An actor is known to the outside world only by its specification.

For example, Figure 3 describes the specification of an actor model

named updateDisplay, with two methods CreateNodeAtX: Y: and

DragNodeTox: Y: . We use a Smalltalk-like convention for the method

actor
CreateNodeAtX:Y:

ToX:Y:

Figure 3: Specification of an actor

GroupDesign: Shared Editing in a Heterogeneous Environment 183

names; the colons indicate arguments which are untyped character
strings. From this specification are derived two implementations
(Figure 4); one is specific to Design/OA while the other is specific to
the Graph Widget. The bodies of the methods are written in C**.
The definition of a single specification enforces consistency between
the different actors created on the same model, even if they run on in-
compatible machines. Of course, we cannot ensure that the bodies of
the implementation are equivalent. This is not even desirable since the
replicas are only required to conform to the protocol; they can inter-
pret the messages with different semantics, if they so wish.

actor body actor body UpdateDispli
// C++ code calling
CreateNodeAtx:Y: {

xtcreatew¡dget
)

// C++ code calling funcl¡ons W¡dget funct¡ons
CreateNodeAtx:Y: {

Dscr_node(...);
)
DragNodeToX:Y: {

DSmove(...);

(...);

createNodeAtx:Y: {
XtSelValues (...);

Figure 4: Two implementations of the same specification

A pre-processor reads the specification and the method bodies and
then produces an equivalent Ct* program. After compilation by the
C** compiler, each running process of this program is an actor in-
stance, such as the updateDisplay: 1 instance depicted in Figure 5.
The instance receives and sends messages through the reactive engine.
For example, in Figure 5, the method createNode of updateDis-
play: t has been activated by a message from a remote actor. Up-
dateDisplay: 1 then calls a function of the Graph Widget to update
the display.

It is the responsibility of the application to invoke the methods of
distant actors. In GroupDesign, the callbacks of the Graph Widget and
the filters of Design/OA call actor methods, so that modifications of
the graph by the users are multicast to other replicas by the reactive
engine. This is exemplified by the following statement:

localDispatcher-) send ("CreateNodeAtX:
Vod Y: 7od" xcoord, ycoord) ;

Some appropriate C** objects, such as localDispatcher in this exam-
aple, are used as stubs for the remote actor or remote actor group.
When first elaborated, an object of this class queries a name server for

184 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

METHOD BODIES:

CrsateNodeAtx:Y:
t

XtCreateWidget(...);
)

Figure 5: A running instance of an actor

the nearest dispatcher. The name server has a similar role as the IP
Domain Name System [Mock87], except that it can store AppleTalk
addresses as well as IP addresses. An actor automatically notifies the
name server of its existence when entering its top level loop. The local
dispatacher then puts the actor on its list of actors to which the incom-
ing messages have to be dispatched.

Figure 6 shows a complete GroupDesign session. Since we use our
purely replicated architecture, the session contains one actor for each

user, implementing the replica of GroupDesign. In addition, the ses-

sion uses several other actors: the name server and the dispatchers.

The dispatchers implement an efficient multicasting facility in a het-

erogeneous network, similar to the Multicast Router [Deer89]. The
dispatcher's name (which defines the session name) is the only infor-
mation an actor needs to know in order to send a message to every ac-

tor in the session. The actor sends the message to the dispatcher and

the dispatcher delivers the message to the targeted actors, possibly by
sending it to other dispatchers. Since the name server and the dispatch-

ers are application-independent and are used as daemon processes, the
application developer need not be aware of their existence.

The messages of the reactive engine are sent as AppleEvents be-

tween Macintoshes and as UDP datagrams under Unix. We chose to

GroupDesign: Shared Editing in a Heterogeneous Environment 185

lf,El 'I
l=rç---!r]

HffiII
,

_t rl
0c
r-t
(D

lf-'El
I

I

ffi¡
ffii-J

ø lq I l(Dæ

FEH-mJ: 3. ¡e I
Þ_ Þ

use UDP datagrams instead of TCP streams for several reasons. First,
connection-oriented protocols like TCP are known to be too heavy-

weight for the efficient exchange of requests and replies [Cher88],
which is the main communication pattern between actors. Second,

datagrams simplify programming: they preserve message boundaries
while streams do not; one datagram socket can receive messages from
several sources while streams require a different socket for each active

connection. Finally the lack of reliability of datagrams (duplication and

loss of packets) is handled "for free" in upper layers of our protocol,
namely by the distributed concurrency control algorithm [Kars92]. We

have observed that datagrams prove to be very reliable on a LAN. If
the reliability of datagrams turns out to be a problem over wider area

networks, we can implement a dispatcher-to-dispatcher loss recovery
protocol on selected parts of the network without impairing the perfor-
mance of more reliable parts of the network.

To summarize, the reactive engine provides the following func-
tions:

. multicast a message to a group of actors;

. wait for messages from other actors, parse them, call the

corresponding methods and eventually return the result;
. monitor external event sources, such as the events coming from

an X Window server;
. map C** objects to unique identifiers (IDs) that can be

exchanged between actors;
. provide built-in debugging facilities, such as the

"whatMethodsDoYouKnow" and "traceYourMessages" methods.

Using the reactive engine, we have implemented the initial version of
the Unix replica that uses the Graph Widget in less than three hours.

This is one to two orders of magnitude faster than the original imple-
mentation of GroupDesign on the Macintosh (using AppleEvents and

Design/OA).

5. Discussion

In this section we discuss our approach to the design of the user inter-
face of GroupDesign and the impact of a purely replicated architecture

on the engineering of synchronous groupware systems.

GroupDesign: Shared Editing in a Heterogeneous Envíronment 187

5.1 User Interface

The features that we have developed have been designed to cover the
continuum from synchronous work of the group on a single part of the
document to an almost asynchronous work. Our approach consists in
analyzing the design space and proposing solutions according to sev-
eral criteria. This approach contrasts with an ethnographic approach to
CSCW, in which a researcher observes a group carrying out a given
task in order to derive a set of requirements for a computer system that
supports that task. Vy'e chose a top-down approach because we expect
the user's behaviour when using a shared editor to differ from editing
on paper. Of course, it is important to follow up this work with appro-
priate usability testing.

We have designed the user interface to provide transparent access
and awareness of the group. Transparency means that the system does
not bring obstacles in the way of the task the user is carrying out. This
includes running an open floor and not having to lock objects explic-
itily. Conflicts have never proved to be a problem in our case. The
users develop social protocols spontaneously and the interface provides
the appropriate awareness to virtually eliminate them. Echo and Local-
ization are especially useful for that purpose. The challenge of a good
echo is to provide an accurate, non-disturbing and efficient feeling of
what the other users are doing. Using animation and sound for echo is
particularly appropriate due to the characteristics of our sensory sys-
tem. For instance, Card et al. [Card9l] have shown that short (less

than I second) animation gives enough time to the other users to un-
derstand what is about to happen. Similarly, the Arkola bottling plant
simulation [Gave9l] showed that sound can play an important role in
groupware systems.

Relaxing the strict WYSIWIS paradigm so that users have inde-
pendent views provides a natural interface: the users can use Group-
Design as a single-user tool without being disturbed by the group ac-
tivity. This is further supported by providing arange of coupling
modes (Teleconference and Private Editing) so that the same tool can
be used in a variety of group tasks. Relaxing WYSIWIS creates some
well-known problems [Stef87b] due to the fact that the reference to an
object by a user may not be understandable to another user. These
problems might even be more important in a heterogeneous environ-
ment since the users can modify the same document through different

188 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

interfaces. These problems can be overcome by a careful design of the
interface. In GroupDesign we use the document itself to convey the in-
formation related to the group activity instead of using additional arti-
facts. For example the location of other users is displayed in the docu-

ment, not in a separate window. This provides a natural way to share

reference information and at the same time supports a better awareness

of the group activity.
Another aspect of transparency is the ability to access the docu-

ment and observe it in a variety of ways. Not only can a user navigate
geographically in the document by scrolling, but he or she can also

navigate in time and over the dimension of the group. Navigation over
time is achieved by the Age and History functions. Navigation over
the dimension of the users is carried out by means of the ldentif,cation,
Localization and Teleport functions. We have observed that providing
modes as well as commands was important for supporting group work.
When using a mode (e.g. Age, Localization), the user has a real-time
feedback of the group activity that does not interfere with his or her

task. Commands (e.g. History, Teleport) are used to access informa-
tion directly relevant to the user's task.

5.2 Engíneering Synchronous Groupware

Implementing real-time groupware systems is a challenge. Not only
has one to devise new interaction techniques and artifacts, but one has

also to face the difficulty of implementing a distributed system. We

think it is essential for a real-time groupware system to provide an im-
mediate response to each user's actions. This requires some degree of
replication, implemented by a distributed algorithm. We have chosen

in GroupDesign to replicate the whole application. This might not be

feasible with other systems nor even desirable. In such situations, the
best architecture probably is to centralize the functional core of the
application and to replicate its interface. Indeed, the communications
between the replicas of the user interface can bypass the functional
core in order to achieve the kind of functions that we have introduced
in this article (Echo, l-ncalization, etc.), which are independent of the
functional core.

An advantage of the purely replicated application is to make it
possible to use existing toolkits or applications, as we did for Group-
Design. Using our reactive engine, turning a single-user application

GroupDesign: Shared Editíng in a Heterogeneous Environment 189

into heterogeneous groupware was relatively easy compared to the
work we would have had to do if we had built the application from
scratch. Nevertheless, the fact that the programming interfaces were
not built as groupware toolkits raised some problems. For example, the
Echo feature was difficult to implement because neither Design/OA nor
the Graph Widget provides functions to animate objects in the back-
ground. Hence we had to bypass the programming interfaces and use
the low level graphic system (Quickdraw on Macintosh, Xlib under
XWindows). This created additional problems since the application
assumes that it has complete control over the display. One solution
would be to have animation facilities available in the programming
interface, such as the ones described in [Chat92]. Another solution is
to provide a more general facility similar to the overlays described in
[Rose92], so that the application can draw on the overlay without
interfering with the programming interface.

Designing the protocol used by the replicas raised a number of in-
teresting issues, in particular with respect to the heterogeneous envi-
ronment. Since the replicas must use the same protocol but use differ-
ent programming interfaces, we had to make sure that the mapping
between them was possible. We also had to take into account the con-
straints of the concurrency control algorithm, which requires that op-
erations either commute or mask each other. This led us to define the
protocol as a set of logical operations instead of the low-level actions
of the programming interface. Of course, the mapping between the
logical operations and the low-level actions need not be one-to-one. A
replica can even ignore logical operations if it does not implement the
corresponding function.

Charactefizing the application by such a logical protocol proved to
be a very powerful concept. For instance, we were able to take advan-
tage of the automatic layout facilities of the Graph Widget that do not
exist in Design/OA: a user of the Unix version of GroupDesign can
activate the automatic layout of the graph, which gets dispatched to
the other replicas as a set of MoveObject operations, as if the user had
made the layout by hand. Another example of this concept was our
implementation of a non-interactive replica that randomly moves,
deletes or creates objects in the graph. Smarter non-interactive replicas
could be used to clean-up the drawing, store it, or perform whatever
automatic task.

190 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

6. Conclusion and Future Work

We have presented GroupDesign, a synchronous shared drawing tool

that runs in a heterogeneous environment of Apple Macintoshes and

Unix workstations. The design of GroupDesign was driven by the abil-
ity of the system to support awareness of the group and transparency
of the interface. This led us to define a number of features that are

general enough to apply to other shared editors. In order to obtain a

response time of the system similar to the response time of a single

user application, we introduced the notion of purely replicated archi-
tecture. Finally, in order to implement the system in a heterogeneous

environment, we developed a distributed actor-based system called the

reactive engine.
There is no doubt that groupware is the next trend in interactive

systems and that it will be a participant in the social revolution in
computer science. However, there are several crucial aspects to be

solved before groupware is widely available and accepted. In this
article we address both user interface issues and software engineering

issues. Designing appropriate user interface features is crucial to the

acceptance of groupware because the users of computer systems are

now used to advanced user interface features in single user applications.

Mastering the engineering of groupware systems addresses their
availability and acceptance. Groupware systems will be available when

tools and techniques will be more widely available for the implementa-

tion of distributed interactive systems. In addition, we believe that

they will actually be used only if they run in heterogeneous environ-
ments and if the seam between single-user and multi-user applications

is invisible. One way to achieve this is to make it possible to turn sin-
gle-user applications into multi-user applications so that software ven-

dors need not implement their products from scratch.

GroupDesign is a proof of feasibility along these lines; it is but a
flrst step in what we see as a promising direction. Our future work will
address three aspects. The first is to apply the features and architecture

of our system to another shared editor in order to validate our model

and gain more insight in the design of these types of systems. The

second is to work on the session level issues, such as the management

of several simultaneous sessions and the storage, retrieval and transfer

GroupDesign: Shared Editing in a Heterogeneous Environment I9l

of shared documents. The last is to detne a groupware toolkit that
supports the purely replicated architecture by extending the reactive
engine.

Acknowledgments

This work is partially supported by Apple France. We thank MetaSoft-
ware for providing us with MetaDesign and Design/OA. Heather
Sacco and Wendy Mackay helped enhancing the readability of this ar-
ticle. We also thank the reviewers for their helpful comments on an
earlier version of this article.

I92 A. Karsenty, C. Tionche, and M. Beaudouin-Lafon

References

[Agha87] Agha Gul, Hewitt, Carl E., Actors a Conceptual Foundation for
Concurrent Object-Oriented Programming. In Shriver, B. et Weg-
ner, P. editors, Research Directions in Object-Oriented Program-
ming, I|I4IT Press, Cambridge, Mass. 1987.

[Applgl] Apple Computer, Inside Macintosh, Volume V1, Addison Wesley,
Reading, MA, 1991.

[Beau9l] Beaudouin-Lafon, M., The graphwidget - user's manual. Technical
report, LRI, Université de Paris-Sud, France, June 1991. version
1.5.

lBeaug2] Beaudouin-Lafon, M., Karsenty, 4., Tiansparency and Awareness
in a Real:Time Groupware System. In Proc. ACM Symposium on
User Interface Software andTechnology UIST'92, Monterey, CA,
November 1992, pp 171-180.

[Biel9l] von Biel, V., Groupware Grows Up. In MacUser, June 1991, pp.
207-211.

[Birm89] Birman, K., Cooper, R., Joseph, T., Kane, K. and Schmuck, F.,
The ISIS System Manual, June 1989.

[Card91] Card, S. K. , Mackinl ay , I . D. , and Robertson, G. G. , The lnforma-
tion Visualiser, an Information Workspace. In Proc. Human Fac-
tors in Computer Systems (CHI'91) (New Orleans, LA, April
I99l), pp. 181-188. ACM, New York, 1991.

lChatg2l Chatty, S., Integrating Animation with User Interfaces. In Engi-
neering for Human Computer Interaction, Proc. of IFIP WG2.7
Working Conference, Larson, J. and Unger, C. Editor, North-Hol-
land, August 1992.

[Cher88] Cheriton, David R., VMTP: Versatile Message Transaction Protocol:
Protocol Specification, RFC-1045, Stanford University, February
1988.

[Crow90] Crowley, T.,}lf.ilazzo, P., Baker, E., Forsdick, H., and Tomlin-
son, R., MMConf: An Infrastructure for Building Shared Multime-
dia Applications. In Proc. Third Conference on Computer-Sup-
ported Cooperøtive Work (CSCW'90) (Los Angeles, CA., October
1990), ACM, New York, 1990.

[Deer89] Deering, Steve 8., Hosts Extensions for IP Multicasrlng, RFC-
1112, Stanford University, August 1989.

fDewagl] Dewan, P., Choudary, R., Flexible user interface coupling in col-
laborative systems. ln Proc. Human Factors in CompuÍer Systems

GroupDesign: Shared Editing in a Heterogeneous Envíronment I93

(CHI'91)(New Orleans, LA, April 1991), pp. 4l-49. ACM, New
York, 1991.

[Eni90] Ellis, C.4., and Gibbs, S.J., Concurrency Control in Groupware
Systems. In Proc. ACM SIGMOD'89 Conference on the Manage-
ment of Data, (Seattle WA, May 1989). ACM, New York, 1990.

lElligl] Ellis, C.4., Gibbs, S.J., and Rein, G.L., Groupware: Some Issues
and Experiences. In Communications of the ACM, January 1991,
Vol. 34, No 1, pp. 39-58.

[Gave9l] Gaver, W. W., Smith, R.8., andO'Shea, T., Effective Sounds in
Complex Systems: The Arkola Simulation. ln Proc. Human Fac-
tors in Computer Systems (CHI'91) (New Orleans, LA, April
l99I), pp. 85-90. ACM, New York, 1991.

[Gave93] Gaver, W. W., Synthesizing Auditory Icons. In Proc. Human Fac-
tors in Computer Systems (CHI'93) (Amsterdam, The Netherlands,
April 1993), ACM, New York, 1993.

[Gibb89] Gibbs, S. J., LIZA: An Extensible Groupware Toolkit. In Proc.
Human Factors in Computer Systems (CHI'89) (Austin, TX, May
1989), pp.29-35. ACM, New York, 1989.

lGreeg2] Greenberg, S., Roseman, M. and'Webster, D., Human and Tþchni-
cal Factors of Distributed Group Drawing Tools. In Interacting with
Computers, Vol4, No 3, pp.364-392, 1992.

lKarsg2f Karsenty, 4., Beaudouin-Lafon, M., An Algorithm for Distributed
Groupware Applications. In Proc. International Conference on Dis-
tributed Computing Systems (ICDCS'93) (Pittsburgh, PA, May
1993).

[Knis90] Knister, M. J., and Prakash, 4., DistEdit: A Distributed Toolkit for
Supporting Multiple Group Editors. In Proc. Third Conference on
Computer- Supported Cooperativ e Work (CSCW' 90) (Los Angeles,
CA, October 1990). ACM, New York, 1990.

[Lamp78] Lamport, L., Time, Clocks and the Ordering of Events in a Dis-
tributed System, Communications of the ACM, July 1978, Yol. 2I,
No. 7, pp. 558-565.

[Meta89] Meta Software Corporation, DesignloA Manual, 150 Cam-
bridgePark Drive, Cambridge, MA, March 1989.

[Minn9l] Minneman, S. L., and Bly, S. 4., Managing a Tiois: a Study of a
Multi-User Drawing Tool in Distributed Design Work. In Proc.
Human Factors in Computer Systems (CHI'91) (New Orleans, LA,
April 1991), pp.2L7-224. ACM, New York, 1991.

L94 A. Karsenty, C. Tronche, and M. Beaudouin-Lafon

[Mock87] Mockapetris, P.V., Domain Names - ConcepÍs and Facilities,
RFC- 1034, Information Sciences Institute, November I 987.

[Patt9O] Patterson, J. F., Hill, R.D., and Rohall, S. L., Rendezvous: An
Architecture for Synchronous Multi-User Applications. In proc.
Third Conference on Computer-Supported Cooperative Work
(CSCW'90) (Los Angeles, CA, October 1990). ACM, New york,
1990.

[Patt9l] Patterson, J. F., Comparing the Programming Demands of Single-
User and Multi-User Applications . ln Proceedings of the fourth
Symposium on User Interface Software and Technology (UIST'91),
pages 87-94. ACM SIGCHI, ACM Press, November 1991.

[Rhyn92] Rhyne, J. R. and rJ/olf, C. G., Tools for Supporting the Collabora-
tive Process. In Proc. ACM Symposium on User Interface Software
and Technology (UIST'72) pp 161-170 (Monterey, CA, November
1992).

[Rose92] Roseman, M. and Greenberg, S., GROUPKIT A Groupware
Toolkit for Building Real:Time Conferencing Systems. In proc.
C onfe r e nc e on C omp ut e r- Supp or t e d C o op e rativ e Work (C SCW' 92)
(Toronto, Ontario, November 1992), pp 43-50. ACM, New york,
1990.

[Sche86] Scheifler, R. Vy'., Gettys, J., The X Window System, In ACM
Transactions on Graphics 5(2), April 1986, pp. 79-109.

[Stef87a] Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., andTartar, D.
WYSIV/IS Revisited: Early Experiences with Multiuser Interfaces.
ln ACM Transactions on Office Information Systems, Vol. 5, No 2,
April 1987, pp. 147-186.

[Stef87b] Stefik, M., Foster, G., Bobrow, D. G., Keneth, K., Lanning, S.,
and Suchman, L., Beyond the Chalkboard: Computer Support for
Collaboration and Problem Solving in Meetings. In Communica-
tions of the ACM, January 1987, Vol. 30, No l, pp. 3Z-4i.

[Tang9l] Tang, J. C., Findings from Observational Studies of Collaborative
Work. International Journal of Man-Machine Studies, Vol 34, pp
143-t60, tggt.

Permission
_to

copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the computing systems copyright
notice and its date appear, and notice is given rhar copying is by permission of the negèñtsãr
the university of california. To copy otherwise, or to republish, requires a fee and/oripecific
permission. See inside front cover for details.

GroupDesign: Shared Edirtng in a Heterogeneous Environment 195

