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ABSTRACT We present an architecture for multi-user
software development environments, covering both
general and process-centered MUSDEs. Our architec-
ture is founded on componentization, with particular
concern for the capability to replace the synchronization
component-to allow experimentation with novel con-
currency control mechanisms that support collaborative
work-with minimal effects on other components while
still supporting integration. The architecture has been
implemented for the MeRvBI- SDE, and we report our
experience replacing and tailoring several parts of the
qynchronization component as part of MeRvnL.
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l. Introduction

Software Development Environments (SDEs) emerged in an attempt to
address the complexity associated with developing, maintaining and
managing large scale software projects. One of the main issues in SDE
research is how to construct environments that are integrated, while at

the same time flexible and extensible. Another key concern is how to
support synchronization (or concurrency control) of the activities of
multiple developers working on the same project. In traditional multi-
user database applications, the classical atomic transaction model

[11] synchronizes concurrent access to the database by isolating and
serializing user activities, but there is wide agreement that classical
transactions do not fit the requirements of collaborative work
[56,2, 44). There have been numerous proposals for so-called cooper-
ative transaction models (see [8] for a survey), but there is relatively
little agreement on which particular approach to concurrency control is
most appropriate for multi-user SDEs. We have therefore investigated
flexibility and extensibility of concurrency control policies for multi-
user SDEs from the system-architecture point of view, with the inten-
tion to ease replacement of the synchronization component for experi-
mentation purposes and/or as greater consensus is achieved.

We consider both general and process-centered SDEs. Process-
centered SDEs are a subclass of environments that provide a process
modeling language in which an environment administrator def,nes the
software development activities, their valid (partial) orderings, and
any other constraints on their execution, collectively called the process
model The architectures of process-centered SDEs include process en-
gines that "eÍtact" the process model, a term used to encompass en-
forcement, automation and guidance of the users in carrying out the
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process. Different organizations and/or projects may employ widely
different processes using the same process-centered SDE. In contrast,
a general SDE behaves the same way for every project. See

145, 40,201.
The process modeling language and corresponding enaction engine

must be extended with a notion of concurrency consistency and corre-
sponding synchronization primitives (such as in [58]) to support multi-
user process-centered environments, where the process model as well
as the data is shared among multiple participants in the same process.

In many process-centered SDEs, the process is defined in terms of
rules and enaction is achieved through rule chaining. Examples include

CLF [49], Oikos [1] and Merlin [62]. Such SDEs must support syn-

chronization among automated chains of activities as well as activities
directly invoked by users. In any multi-user SDE, the architecture
must also support interprocess communication, scheduling and context
switching, transaction and lock management, and other facilities on
which synchronization depends.

This paper presents an architecture for multi-user SDEs (hence-

forth MUSDEs) that is intended to support the requirements of gen-

eral, process-centered and rule-based MUSDEs. The emphasis is on

identification of the system's components and on the interfaces and in-
terrelations among them rather than on application of specific synchro-
nization policies. We have implemented the architecture for MenvnL,

which was previously a single-user system [35]. This work is comple-
mentary but orthogonal to the research done by Barghouti and Kaiser
on cooperative transaction management for SDEs in general and Mnn-

vBr in particular 15,7l.The focus of their work has been on modeling
coordination and cooperation, whereas here we focus on the architec-
tural facllities that enable the implementation of sophisticated synchro-
nization mechanisms that enact such models.

Section 2 gives the requirements that a MUSDE must fulfill, by
definition, and some additional desired properties. Section 3 intro-
duces the main characteristics and functionality of our architecture.
Section 4 explains the rationale behind the architecture. Section 5

describes the implementation for Manvn and our experience over
the past two years, including changing and tailoring some parts of the
synchronization component. Section 6 compares the architecture
to related work. Section 7 briefly evaluates the architecture and

summarizes the contributions of this research.
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2. Requirements and Desired Properties

Data sharing: V/e distinguish between "product" data and "control"
data: the former represents the actual data elements under deveþment
(i.e., source files, object files, design documents, etc.), while the latter
represents the data used by the SDE to manage the project. Examples
of control data for a source file include its version identification,
ownership information, compilation status, etc. Product data may be

integrated with control data (e.g., an object is def,ned as having state

attributes representing "control" information and file attributes that
point to "product" items) or may be maintained separately. In general

SDEs, control data represents the status with respect to a hard-coded
process, whereas in process-centered SDEs, control data reflects the
state of the externally supplied process in progress.

Data consistency: A MUSDE synchronizes concurrent access to
the SDE's data to maintain its consistency, e.8., it prevents data from
being garbled by conflicting accesses (such as multiple independent
updates) to the same or related data items. Product data can be main-
tained either by the SDE or in the file system; however, control data

must be maintained by the SDE. But access to both must be coordi-
nated together, since changes to product data must be propagated to
dependent control data and vice versa.

Process sharing and process consistency: In additionto data con-
sistency as above, which is required for all MUSDEs, process-centered

SDEs must maintain process consistency, as specified in the process

modeling language. Thus, the process engine must maintain a global
perspective of the shared process. Again, this can be done in either a

centralized or distributed fashion. For example, consider a constraint
taken from the "ISPW problem" 1291, where a member of group

PROGRAMMER cannot make any code changes before some or all
members of the Configuration Control Board have given approval.
The MUSDE must ensure that the constraint is applied to all relevant
participants in the concerted process.

Whereas the above characteristics are required in MUSDEs of the
indicated classes-by defi nition-the following represent additional
properties desired in a MUSDE. All these properties together form the
basis for the rationale behind our architecture.
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Perhaps the most signif,cant property from the architectural point
of view is flexibility in selection and application of synchronization

mechanisms. The idea is to be able to replace or modify concurrency

control policies, both globally (i.e., for all users of the system) and

locally (among selected groups of users). Some proposed cooperative

transaction models, such as transaction groups [23], support this capa-

bility to a limited extent in that one hardwired policy is enforced

among groups but different policies for within each group can be

specified in a formalism supplied by the implementation [55]. What
we have in mind is more general: The architecture should be con-

structed such that the entire synchronization component can be

replaced with minimal (preferably no) code changes to other parts

of the system. This enables cost-effective experimentation, which is

important in such a novel research area.

The architecture should support synchronization components whose

transaction models range from classical atomicity and serializability
to supportin g long - duration, interac tiv e operations and c oop e rati on

among concurrent operations. As noted in [10], any synchronization

mechanism for a MUSDE must take into account that many activities
in software deveþment are long-the concurrency and failure
atomicity of the conventional transaction model is not suitable, and

interactive-response time is more significant than overall throughput.

Cooperation implies sharing or exchange of partial information
during collaborative development efforts.

Extensibility and broad scope of application: A MUSDE should be

able to be extended with new tools, including commercial off-the-shelf
tools not specifically developed for the MUSDE [19].

Visualization: A MUSDE implemented on a window-based plat-

form should provide users with graphical visualization of both product

and control data. Since SDEs often support complex and highly struc-

tured data models, it is especially desirable to be able to display the

types and relationships of all objects of the environment. This means

that a MUSDE has to maintain up-to-date information as it is dynami-
cally changed by multiple users.

Recovery: Recovery ensures consistency of persistent data in case

of external and internal failures. Persistence of product data in princi-
ple can be provided by the host tle system, but persistence of control
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data must be provided by the MUSDE-which thus must also coordi-
nate the dependencies between the two kinds of data. V/e distinguish
between concurrency control, which is required by definition, and
recovery, which is required in practice. These two functions are both
carried out by the synchronization component.

All MUSDEs reflect to some degree the required properties out-
lined above, and a few support integration of arbitrary foreign tools,
full visualization of both product and control data, and recovery be-
yond that supplied by the file system and individual tools. However,
we know of no other environments that address the problem of
replacing the synchronization component.

3. The Architecture

Two major principles underlie the overall design: componentization and
separation of mechanism and policy. According to the componentiza-
tion principle, a complex system should be built from independent,
loosely-coupled and replaceable components. These components must
have flexible interfaces and support a variety of different policies
potentially employed by alternative interacting components (i.e., com-
ponents that provide the same services in different ways). We combine
componentization with layering, which is a paradigm in which each

component provides services only to the next higher layer and receives
services only from lower levels. Layering lowers complexity by reduc-
ing inter-component linkages.

Componentization is becoming popular in operating systems (e.g.,
Mach's replaceable pager [50]) and databases 16I,521, and layering
has been followed in many areas such as communication protocols [17]
and databases [13]. The combination seems especially promising for
SDE technology, which is by nature subject to changes [59]. We sug-

gest the potential to revise any system component (although with dif-
fering degrees of difficulty). Our major concern is to be able to modify
the synchronization component with minimal effects on task manage-
ment and data management. In particular, the synchronization sub-
system should be separate from both components rather than tightly
integrated into one or the other; such separation was previously
promoted in Camelot for non-collaborative applications [22]. This kind
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of component replaceability is termed horizontal adaptability, a
subclass of structural static adaptability [2].

Our concern for separating mechanism and policy is deeply in-
grained in the componentization.In particular, each component repre-
sents a class of mechanisms that can be tailored independently of other
components. The project-specific policies are supplied in a range of
different formalisms, depending on the component, from simple tables

to sophisticated languages. This approach was inspired by the data

modeling of database management systems and the process modeling
of process-centered environments. We extended primarily to the syn-
chronization component, to enable specification or parameterization of
the cooperative transaction model on a per project basis.

The architecture is depicted in Figure 1, using terminology close to
the "toaster" reference model [21]. We concentrate here on explaining
how things work, and defer to section 4 the rationale for why we chose

to design the architecture this way.
The architecture follows the conventional client-server model. Each

active environment with a populated objectbase is managed by a single
centralized server, and multiple clients are distributed on a local area

network. The server and each client are implemented as distinct oper-
ating system processes. Each client represents a user session that lasts

from invocation to exit, and acts as a front-end and an activity execu-

tion subsystem. The concept of activity encompasses all operations that
manipulate product data, such as editing and testing, via internal or
external tools; it does not include operations on control data (although

these might occur in the server as side effects). Clients may spawn

child operating systems processes to execute activities.
The server provides data management, synchronization and task

managemenl services. Service requests always originate at a client, but
most requests are sent to the server after client preprocessing. The
server validates and processes the request before returning to the client
with the desired information and/or instructions to execute a specific
activity. The server mediates access to both control and product data,
and manipulates control data.

Any SDE that allows to define the data model for the control
and/or product data must have a data definition translator. In process-

centered environments, a process model translator is also needed;

MUSDEs with programmable synchronization require yet another
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translator. Translation can be on-line, in which case the Loader acts

purely as a parser for other interpretive components, or off-line, in
which case it "compiles" the specifications into internal form.

The architecture distinguishes between normal users and an envi-
ronment administrator. The administrator's role resembles that of a
Database Administrator in conventional database management systems.

The administrator uses a privileged client to define the data model
(schema) and any integrity constraints on the data; the process model,
if any; and the coordination model-the programmable aspects of the
synchronization policy, if any.

3.1 Task Management

Scheduler (SC); Schedules requests from clients for services, including
context-switching. Before a client is serviced, SC makes two contexts
active: the client's session-context and the specific task-context within
the session (see below).

Session Manager (SEM): Encapsulates an entire session between a

specific client and the server, that is, all requests that occur from invo-
cation to exit of the client. SEM can: (1) maintain the user-specific en-
vironment and operating system parameters for general conf,guration
purposes; and (2) store enforcement information that pertains to the
entire session (as opposed to task-specific information). For example,
users might explicitly "attach" to a specific process segment to perform
during that session [38].

Task Controller (TC): This is the central component of the SDE,
which provides most of the services to the client. A task is def,ned as

any activity initiated by a client together with all the derived opera-

tions carried out by the environment, such as automation and enforce-
ment actions. For example, an SDE might have a constraint that when

an interface to a function F is modified, all source files that call F
must be marked for modification. The modification of F and the mark-
ing of dependent files is together considered one task. In a general

MUSDE, TC may degenerate to a command interpreter, perhaps with
a query processor. In process-centered environments, this component
includes the process engine, in charge of enacting the process. TC
maintains a task context for each active task in the system.
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3.2 Synchronization

Transaction Manager (TM): Maintains the integrity of the data in case

of concurrent access and failures. In process-centered MUSDEs, TM
also maintains process consistency. However, it is not responsible for
detecting any conflicts due to concurrent access, but only for resolving
them. Conflicts are detected by the Lock Manager, described below.

A "transaction" can map to a single activity or to a single task, but
usually not to a session, since this would imply coarse-grained con-
currency. There are no specific guidelines for the implementation of
concurrency control or recovery, except for the restriction to locking-
based mechanisms. For example, an environment may use a "blocking
with deadlock resolution" mechanism or a "non-blocking with abort"
mechanism, or a combination of both. Also, TM may support flat
transactions, or nested transactions that model the nesting of subtasks
within a task [43].

TM-TC interfoce: The interface between TC and TM is a critical
issue as it bridges between the task level and the synchronization level.
It is desirable for TM to be independent of any specific task model and
for TC to be independent of any specific synchronization mechanism,
so that either can be replaced with minimal overhead. A predeflned set

of transaction primitives known to TC must be supported by any TM,
with the set flexible enough to support many concurrency control poli-
cies. However, semantics-based concurrency control inherently re-
quires some knowledge of the task level to resolve conflicts that are
context-sensitive [24]. This implies that the TCrTM interface may need

to be augmented with a mediator component that reconciles informa-
tion from both levels; MeRveI-'s Coordination Manager (CM), which
performs this role, is described in 5.6.

Lock Manager (LM): Conventionally considered part of the trans-
action rnanager, LM is treated in our architecture as a separate sub-

component. Its main role is to detect any potential violations of the
data-consistency constraints, as defined by a lock-compatibility matrix.
An additional property of LM is to be able to hold multipl¿ locks on
objects, on insistence from TM, even when they violate the defined
compatibility. This is useful for implementation of non-conventional
concurrency control policies. For example, transaction groups may al-
low several transactions in the same group to share transient results, so

all such members of the group might simultaneously hold what would
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normally be considered conflicting locks. ObServer [32] is a multi-user
data server with a rich lock set, including communication modes (for
notiûcation), which is capable of supporting transaction groups.

ObServer's communication modes can be implemented in LM with
proper support from TM as part of conflict resolution; see section 5.6.

3.3 Data Management

Object Manager (OM): Implements the data model, provides persis-

tence, and performs all requests for access and modification of both
control and product data. For componentization to work, it is impor-
tant that OM provide the upper layers with a data abstraction that
avoids concern with internal representation. For example, upper layers

should not know whether data is in main or secondary memory [54].
We assume a generic object-based data model with optional class ("is-
a") hierarchy, composition ("is-part-of") hierarchy, and arbitrary rela-
tionships ("links") between objects. All, some or none of these might
actually be supported by OM.

OM-LM interfoce: The main issue for the interface between OM
and LM is whether data-consistency specif,cations need to be extended

for a specific data model. For example, the existence of composite ob-
jects and semantic links among objects may mandate "intention" lock
modes for ancestor and linked objects, respectively; the existence of
types (classes) may similarly mandate intention locks as the object-
based form of predicate lock [26]. Our architecture keeps the OM-LM
interaction to the minimum: LM needs to know whether or not OM
supports any such relationships, without concern for what the relation-
ships are; OM must provide an abstract means for referring to the set

of objects related to a given object, so that LM can place intention
mode locks on those objects.

Storage and File Managers (SM and FM): SM is responsible for
low-level disk and buffer management for control data. It manages un-
typed, raw data, and interacts with the underlying operating system. If
the MUSDE uses file-based tools and maintains its product data in or-
dinary files, FM is responsible for accessing files requested by other
components (in a shared file system such as NFS only path names

need be passed rather than the actual file contents). V/hen product data

is encapsulated within control data, objects usually abstract the file
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system by providing typing and relationship information. In this case

SM is responsible for both, and FM degenerates into a mapping func-
tion between objects' file attributes and their file contents.

3.4 The Client

User Interfoce and Objectbase Displny Manager (UI): Provides the hu-
man user interface to all environment services, including a display of
the entire objectbase structure (subsets can be viewed via browsing).
This feature introduces the challenge of keeping the display up-to-date,
since the objectbase is dynamically changed by multiple users, includ-
ing modifying, adding and deleting objects and/or relationships
between objects.

Actívity Manager (AM): Interacts with tools in an environment-
specific manner. This might include spawning child operating system
processes with suitable command lines and transforming data to/from
objectbase and tool formats. There may or may not be communication
between AM and the activity and between AM and the server while
activity execution is in progress.

Client Command Processor (CCP): This subcomponent is open-
ended. It includes formatting of requests for services so that they con-
form to the interface specifications of the various service providers in
the server (fronted by TC), and executes local services that do not af-
fect other users or the software development process. An example of
the former is an ad-hoc query parser that performs syntax checking
and passes to the server a parsed query. An example of the latter is
the "help" facility. CCP has no significant impact on the overall
architecture.

Message Server (MS): kansfers information between the clients
and the server over the communication medium. MS preserves the
object abstraction so that both ends can refer to objects identically,
which means it must provide linearization and delinearization of the
objectbase structure.

Mapping our architecture to the "toaster" model, data integration
and repository management services are in the server, and user
interface services are in the clients, as expected. V/e divide task
management between the clients and the server, where the clients are
responsible for activity execution and the server for the rest. Since
all long-duration operations are performed in the clients rather than
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the server, task management does not become a bottleneck during
parallel development.

3.5 An Example

Mika, a programmer, wants to change a source file to fix a bug. There
are other active users working simultaneously on the same project.
She logs into the SDE by invoking a client. The client initiates a con-
nection with the server, passing along session variables. On the server
side, SEM initiates a new session context. The client then receives a

visual display of the objectbase for the user's screen, and Mika can

then start to work.
She proceeds with a request R to edit a file F, represented by an

object O. After preprocessing to check whether O exists and is unam-
biguous, the client sends the request to the server. When R is sched-
uled, SC updates SEM to point to the appropriate client's session and
task contexts, and passes R to TC. TC tells TM to begin a transaction,
which might be a subtransaction of some in-progress nested transaction
when R is part of some on-going task. TC handles any task-related
constraints for R, and then issues requests to TM to access the objects
required, directly by the activity (tool) or indirectly by TC. TM re-
quests the appropriate locks from LM for these objects. LM performs
the lock requests by inspecting its previously placed locks and lock
tables. If the request is initially denied due to a conflict detected by
LM, TM resolves the conflict (e.g., by aborting or suspending some

offending transactions, or by allowing apparently conflicting requests

and insisting LM place the locks anyway, depending on the synchro-
nization policy). If the locks are granted, LM then requests OM to
access the objects. This may involve interaction with SM and FM. If
all goes well, the relevant information propagates back up to this
client, and SC selects the next client request.

AM then executes at the client in an environment-specific manner,
for example, by spawning a child process to invoke a tool, pass input
from the server, accept output and status code after the tool termi-
nates, and-finally-report these back to the server. After SC restores
the client's contexts, TC handles any task-related triggers for R (i.e.,
there may be task-related operations both before and after execution of
each activity). This mode of interaction continues until there are no
more activities to execute or until an exception occurs (e.9., a task is
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aborted due to intervention of concurrency control or a failure), and
the task is terminated. Notice that while a client is executing an
activity, the server is not bound in any way to that client and can
serve other clients. Thus response time is good, even if many of
Mika's colleagues are simultaneously active.

4. Alternatives, Decisions
and Justifications

4.1 Client-Server Separation

The trst issue to consider is the degree of distribution of the MUSDE.
The two obvious alternatives are to fully centralize services or to fully
distribute them among clients. In the f,rst case there would still be
minimal clients, at least operating system shells, to allow multiple
users to communicate with the environment; but all control and
product operations would take place in the server. In the second case
there would be no dedicated server at all, but only clients, with all
control and product operations executed in a client and shared only
via communication directly among clients.

We chose a hybrid approach, in which clients are responsible for
long-duration activities and the server is responsible for relatively
short-duration control and synchronization. Maintaining data- and
process-consistency internal to the server reduces communication
overhead, while farming out interactive and/or computation-intensive
activities to the relevant clients keeps computation overhead and
response time low. This division of labor seems to best exploit today's
high performance workstations and high capacity server machines.

Locating task control in the server does not preclude the possibility
of different "views" for different clients. These could be managed by
the server as part of the session context, although the SDE would have
to enforce compatibility among the definitions of process consistency
[9]. Further, the server-client separation does not prevent distribution
of the server into multiple server processes, with communication
among themselves to handle decentralized data, process and synchro-
nization. Our intent is to instead make an inherent distinction between
the roles of clients and server(s).
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4.2 Transaction and Lock Management

The main reason for decoupling TM and LM is to distinguish conflict
detection from conflict resolution, where the former is a mechanical
procedure that reports any violations of the defined consistency and
the latter is a relatively elaborate algorithm that decides how to resolve
a conflict when it arises. This separation makes it possible to modify
and/or replace synchronization policies without affecting the underlying
conflict detection. Furthermore, the fact that LM has no knowledge of
the semantics of the various lock modes enables implementation of
LM in a way that it can be reconfigured externally via tables, without
any code changes. The decoupling of transaction management from
lower levels also brings TM closer to task management, enabling
semantic-based concurrency-control without concern for data man-
agement. This separation contributes perhaps more than anything else

to the flexibility of the system with respect to concurrency control.
Examples that demonstrate this flexibility are given in section 5.

4.3 Tunable Lock Management

The alternatives are: (1) a non-locking policy, where concurrency con-
trol is optimistic; (2) ahard-coded lock set and lock-compatibility ma-
trix; and (3) a programmable lock set and lock-compatibility matrix.
Considering only options 2 and 3, the separation of LM from TM
makes it impossible to predict what lock set and compatibility might
be needed, and thus any hard-coded set would prove insufficient.
However, viewing LM merely as a "mechanical" conflict detector en-
ables it to be table-driven, with the tables loaded during system initial-
ization. This means customizations of TM affect LM only through the
tables.

Option I would involve replacing TM with an optimistic validation
scheme [42], perhaps with a "merging" option as in NSE [31], and
LM with a corresponding versioning mechanism. This should not af-
fect the rest of the architecture, although obviously both TM and LM
must be optimistic or both must be pessimistic. We have no direct ex-
perience in MUSDEs to back up this conjecture, but one of the authors
has investigated the replaceability of optimistic concurrency control
vis a vis locking in the context of concurrent programming languages
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[48], and found that the same protocol could be employed with respect
to the rest of the system.

4.4 Objectbase Visualization

The two obvious alternatives are to keep an entire replica of the ob-
jectbase at each client, or to display only those objects that are actually
used by a client. Note that in either case control data is manipulated in
the server, so the issue is not where to modify the data, but rather how
to display it. Therefore, we can treat anything displayed at the client
as a read-only replica. However, keeping entire replicas is unnecessary

and may become prohibitively expensive as the number of clients
increases. On the other hand, displaying only objects in current
use by that client does not provide sufficient context to fulfill the
"visualization" property.

Vy'e chose a compromise approach, where clients maintain a cache

of the structure of the objectbase, mainly for reference purposes in
selecting arguments to commands, but not the actual contents of
objects. For each object, we maintain only its name, type, unique ID
and relationships to other objects. This provides sufficient information
for viewing the entire objectbase, while still compact in volume for
transmission by MS.

5. Implementation for Marvel

The MenvBI- 3.x architecture is illustrated in Figure 2. ('We use the
term 3.x to refer generally to all versions of MtnvEL starting with 3.0;
earlier versions of M¿RvBr- supported only a single user.) It can be
viewed as a rule-based instance of the generic MUSDE architecture
of Figure 1. The client structure is essentially the same. The server
reflects TC in three sub-components: query processor (QP), command
processor for built-in commands (CP), and rule processor (RP) respon-
sible for process enaction. It also adds a Coordination Manager (CM)
as a mediator between TM and TC. Menvsl's Loader is augmented by
the Evolver, a data and process model evolution tool [36], which is

outside the scope of this paper. The specifications that parameterize
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the various components-tool "envelopes" (see below) and data,
process and coordination models-are written in various notations by
the administrator and loaded using a privileged client, tailoring the
environment's behavior according to these specifications. The MeRvBr-

daemon, not shown, automatically starts a server on the appropriate
objectbase when its f,rst client logs in, and shuts down the server
after the last client has exited.

5.1 Process Modeling and Enaction

The process is defined in terms of rules, each representing a single
activity [37]. Each rule consists of a name; a list of typed parameters;
a condition consisting of bindings to local variables and a complex
property clause that must hold on the actual parameters and bound
variables for the rule to fire; an optional activity that specifies a tool
envelope and its arguments; and a set of mutually exclusive effects,
each consisting of assertions to the objectbase that reflect one of the
possible results of executing the activity. Rules are implicitly related
to each other through matches between a predicate in the condition
of one rule and an assertion in the effect of another rule.

Process enaction in RP is done through chaining [30]. When an
activity is requested, the condition of the corresponding rule is evalu-
ated. If not satisfied, RP attempts to satisfy it by backward chaining to
other rules whose effects may satisfy the user-invoked rule. This is
done recursively, until the condition is satisfied or all possibilities are
exhausted, in which case the activity cannot be executed. If the condi-
tion is satisfied, the server sends sufficient information to the client
for AM to execute the activity. When the activity is completed, RP
asserts the effect indicated by the status code returned from AM and
then recursively forwards chains to all rules whose conditions have be-
come satisfied. Menvn distinguishes between consistency and automa-
tion chains, which are specified by annotations on condition predicates

and effect assertions in the rules [6]. Consistency chains propagate

changes and are by definition mandatory and atomic. Automation
chains automate sequences of activities and are by definition optional;
they may be terminated after any individual activity or'oturned off"
entirely.
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5.2 Task Management

Menv¡l's scheduler implements a simple FCFS non-preemptive
scheduling policy. However, non-preemptive scheduling does not im-
ply that an entire session, or even an entire task, is handled by the
server atomically. Instead, we exploit the natural "breaks" within a

task, specifically each activity is transmitteci to the client to carry out,
at which point the server performs a context switch and turns to the
next client request. That request might resume an in-progress task,
following the completion of an activity in that client, or initiate a

new task.
RP is the heart of task management. A task consists of all rules ex-

ecuted during backward chaining, followed by the user-invoked rule
(which caused the backward chain), followed by all rules executed dur-
ing forward chaining. RP operates in a specific task context consisting
of information necessary for maintaining the state of the task. The
main data structure \s the rule stack. Since backward chaining is mul-
tiply-recursive and generates an AND/OR tree (i.e., in some cases a

rule's condition may be satisfiable only by application of a set of rules,
and in other cases by any one of many possible rules), the rule stack
is implemented as a multi-level stack, where each level consists of an

ordered set of rules that correspond only to the f,rst rule in the previ-
ous level, and are not related to other rules in the previous level. The
same data structure is used for depth-first forward chaining.

One problem is that multiple instances of the same rule, with the
same or different parameters, may be fired concurrently by the same

or different clients. Since they all fire in the context of one RP (i.e.,
one address space), rules must be reentrant. Each invocation entails
creation of a rule-frame, which consists of a pointer to the (read-only)
rule definition and a dynamically allocated data section, which is
retained throughout the entire life cycle of a rule chain.

5.3 Synchronization

TM supports a nested transaction model in which a task is modeled as

a series of top-level transactions, each consistency chain is a subtrans-
action of the triggering transaction consisting of a further level of
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subtransactions corresponding to individual rules, and each rule in an

automation chain starts an independent top-level transaction. An
entire consistency chain is executed to completion or rolled back as

if it never started, while the latest rule in an automation chain can

be aborted without affecting the rest of the chain. Starting with
M,q.nvpl version 3.1, CM serves as a mediator between data and task
management to permit relaxation of consistency under specif,ed

conditions. CM is discussed in section 5.6.
M¡.Rvnl's composition hierarchy is based on ORION, using inten-

tion locks for ancestors [41]. When object O is locked, all O's ances-

tors are locked in the corresponding intention mode. Intention locks

are generally weaker than the corresponding descendant locks, and

their goal is to protect objects from being affected by an operation on
an ancestor (e.g., deleting the ancestor). For example, when object O
is locked in L mode, IL locks are placed on all its ancestors, where
IL is compatible with any operation that would not affect O. In partic-
ular, it is compatible with another IL lock. This idea can be extended

to linked objects as well as ancestors, but this is not supported in
MRRvBT-.

LM reads three tables when initialized: compatibility matrix, an-
cestor table and power matrix. The compatibility matrix defines the
set of lock modes and the compatibility of any two lock modes. The
ancestor table indicates which lock to apply to ancestors of the object
being locked in a certain mode. The power matrix determines which
lock has precedence given two locks requested by the same transac-

tion, e.g., exclusive X takes precedence over shared S.

5.4 Data Management

One major consideration is the display-refresh policy for the objectbase

image, from the viewpoint of OM. The alternatives are to: (1) broad-
cast every change to all active clients; (2) refresh periodically; and (3)

refresh "on demand", as determined by the server, by "piggybacking"
the refreshed image on the next TC message sent to each client. The
third alternative was preferred as it saves communication overhead

while keeping information reasonably up to date. An explicit "refresh"
command is also provided for the user who wants to ensure his/her
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image is up-to-date. We are working on a delta scheme, whereby
batches of change records are transmitted rather than an entire image,
when the time period or number of changes since the last refresh is
smaller than a user-specified threshold.

SM uses the uNx dbm package. Although more sophisticated data
management strategies can be supported by dbm, SM loads the entire
objectbase into memory at server startup. FM is implemented by a
collection of system calls that map the object name-space to the file
system name-space. Only file pathnames are stored in the objectbase,
and the corresponding file contents are stored in "hidden" file system
rooted at a distinguished directory specific to the objectbase. MS uses

Internet sockets.

5.5 Client and Loader

UI includes both graphical and command line interfaces with the
former providing full objectbase browsing capability (conceptually

communicating with OM directly) and the latter supporting batch pro-
cessing scripts as well as dumb terminals. CCP includes the front end
for an ad hoc query parser. AM is the most complex component of
the client. It is in charge of spawning child processes for executing
envelopes, basically shell scripts, for invoking the tools employed in
the environment. AM communicates with envelopes through pipes in a
"black-box" fashion: inputs are provided at the beginning of activity
execution, and output and a status code are collected at the end [271.
File attributes are supplied to/from envelopes as pathnames, so any
content retrieval operates through the normal operating system inter-
face entirely divorced from MenvBI-.

The Loader generates a static rule network from the process

model, which is used at runtime to determine chaining [34]. This neÈ

work is loaded into RP, to define process consistency and opportunities
for automation. The data and process models are tied in the sense that
rule parameters and local bindings in the conditions of rules are typed
according to classes. The data model is used by OM and QP. The var-
ious lock tables are loaded into LM, to specify potential conflicts, and

a set of coordination rules are loaded into CM, to def,ne semantics-
based conflict resolution.
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5.6 Experience

In this section we discuss our experience with the architecture as im-
plemented for Mrnvn, focusing on changes to the synchronization
component since its initial implementation in Fall 1990. We also

mention a few other changes that may be of interest.

In one specific MRRvBI- environment (see below), we started the
compatibility-matrix with the standard shared and exclusive locks and

corresponding intention locks (Figure 3), but then modified the lock
tables several times. The current system includes five new lock modes,

and changed compatibility for some old modes. One purpose was to
provide semantics-based locking by distinguishing between operations
that affect only a single object (e.g., write on a simple attribute) and

operations that might affect related objects (e.g., the delete operation
removes an object and all its children). So Strong Exclusive (SX) and

Strong Shared (SS) locks were added, and X and S became compat-

ible with any intention lock (Figure 4). The ancestor table was also

modified to include intention locks for the new modes. This required
no code changes to LM and only minor changes to TM to replace re-
quests for locks according to the new semantics. Even these code

changes would not have been needed for MnnvBl 3.1, where the
specific lock modes to use for particular arguments of activities and

rules are specified in another external table. Thus, a dramatic change

in conflict detection can be achieved with very little overhead.
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Figure 3: Initial Compatibility Matrix
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Whereas we implemented LM once and replaced its external tables

several times, the entirety of the initial TM subcomponent was later
replaced. The first TM implemented a flat transaction model, in which
an entire chain executed as a single transaction. This made it impossi-

ble to treat different subsets of a task differently. For example, we
could not abqrt an automation subchain without rolling back consis-

tency subchains descended from the same user-invoked rule. The sec-

ond instance of TM supported nested transactions. Each rule triggered
during an automation chain, together with any consistency subchains

emanating from it, is a top-level transaction that can be aborted with-
out affecting other top-level transactions in the same task. This major
change had no impact whatsoever on LM, and required only trivial
changes to RP.

The final change to TM in Menvru 3.1 added a hook for the Coor-
dination Manager (CM). V/hen TM would abort a transaction, it
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requests assistance from CM. The administrator defines an optional set

of coordination rules to specify scenarios when TM's default policy
above may be relaxed, and prescribe appropriate actions in each such

case. CM accesses an abstraction of RP's rule stacks, to try to match
one of its coordination rules with the details of the current conflict
scenario; if no match is found, then the decision reverts to TM. CM
currently supports notify, abort, aIlow and suspend actions, and
we are investigating the construction of a transaction algebra based on
split and join operations [39].

The introduction of CM was coupled with one change to LM's ta-
bles, to add Notification (NT), Intention Notification (INT) and Nil
(NL) locks. A notification lock conflicts with any other lock, so that
CM is invoked whenever a notiflcation lock has been or is being placed

Figure 5: Top-Level Mnnvn Objectbase Display
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and another transaction requests or holds, respectively, a lock on the
same object. The notify action informs the user who requested the
notify lock, and then the conflict is ignored, meaning both of the
"conflicting" locks are placed simultaneously and both transactions
may proceed as if there were no conflict. The ignore action can also
be used to support transaction groups, by permitting multiple transac-
tions in the same group to proceed concurrently,'even when there are
serious conflicts (e.9., a strong shared lock and a strong exclusive
lock).

The new XView client for Menvrl 3.1 allows manual switching
among multiple in-progress tasks within a single client, while the ear-
lier Xlib client permitted only one task at a time. Much of the purpose
is to support the actions of the new CM, e.g., to suspend or abort

Figure 6: After Selecting Component ¡s New Display Root
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in-progress activities; when such actions are applied to an Xlib client,
they do not take effect until the user signals completion, perhaps wast-

ing much human effort. Adding a choice among graphical clients
required substantial changes to AM, and some to CCP, but only
very minor changes to the server, mainly in the MS component.

AM has been enhanced to add "gray-box" integration for extensible

tools. This interface allows repeated input and output while an activity
is in progress. For example, a multi-buffer editor (such as emacs)

makes it feasible for the user to request multiple files for editing incre-
mentally, but our initial "black-box" approach required all inputs/out-
puts to be requested up front. Again, while major new functionality

current object: clienUmodules/i

@@@@@@@
Lefe Print lnformat¡on for Object
R¡ght Change Current object

Figure 7: After Again Selecting Component As New Display Root
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was added to the client, very minor changes were required in the
server.

The most extensive change to the client was performed as part of
an experiment to treat MenvEL as a "policy tool" [25] for the Field
broadcast message server [51]. The entire user interface was stripped
off the client, CCP was modified to accept Field's string messages and
convert them to the format required by the server, and AM was
modified to transmit and register such messages [46]. This required
only 950 new lines of code the Menvm client and no changes at all to
the server; 150 lines of Field's code were affected.

There have been numerous changes to TC, whose details are out-
side the scope of this paper. For example, in one experiment, we

Figure 8: One More Click
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developed a new process modeling language based on constrained
expressions [3], and implemented it via an external translator into
M¡.nvEL's rules [38]. The combined language uses the two different
formalisms to express global activity ordering and local constraints,
respectively. No changes were required in the client, and the only
change to the server was a 750-line module added to RP. Even though
the new process modeling language explicitly expresses synchroniza-
tion among multiple process participants, there were no effects at all
on the transaction subsystem.

Figure 9: Separate Display of Objectbase Composition Definition
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5.7 Status

MenvEI- 3.1 is implemented in over 150,000 lines of C, lex and yacc.
It runs on SparcStations (SunOS 4.1.2), DecStations (Ultrix 4.3), and
IBM RS6000s (AIX 3.2), using Xl1R5 Windows, and comes with
several hundred pages of administrator and user manuals. Earlier re-
leases 3.0 and 3.0.1 have been licensed to about 25 educational institu-
tions and industrial sponsors since December 199I. 3.0.1 was the first
version fully developed and maintained using C/MaRVEL, a MeRvsr-
process for team programming in C, and C/Mnnvm itself is now
maintained using P/MIRVEL, a MeRvnr- process for process model de-
velopment and evolution [36].

6. Related Work

We mention only MUSDEs in this paper. See [47] for a survey of
object management systems with particular concern for their synchro-
nization facilities.

SMS (aka Gypsy) [16, 53] is an extended version control system
that is tightly integrated with an object-oriented operating system. Syn-
chronization is manual, and users work in isolation, each in his/her
own "workspace". Although SMS provides a mechanism for multiple
users to access data objects concurrently by specifying a list of users
that can attach to a workspace, it provides no means for coordinating
their access.

NSE supports parallel and distributed development through an

optimistic concurrency control model, which allows multiple users to
access objects concurrently without locking them. When multiple
users check in modifications to the same file, a tool aids in merging
the multiple versions. File management is based on the concept of
environmenl, a separate workspace with its own logical copy of the file
system. Environments can be arbitrarily nested. This hard-coded
synchronization policy dictates a methodology for software develop-
ment, in which developers work primarily in isolation and conflicts are
rare.

Arcadia [60, 33] is a process programming environment based on
research in SDE technology underway by the Arcadia consortium.
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Like our architecture, it is constructed from layered components that
are intended to be replaceable. However, although process consistency
from the process programming point of view is addressed extensively
by Sutton [57), an independent synchronization component is conspic-
uously absent from the architecture. We guess that multi-user synchro-
nization is provided by the object management system.

Melmac [18] is a process-centered environment that distinguishes
between user-level and internal representations of the process. Unlike
our architecture, Melmac's server is primarily concerned with data
management and provides a simple concurrency control mechanism,
and the clients are responsible for process enaction. One shortcoming
evidenced by the examples given by Gruhn [28] is detaching process
management from the server leads to an inability for rule chains to be
interleaved even during activity execution-which might degrade re-
sponse time significantly - so synchronization is not a major issue.

Oikos is a rule-based MUSDE that supports concurrency using a
hierarchy of blackboards that resemble Linda's tuple spaces [14].
Oikos supports specification of a wide range of services available dur-
ing process enactment, including database schemas and transactions.
However, while concurrency is an inherent aspect in the Oikos archi-
tecture, concurrency control is not, and it is not clear what range of
synchronization policies can be supported.

CLF is a rule-based MUSDE that distinguishes between consis-
tency and automation, but through separate classes of rules rather than
annotations on rule predicates as in Mnnvn. CLF employs a form of
optimistic concurrency control based on merging, with inconsistency
tolerated by automatically placing guards on inconsistent data [4].
Changes are grouped into evolution steps, which can be undone or
redone [5].

Merlin is the closest system to MenvBr-. From the process enaction
viewpoint, the main difference may be that Merlin distinguishes for-
ward and backward chaining styles of rules while MtRvBl- has a single
rule base and a symmetric chaining model. There are substantial ar-
chitectural differences, however: Merlin employs a simple checkin/
checkout transaction model, using an object's state as determined by
the rules in lieu of a lock; there is no support for multiple locking
modes; and the objectbase display is limited to each user's working
context (although there is a refresh mechanism). It appears that chain-
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ing operates in each user's working context (client), similarly to
Melmac, as opposed to a centralized server.

7. Evaluation and Contributions

Semantics-based concurrency control and componentization are, in
some sense, conflicting goals: how can the transaction manager be se-

mantics-based when the semantics are hidden in the task controller?
For example, in our work towards programmable concurrency control,
we have had to develop a richer interface between the rule processor

and the coordination manager than was previously needed for the
transaction manager. It seems unlikely that a sufficiently rich general

interface-without a sophisticated mediator such as our coordination
manager-can be developed between the task controller and the trans-
action manager to allow replacement of either without affecting the
other.

Our architecture provides no direct interface between clients and
the synchronization components. However, we envision the desire for
explicit user interactions in variants of cooperative synchronization,
e.g., to explicitly negotiate conflicting accesses. A special case of such

an enhancement was developed for notification in M¡nvBI- 3.1, but it is
still not possible to define commands as part of the coordination
model. To do so, we anticipate changes would be required in the two
command processors as well as the coordination and/or transaction
managers.

The most significant drawback of our architecture is that the single
centralized server does not scale up to very large numbers of clients.
Some kind of server distribution seems warranted. This is an impor-
tant area for future research.

But there are many advantages of our architecture. At the user in-
terface level, the structural display facility provides for visualization
without the overhead of maintaining complete objectbase replicas at

the clients. At the task management level, the separation between ac-

tivity execution and task control provides for process sharing while en-
abling local execution of tools.

At the synchronization level, we have made several architectural
decisions we believe are unique as well as fruitful: (1) A table-driven
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lock manager allows to modify data-consistency policies with no code

changes. (2) The separation between transaction and lock management

allows def,nition and monitoring of data consistency independent of
the synchronization policy, with minimal overhead. Moreover, this
makes it possible to implement sophisticated coordination models, with
little effect on other components. (3) The decision to separate transac-

tion management from object management emphasizes our view of
support for advanced synchronization models. Essentially, we moved

synchronization away from low-level data management and closer to

the semantic, task level. We do not know of any other collaborative
environment with such functionalities.
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