
A Technique for Documenting the
Framework of an Object-Oriented
System*

Roy H. Campbell and Nayeem Islam

University of Illinois at Urbana-Champaign

ABSTRACT This paper presents techniques for docu-

menting the design of frameworks for object-oriented
qystems and applies the approach to the design of a
configurable message passing system. The technique
decomposes a framework into six concerns: the class

hierarchy, protocols, control flow, synchronization,
entity relationships and configurations of the system.
An abstract description of each concern is specif,ed us-
ing standard notations. Subtyping is used to ensure that
the abstract specifications apply to the abstract classes,

concrete classes, and instances of the system.

The message passing framework we document with
these techniques is general, portable, and efficient. It
supports parallel message based applications on both
tightly coupled shared memory architectures and
loosely coupled distributed memory architectures. The
message passing system framework has been coded in
C#, runs on the Choices operating system, and has

been benchmarked on a system of Encore Multimax

*This work was supported in part by NSF grant CISE-1-5-30035 and by NASA grants
NSGl4Tl and NAG 1-163. The second author was supported in part by an IBM Gradu-
ate Fellowship.

@ Computing Systems, Vol. 6 . No. 4 . Fall 1993 363



320 tightly-coupled multiprocessors. The system is be-
ing implemented on a network of SUN SPARCstation
2s.

I . Introduction

Frameworks t8l [7] characterize the design of an object-oriented sys-

tem. A description of a framework serves to document the specifica-

tion, implementation, use, and reuse of the design and the code.

Framework descriptions are commonly found in descriptions of user

interfaces. Examples include the Model/ViedController [14] and

Unidraw [19] frameworks. In the Choices object-oriented operating

system, we have used frameworks extensively to describe the design

and behavior of subsystems [4, 3]. We found it hard to specify and

document the relationships between the various components of a
Choices framework. In this paper, we present an approach to describ-

ing frameworks that captures many complex design issues. We apply

the approach to a description of the framework of an efficient, portable

message passing system for Choices.

In a recent paper f4, 31, we elaborated more precisely the way in
which we used the notion of an object-oriented framework in our de-

sign of Choices. The paper identified several common concerns that

could be addressed by examining an object-oriented system as a

framework and we specified those concerns for some example subsys-

tems of Choices. However, as we and other authors [13, 11] have re-
marked, it is difficult to produce a complete documentation of a frame-

work. Descriptions of frameworks are informal. If object-oriented
systems are to become easier to describe, design and implement, we

must find a better approach to specify a framework.
In practice, there are few notations that support the description of

the abstract properties of interacting components in a large object-ori-
ented software qystem. A notable exception is the work on Contracts

[0]. The flow of control diagrams used for describing the Model/
ViedController [14] and Unidraw [19] frameworks are abstract. The

364 Roy H. Campbell and Nayeem Islam



control flow of the system and the abstract class protocols are, how-
ever, the only aspects of the frameworks that are described.

In this paper, we extend and unify previous techniques for specify-
ing frameworks. Our technique decomposes a framework into six con-
cerns: the class hierarchy, protocols, control flow, synchronization, en-
tity relationships and configurations of the system. An abstract

description of each concern is specified using standard notations. Sub-

typing is used to ensure that the abstract specifications apply to the ab-

stract classes, concrete classes, and instances of the system.

As an example, we describe the design of a message passing sys-

tem developed for Choices. The message passing system is imple-
mented and its behavior has been benchmarked and studied using ex-

ample parallel applications [12]. The message passing system is

efficient, compares favorably with other message passing systems, and

is portable. It exhibits the expected object-oriented system characteris-
tics of specialization, customization, and reuse. The performance mea-

surements of the system include many different customizations, spe-

cializations and optimizations.
Section 2 discusses related work. We describe the properties of

frameworks in Section 3. Section 4 describes how we use types to
classify classes, synchronization, control flow and entity relationships.

Section 5 introduces the message passing system example and provides

sample documentation of each of the six concerns. Section 6 discusses

our conclusions and future work.

2. Related Work

There has been very little work in understanding how to design, im-
plement and document frameworks. The two most important frame-
works designed and implemented have been for user interfaces. These

two frameworks are the Model/VieWController framework for building
user interfaces for Smalltalk-8O applications and the Unidraw frame-
work for building graphical editors.

Most descriptions of the Model/VieWController paradigm are in-
formal [14]. A method invocation diagram is used that shows the three
objects in the system. Arrows indicate method invocations in the dia-
gram. The sequence of method calls is informally specified. The
Model/VieØController paradigm defines how different Models of an

A Technique for Documenting the Framework of an Object-Oriented System 365



application domain, different Views of data and different input Con-
trollers can be composed if certain protocols are obeyed between the
three components. They do not consider extending the method invoca-
tion diagram to more complex frameworks for user interfaces. For ex-

ample, new input and output technologies may require a new frame-
work that may be able to use parts of the Model/VieVController in a
disciplined manner.

Contracts [10], on the other hand, do provide a semi-formal
method for specifying the obligation of objects to each other. Much
like our work they extend the usual type signatures to include con-
straints on behaviors which capture the behavioral dependencies be-
tween objects. Contracts may be composed with other Contracts and
they may also be refined. Contracts have been used to describe the in-
teraction of the components in the Model/ViedController framework.
For example, Contracts can express the fact that a View must always
reflect the current state of the Model. A Contract defines preconditions
required to be satisfied by objects in order to participate in a frame-
work and the invariants that these objects must satisfy. Contracts are

limited in that they only look at one aspect of the relationship between

objects. It does not, however, make control flow relationships as ex-

plicit as a control flow diagram. It does not explicitly state entity rela-

tionships between instances of classes and it does not specify the syn-
chronization constraints in objects.

The description of frameworks in Unidraw [19] is also limited. The
authors of that framework employ method (interface protocols) tables
for each class, and flow of control diagrams to elucidate the behavior
of the system. They do not consider how to create abstract control flow
diagrams or how to reuse control flow. Their use of ordered control
flow is an improvement over the previous uses of control flow [14].

Deutsch [8] defines some simple properties of a framework. He
maintains that subclasses in a framework should extend and not invali-
date the specification (interface protocols) of their superclass. This
means a subclass may re-implement a method but it cannot change the
interface of a superclass method or remove a superclass method. This
type of programming produces more maintainable and reusable code.
It also provides full substitutability: a subclass may be used when a su-

perclass is expected.

366 Roy H. Campbell and Nayeem Islam



3. What is a Framework?

A framework is an architectural design for object-oriented systems. It
describes the components of the system and the way they interact. In
frameworks, abstract classes define the components of the system. The
interactions in the system are defined by constraints, inheritance, in-
clusion polymorphism, and informal rules of composition. Choices is
defined as a framework that guides the design of subframeworks for
subsystems.

The framework for the system provides generalized components
and constraints to which the specialized subframeworks conform. The
subframeworks introduce additional components and constraints and
subclass some of the components of the framework. Recursively, these
subframeworks may be refined to further frameworks. Frameworks
simplify the construction of a family of related systems by providing
an architectural design that has common components and interactions.
An instance of a framework is a particular member of the family of
systems. Frameworks may be ref,ned and composed with other frame-
works.

In order to present and document the message passing system
framework of Choices, we will use existing notations to describe its
constraints, inheritance, inclusion polymorphism, and informal rules of
composition. We will present the design of a framework using:

1. Abstract classes and class hierarchies.
2. Abstract and concrete class protocols (interfaces).
3. Flow of control between abstract and concrete classes.

4. Synchronization constraints expressed through path expressions
on method invocations on objects.

5. Entity relationship models between abstract classes and instances
of concrete classes.

6. Constraints based on static configurations of the framework.

'We 
use extended subtyping in discussing control flow, synchroniza-

tion and entity relationships. It is possible to compose and refine con-
trol flows, entity relationships and synchronizations constraints. This
leads to design reuse.

A Technique for Documenting the Framework of an Object-Oriented System 367



4. Typin7 and Documenting Behavior

Our documentation of an object-oriented framework records the imple-
mentation of the framework using only those definitions and objects

introduced by abstract classes. We propose that we can type the classes

in the framework with respect to control flow, synchronization and en-

tity relations. We assert that each of these properties imposes a sub-

typing relationship between an abstract class, its subclasses, and its in-
stances. Such a subtyping relationship simplifies documentation. In
terms of software engineering design methodology such subtyping

could be implemented as a set of guidelines that must be adhered to

during system design and coding. However, an abstract class may be a
generalization of several concrete classes rather than an abstract data

type produced by stepwise refinement. Enforcing such a methodology

is a difficult problem and is not addressed in this paper.

In the subsequent section, we use this approach in a slightly more

formal description of the aspects of the framework we are intent on

documenting.

SUBTYPING AND CLASSES The set of components in the frame-

work F is deûned as a collection {M¡l f e FI.We assert that there is
a function Abs that maps each component M¡into its abstract class

Abs(M¡) : M".Each abstract class M" is the root of a class hierarchy

defining s concrete subclasses M,". Each abstract class M" exports a set

of p methods Mi" that are inherited by each subclass M"" as methods

M!" and, in general, Y p, Mo"": Ml, A concrete class can be instanti-
ated to create multiple instances M", . HeÍe, the assumption is that if
two methods have the same signature [20], they also share a similar
implementation behavior. In C# there may be additional methods or
parameters defined for subclasses. These additional methods will be in-
herited by further subclassing and invoked by objects in the framework

at run-time. We assume that for the purposes of describing the frame-

work, they do not need to be represented in the specifications of more

abstract classes. If they do then this class should be made an abstract

class as it represents a new abstraction in the system.

We specify the type of a class M" as cl.assr* (M") and for our C#
implementation assert this is equivalent to MI. The types in the

framework form a complete partial order [18]. The types of subclasses

are similarly defined.

368 Roy H. Campbell and Nayeem Islam



Each of the abstract classes is at the root ("bottom") of a class hi-
erarchy. Each subclass is more specialized than its superclass, and

contains more implementation information. Each superclass and sub-

class are ordered by a subtype which induces a partial order on the

class hierarchy. The leaves of the hierarchy are concrete classes, which
are also the least upper bounds of the complete partial orders.

Given aclass hierarchyA, with classes a, a' whete ø is a super-

class of a' , we assert that by construction the following relationship

holds: clnss,rr" (a) Z 
"u,nyp" 

class,r*(a'). More importantly,Ys, cl.ass,r*

(M") 
= "u,"typ" 

class,r*(M",). We refer to this as signature based inheri-
tance. In C#, the compiler offers some help to check this sub-typ-

ing.

4.1 Extending Subtypíng to Aspects of
Behavíor

In this section, we apply the notion of subtyping to the control flow
and synchronization between method invocations on objects and the
entity relationships between objects.

SYNCHRONIZATION We specify the abstract sequences of
method calls to instances using a variant of the path expression nota-
tion [2]. Each abstract class M,has a path expression, path(M") speci-

fying the permitted sequences of method executions of its methods

Mp" . The path expressions for subclasses are similarly defined. We

define the type of a path expression, path,ro" (M"), for a class M, as the
set of possible traces of method executions of Ml. An abstract class is

a generalization of its concrete classes, and attempts to capture all the
path expressions specifications of its concrete classes.

In the following, we are going to assume that the execution trace

of the inherited methods Mls¡ an object M."_ instantiated from a sub-

class M"" should be a member of path,ro"(M").ln order to structure the
design of the framework and to simplify its description, by construc-
tion we restrict the C# implementation of the framework to maintain
the following type invariant between superclass and subclass: Given a

class hierarchyA, with classes a, a', where ø is a superclass of ø',
path,r*(a) E ptntyp" path,r*(a'). More importantly, Vs,

Wth,yw(M ") E pathtype path,r*(M 
",).

A Technique for Documenting the Framework of an Object-Oriented System 369



Since subclasses may add more methods, new method execution
sequences may be specified for these new methods. As a result, the
subclasses may have more possibilities for method execution sequences

than their abstract class. However, our notion of subtyping requires
the execution sequences of the methods inherited from the abstract
class to include those specified by the abstract class. It specifies noth-
ing about the executions of methods that were introduced by subclasses

of the abstract class.

CONTROL FLOW We represent control flow as a connected
graph in which a vertex is an object and an edge is a message that is
sent from one object to another object. We will refer to a control flow
graph as a control flow diagram. In C#, sending a message corre-
sponds to the transfer of control from one method to another. Briefly
and informally, we can define the type of a control flow diagram for a
class M, as the set of control flow edges CF,yw(M") flowing into and
out of an instance of the class. Again, given a class hierarchy A, with
classes a, a' , where a is a superclass of a' , CF,r*(a) E cr,yp" CF,yp"(a').

Similarþ, Ys, CF,,*(M") C cr,r* CF,yw(M",). The set of edges associ-
ated with the inherited methods of an instance of a subclass must in-
clude the edges associated with the methods of an instance of its su-
perclass. The subclass may introduce new flows of control associated
with new methods, but these edges will not be documented by the
control flow specified for the abstract class.

ENTITY RELATI)NSHIPS The notion of types is similarly intro-
duced for entity relationships. An abstract class is a generalization that
attempts to capture all the possible entity relationships between one

abstract class and another. A subclass may introduce further relation-
ships. The type of an entity relation of an abstract class M",
ER,yw(M"), is an ordered tuple denoting the associations a class has

with all other classes. Each entry in the tuple has values, 1 (one-to-

one), 0 (no relations), and N (one-to-many). The following total order
exists between the values 0 tr 1 tr N. We assert that the type of an

entity relation of a subclass is a sub-type of its superclass. Since a sub-

class may introduce other relations we assert that the following holds:

Given a class hierarchy A, with classes a, a' where ø is a superclass of
a' , ER,r*(a) Z 

"ur* 
ERro"(a'). Ys, ER,r*(M") C or*" ER,rw(M"").

370 Roy H. Campbell and Nayeem Islam



4.2 Typing and Frameworks

In this section, we define the class type, path expression type, control
flow type and entity relation type of a framework F.

. The class type of a framework F is a tuple whose elements are

of the form class,r*(Abs(M¡)) for V/ € F. The set of all such

tuples is the cross product x¡class,r*(A) where A e Abs(M¡) or
subclassof (Abs(M¡)).

. Similarþ, for path expressions, control flowso and entity
relationships we define tuples whose elements are of the form
path,r*(Ab s)(M¡)), C F,, o"(Ab s (M¡)), and ER r*(Ab s(M¡)) and cross

products x¡path,r*(A\, xrcEt w(A), and xrER,yw(A),

respectively.
'We extend the definitions from the previous section to describe

frameworks. However, for brevity, we state only a simple framework
relationship for types. Given two class hierarchies A and B, the set of
all possible types of instances of frameworks using A and B is: {<
class,r*(a), class,r*(b) >l o e A and b e BI partially ordered by the

--Cæro¡¡dsb4- -é

Trc cle8a h¡erûch¡æ ¡n tho mgsâge paæ¡ng 8!'3t m,
w¡th abatract dæ! s,x and @rcrai. clæe z,b.c

.¿- 
- - 

conset dæ ùrFllo

Prcdæt da- typ. @mtucliil wilñ ænqct trrC.t
(z,b), (z,a) and (z,c).

Figure l: Product construction for class types

V
f<-

í
Y

I

A Technþue for Documenting the Framework of an Object-Oríented System 371



tuple relation Eex¿t 1 class,r*(a), class,r*(b) ) f n", l clnss,r*(a,),
class,r*(b') ) iff class,r*(a) t class,yp"(a') and clnss,r*(å) f
class,r*(b'). Figure 1 shows the result of applying this construction to
two simple class hierarchies.

A similar relationship is induced on the path expression, control
flow, and entity relationship types. These relations can now be used to
describe an instance of the framework in terms of both its abstract
classes and concrete classes. In particular, we may now document
each class in terms of its type, synchronization, method invocations,
and entity relationships. Tuples of these types for all the classes define
the type of a framework.

5. Documenting the Message Passing
System Framework

we have described a scheme for documenting frameworks. In this sec-
tion, we use the techniques to document the design of a message pass-
ing system that we have built in Choices.

5.1 Message Passíng System Overview

Modern operating systems support distributed computing on local area
networks of workstations using message passing systems [5, r7]. some
operating systems provide message passing on shared memory ma-
chines Ú, r7l for parallel programming. This section describes a sub-
framework for message passing designed to support parallel message-
based applications. It describes facilities for creating structured
messages and sending and receiving messages on a variety of architec-
tures.

In Choices messages are sent to MessageContainers that are
similar to Mach ports [17]. A message may be sent to a Messagecon-
tainer in the same address space, in a different address space (or a
different protection domain) on the same machine or on a different
machines. The message system provides several reliability models in-
cluding unreliable and "exactly once" message transmission. Different

372 Roy H. Campbell and Nayeem Islam



implementations of these models are required depending on the reli-
ability of the underlying network hardware. The message passing sys-

tem supports applications on the Encore Multimax shared memory
multiprocessor and a network of SPARCstations. The software archi-
tecture of the system has been geared towards high performance [12].
The components of the message passing system are given below:

l. The MessageContainer
is a named communication entity for buffering messages. A
Messagecontainer can have multiple senders and multiple
receivers. Once a MessageContainer has been created, it is
registered with a Nameserver using an appropriate name. A
process intending to send a message to a MessageContainer
must look the name up in the NameServer. On lookup, a
sender is given a handle called a Containernepresentative
that forwards messages to the MessageContainer.

2. The Message System Interface
is an adaptation layer encapsulating features specific to a
particular parallel or distributed programming paradigm. It uses

the basic entities in the system to provide a particular style of
parallel or distributed programming. For example, we have
implemented the entire suite of Intel iPSC/2 message passing
primitives [15, 6] by subclassing the framework described in
this paper [12] using both kernel level and user level interfaces.
These classes provide naming schemes, information about the
last message received and broadcast resolution that completes
the implementation of the iPSC/2 style message passing system.
The Kernel Message System Interface and User Message System
Interface support two alternate implementations of the message
passing system, the former in the kernel and the latter in user
space. In the UserMessagesystenlnterface, a send or a
receive passes message data through user shared memory, not
through the kernel. In the KernelMessageSystemlnterf ace,
a send or a receive passes message data through the kernel
and the kernel checks any message parameters.

3. The Thansport

class specifies the mechanism that is used to move a message
from a sender to a receiver. A local message may be transported

A Technique for Documenting the Framework of an Object-Oriented System 373



4.

5.

by a separate process or copied by the sender and receiver

processes. A remote message is transmitted across the network-

The Synchronization
between processes may be through busy-waiting or blocking.

The Data Tiansfer
class concerns the data movement strategies used in sending a

message. On a shared memory multiprocessor? message sends

may be double buffered, single buffered, or passed by reference'

The Reliability
class allows messages to be sent unreliably, with at-least-once

semantics, and exactly-once [9] semantics.

The Flow Control
class uses rate based flow control to ensure that the sender and

the receiver are not overrunning one another's data buffers.

5.2 Clnss Hierarchies

Each of the different components of the messaging system are defined

by an abstract class and the abstract class is subclassed to provide the

different implementations listed in Section 5. Figure 2 shows the class

hierarchies for the message passing system. For simplicity, and be-

cause it adds little to this explanation, we omit the subclasses associ-

7.

ProxiableObject 

- 
KernelMeesageSystemlnterface

Containerßepresentative 

- 
[\¡[sssgeContainer

¡ BufreredTra'nsnort

Atansport $ PnoceesTranePort
L EthernetTla¡¡eport

¡- SingleTla,nsfer

l- Do.bLl|a¡rsfer
Data1tansfe" -1- Poirrt..T"""r"f."

L EthernetTra¡rsfe¡

synchronizatioo { lpi'kj

-;J;iT""'"Reliability { ExactlYOnce
Lo,L.*ror.""

FlowControl 
-R¿teBasedFigure 2: Message Passing System Class Hierarchies

374 Roy H. Campbell and Nayeem Islam



ated with a user level implementation of the message passing system.

For similar reasons, we also omit details about proxy objects and how
they are used to access objects in the kernel from user space.

The abstract classes in the system corresponding to the components
are Transport, MessageContainer, ContainerRepresenta-
tive, KerneLMessageSystemlnterf ace, UserMessagesys-
temlnterface, Synchronization, DataTransfer, Reliabil-
ity, and FlowControl.

ContainerRepresentative is an abstract and concrete class. It
is used to send messages to MessageContainers. Similarly, Mes-
sageContainer is an abstract as well as a concrete class. It is a
repository of messages. Transport has subclasses ProcessTrans-
port that transports messages using a separate process, Buff ered-
Transport that provides single or double buffering for a message, and

EthernetTransport that delivers the message across an ethernet.
Synchroni- zation has subclasses Semaphore that blocks a pro-

cess and spintock that busy waits a process on a shared variable.
DataTransfer has subclasses DoubleTransfer in which a sender

process copies the message into a temporary buffer and a receiver pro-
cess copies it from that buffer into a receiver buffer, singleTransf er
in which the receiver process copies the message from the sender

buffer to a receiver buffer in a shared memory region, Pointer-
Transfer in which the sender and receiver exchange buffer pointers
but message data is not physically copied, and nthernetTransfer in
which the sender and receiver copy the message data to and from eth-
ernet driver buffer regions.

KernelMessageSystemfnterf ace and UserMessageSys-
temlnterface support both asynchronous and synchronous communi-
cations. By subclassing Kerne lMe s s agesys tenr nterf ac e from
Proxiableobj ect this interface can cross protection boundaries.

5.3 Interface Protocols

Each abstract and concrete class has a set of methods that it exports as

its interface protocol. An interface protocol table is a table that lists all
the public methods of a class, the argument types of all these methods

and the return types of all these methods. These methods also define

the type signature of the class as defined in section 4 and in [20].

ATechnique for Documenting the Framework of an Object-Oriented System 375



return value

void
ErrorCode
void

Interface Protocol of the Abstract Reliability class

method name

deliver
deliverWithNotifi cation
pickUp

parameters

Packet *pkt

Packet*pkt,int len
Packet*pkt,int len

Table 1: Interface Protocol of Reliability Abstract Class

They determine the syntactic legal operations on an object, but say

nothing about the semantics or implementation of the object.
Thble 1 shows the protocol interface for the abstract class Reli-

ability. The interface protocol represents the public methods that
are available to instances of a concrete class that implements all the
methods. A concrete class must have an implementation for all these
methods either through inheritance or its own implementation. Table 2

shows the interface protocol for the concrete subclass AtleastOnce
which has two new methods that do not appear in its superclass. This
concrete subclass it has not removed or changed the interface of the
inherited methods. It has thus extended the interface of its abstract
class. Instances of this class will respond to its superclass methods as

well the two additional methods that have been defined. A subclass

may re-implement a method defined in a superclass without changing
the interface.

5.4 Synchronization

Path expressions specify the synchronization behavior of the system.
For an object-oriented system, a path expression represents a list of
possible object-method executions. The following path expressions

Interface Protocol of Concrete class AtleastOnce

refurn value method name parameters

int timeoutvoid
void

setTimeout
setNumAttempts int attempts

Täble 2: Interface Protocol of AtleastOnce Concrete Class

376 Roy H. Campbell and Nayeem Islam



specify the order in which the methods of the abstract Reliabitity
class may be invoked.

path (deliver, deliverWithNotification )* end

This expression indicates that only one of the following methods may
be invoked at a time: deliver or deliverWithNotification
(notification of errors).

In the concrete subclass Atleastonce, before either of the deliver
methods is called, the setTineout and setNumAttempts methods
have to be invoked. setTimeout and setNumAttempts may be called
concurrently. The following path expressions define this constraint.

path (setTimeout ; (deliverWithNotification, deliver))* end
path (setNumAttempts ; (deliverWithNotification, deliver))x end

The superclass restrictions on method invocations still exists, but new
restrictions have been defined on new declared methods, in the sub-
class. These restriction specify the order of method invocations be-
tween subclass and superclass but still do not change the constraints
specified on the superclass methods. We have thus safely extended the
synchronization constraints of a superclass in a subclass.

We have documented the path,r* of an example abstract class and
its concrete subclass in the message passing qystem. Using our subtyp-
ing notation, each class has a peth,ro", each class hierarchy has a corre-
sponding pathtyw hierarchy, and the path,ro" of the framework with
its abstract classes is of the form < path,r*(Mç*tøinerRepresentatioe)t

pathrr*(M¡a""*r"conøiner), . . ., path,ro"(Mr,on,Í",)). The tuple above has
an entry for every component of the framework, and the components
are named. In general, subtyping allows one to infer properties about
the traces of the method executions that are permitted by the synchro-
nization properties of the framework.

5.5 Control Flow through the Message Passíng
System

Control flow diagrams can depict the runtime behavior of the system.
For an object-oriented system, such a diagram represents an ordering
on object-method invocations. Again, by following object-oriented de-
sign techniques, concrete classes represent implementation specializa-

A Technique for Documenting the Framework of an Object-Oriented System 377



tions of abstract classes. This can be applied to the control flow de-
scriptions. Consider a control flow diagram that specifies an ordering
of object-method invocations on abstract classes of the message pass-
ing system. For it to provide useful and consistent documentation of
the framework, the diagram must specify all the control flows that oc-
cur between the methods of the message passing system objects. Thus,
the diagram must permit the possible control flows associated with the
concrete subclasses of the abstract classes. In the Choices systems we
have studied to date, this form of documentation is helpful and fairly
easy to generate. However, it is simpler to present individual examples
of the control flow for particular configurations of a system.

Figure 3 shows three abstract control flow diagrams for the mes-
sage passing system. The top diagram contains the oatatransf er
class, the second diagram contains the Reliability and FIowCon-
trol classes and the third diagram contains the remainder of the ab-
stract classes of the message passing system. The three control flow di-
agrams are not connected. The control flow deûned in Figure 3 is

Figure 3: The Abstract Control Flow of a message send/receive
pair

T

378 Roy H. Campbell and Nayeem Islam



abstract, it does not appear in any implementation. Particular imple-
mentations refine and compose these three control flows. As a result of
composing control flow diagrams the method invocation numbering
changes.

For example, Figure 4 shows a concrete control flow diagram for
the concrete classes of the message passing system framework for the
distributed version of Choices. The three abstract control flow dia-
grams are combined and concrete subclasses replace the abstract
classes. In addition, the flow control numbering changes to reflect the
control flow in the composition. The flow control diagram for the
shared memory version of the message passing system is composed of
two of the abstract diagrams since we do not need the flow of control
through the Reliability or Fl-owcontrol classes. Therefore, two of
the control flow diagrams are reused.

Before we describe the control flow in the message passing system,
we briefly describe the programming model of Choíces. MessageCon-
tainers are created by epplicationprocesses, are associated with
a particular Domain, and can be registered with a Choices Name-

Figure 4: The Concrete Control Flow of a message send/receive
pair

A Technique for Documenting the Framework of an Object-Oriented System 379



Server so that ApplicationProcesses in other Domains and on

other machines can send messages to it.
All processes in the same Domain may retrieve messages from

any Messagecontainer in its Domain. If a tvtessageContainer is

associated with the kernel Domain, any Process in any Donain on

the same machine may retrieve messages from it. However, a particu-

lar message system interface may impose further restrictions on which

processes can access a Messagecontainer. similarþ, a contain-
erRepresentative associated with a Donain can be used by any

Process in that Domain. Also, if the ContainerRepresentative is

associated with the kernel Domain, then Processes of any Donain
on the same machine may use the same ContainerRepresentative
to send messages.

A process intending to send a message to a Messagecontainer
may look up its name in the larneserver to get a ContainerRepre-
sentative or it may request that the message system interface does

the lookup. The t¡ameserver refurns a handle called a contain-
erRepresentative. A containerRepresentative delivers mes-

sages to the tUessageContainer for which it is a representative. The

ContainerRepresentative has a send method, that invokes the ap-

propriate method on a Transport object.

In this example, a process sends a message through the Ker-
nelMessageSystemlnterface. A second process then performs a

receive on the KernelMessagesystemlnterface. The solid ar-

rows show the direction of the flow of control on the sender side and

the dashed arrows show the flow of control on the receiver. The thin
dashed line, labeled Error, shows the possible redirection of flow of
control when a packet is not delivered and a notification is returned.

A detailed account of the concrete control flow trace for a send/re-

ceive interaction pair is given below for the distributed implementation

of the message passing system. Such traces may also be obtained for

each of the abstract control flow diagrams. In the following trace, the

numbers correspond to the numbers on the arrows in Figure 4.

1. At the top level an application process makes a call into the

KernelMessageSystemlnterf ace to send a message.

2. The KernelMessageSystenrnterface looks up the

appropriate Messagecontainer in the Nameserver. The

Nameserver returns a handle called a

380 Roy H. Campbell and Nayeem Islam



ContainerRepresent at ive . A ContainerRepre sentat ive
delivers messages to the Messagecontainer which it
represents.

3. The KernelMessageSystenlnterface invokes the send
method on the ContainerRepresentative.

4. The send method of the ContainerRepresentative invokes

the deliver method on the EthernetTransport object.

5. The EthernetTransport generates transport headers and

creates a network packet and invokes the unReliable object to

send unreliably the packet across the network. The unneliable
object may fragment the packet to send it across the ethernet.

6. The unReliable object calls the regulate method of the

RatedBased flow control object when too many packets are

lost.
7. The unnetiable object then invokes the networksend method

on the EthernetTransfer object. This method transfers the
packet across the network.

8. The EthernetTransfer object at the receiving machine picks

up the data. It passes the packet up to the unreliable object

by invoking the pickup method on the unreliable object.

9. The unreliable object assembles the packet and sends it up to
the pthernetTransport object. It generates no

acknowledgements.
10. The EthernetTransport invokes the put method on the

MessageContainer.
11. The Messagecontainer will enter a critical section for

queuing messages.

12. The MessageContainer will then exit the critical section for
queuing messages.

13. A KernelMessageSystemlnterface performs a get on the

MessageContainer.
14. The message is then passed onto the application process.

In this section, we have documented an example control flow
through the abstract and concrete classes of the message passing sys-

tem framework. The diagrams are useful because subtyping allows one

to infer general properties about the various message passing systems

that can be built from the specializations of each class. Using our sub-

typing notation, each class of the message passing system has a control

A Technique for Documenting the Framework of an Object-Oriented System 381



flow behavior described by its CFtype. Each class in the abstract con-
trol flow diagram has a CF,ro" and belongs to a CF,r* hierarchy. Ele-
ments of these hierarchies form the tuples that describe the possible

control flows of the framework. The CF,*" of the framework shown is

a tuple of thg form 1C Frro"(Mcorto¡n"rn"presenøtioe) t C F,yp"(M¡a"rrog"cmtainer),

. , CF,r*(Moonr,on r",)>. This is a tuple of the control flow types of
all the abstract classes. Comparing Figures 3 and 4, the concrete con-
trol flow diagram has only added new control flows and has not re-
moved any from the abstract control flow diagram. This conforms to
the subtyping relationship defined in section 4 for control flows.

5.6 Entity Relationship Model

Entity relationship diagrams [16] show quantitatively the relationships
between various instances in a system. They may be used in a similar
way within a framework. Figure 5 shows the notation we will use to
represent one-to-one and one-to-many relationships. A single bar de-
notes a one-to-one relationship, and a three-pronged fork indicates a

one-to-many relationship. These relationships may be mandatory (de-
noted by an additional line) or optional (denoted by a additional small
circle). In Figure 5, A shows a one-to-one optional connection, B
shows a one-to-one mandatory connection, C shows a one-to-many
optional connection and D shows a one-to-many mandatory connec-
tion. Again, exploiting the design of Choices using object-oriented
techniques we may make entity relationship diagrams between abstract
classes that describe the entity relationships between concrete sub-
classes and instances.

Figure 6 shows the abstract entity relationship diagrams for the
message passing system. It is important to note that the entity relation-
ship diagram itself is abstract in the same sense that classes may be

abstract. The figure contains three separate diagrams. Each connected
graph forms a complete diagram. The top diagram contains the pata-
Transfer class, the second diagram contains the classes Reliabil-

"rl- +<#
Description of Links between Classes

++
A

Figure 5:

382 Roy H. Campbell and Nayeem Islam



@
È{.[Í

--- 

r\q c.md Stw

Figure 6: Abstract Entity Relationship Diagrams for the Message
passing System

ity and FLowControl and the third diagram contains the rest of the
classes. These entity relationships may be combined and refined for
implementations of the message passing system framework.

Figure 7 is a concrete entity relationship diagram for the message
passing system framework for a distributed implementation of Choices.
The framework permits combinations of the subclasses of the abstract
classes to be used to create a specific message passing system. All the
subclasses are concrete. This entity relationship diagram is a refine-
ment and a composition of the three abstract entity relationship dia-
grams. In particular, all the three diagrams have been joined and the
classes have more relationships than their abstract superclasses. A con-
crete entity relationship diagram for the shared memory version of the
message passing system would only use two of the three diagrams
since there is no need for the Reliability and Flowcontrol
classes. The other two diagrams are, however, reused.

A Technique for Documenting the Framework of an Object-Oriented System 383



Figure 7: A Concrete Entity Relationship Diagram for the
Message Passing System

For example, a collection of instances of the classes, Ethernet_
Transport, KernelMessageSystemlnterf ace, MessageCon_
tainer, ContainerRepresentative, Semaphore, Ethernet_
Transfer, unReliable and RateBased defines a message passing
system that is kernel based, provides synchronization through
semaphores, and sends messages unreliably through the ethernet with
rate based flow control.

In the following discussion, we focus on the concrete entity rera-
tionships of Figure 7 but also show how the shared memory imple-
mentations may be described. Each Domain may have a KernelMes-
sageSys temf nterf ace or a UserMe s s agesys temlnterf ace I and
possibly several Messagecontainers. Appl icationprocesses use

1. A KernelMessageSystemfnterface is used for the kernel Domain and a User-
Messagesystemlnterface is used for a user Donain.

384 Roy H. Campbell and Nayeem Islam



ContainerRepresentatives to send messages to remote Message-
Containers.

Each containerRepresentative communicates with only one
MessageContainer through the Transport scheme. However, each

MessageContainer may have several ContainerRepresentatives
that can send messages to it. The ContainerRepresentative pro-
vides asynchronous sends. Synchronous message sends and remote
procedure call type interfaces may be built from asynchronous sends.
Both synchronous and asynchronous gets are supported by the ttes-
sagecontainer class. When a process attempts to receive an asyn-
chronous message that has not yet arrived in the MessageCon-
tainer, the method get returns immediately with an identffier that
can be used later to retrieve the message. If the message is in the
MessageContainer, the get returns with the message immediately.

The containerRepresentative delivers messages using the

EthernetTransport with which it is associated. The Messagecon-
tainer buffers incoming messages received from its associated eth-
ernetTransport.

For shared memory, Transport transfers control between the

sending process activating containerRepresentative and the re-
ceiving process activating Messagecontainer. This incurs little
overhead. Each Messagecontainer is associated with a synchroniza-

tion object, which in this case is a Semaphore. Each Senaphore is

associated with exactly one MessageContainer.
For distributed systems, the ContainerRepresentative and

MessageContainer and their two associated EthernetTransports
are located on different machines. The pthernetTransports use the

Reliability mechanism to send the messages through the pata-
Transf er scheme across the network using the appropriate reliability
model. Reliability selects from an appropriate Flowcontrol pol-
icy. Currently, only rate based flow control is used. The example

shows UnReliable, EthernetTransf er and RateBased concrete

subclasses.

Each class in an abstract entity relationship diagram has an ER,ro"

and belongs to an ER,ro" hierarchy. Figure 6 specifres the ER,rr" of
the framework which is the tuple 1 ERryp"(Mço,øinerRepresentatioe) >

ER,yp"(M¡4""ros"container)z , ER,ro"(Mpo,oTrorçr)>' This is a tuple of the

entity relationship types of all the abstract classes. The diagram is use-

ful because subtyping implies that a relation between any two abstract

A Technique for Documenting the Framework of an Object-Oriented System 385



classes in the framework shown is also a relation between the sub-

classes of these abstract classes. By comparing Figure 6 with Figure 7

we see that entity relationships have only been added in the concrete

entity relationship diagram, and no entity relationships that existed in
the abstract diagram have been removed. This conforms to the typing
we defined in section 4 for entity relationships.

5 .7 Configuration Constraints

Instances of the concrete classes cannot be combined indiscriminately.
For example, the abstract transport and transfer classes have concrete

classes that correspond to the shared memory and distributed imple-
mentations. An nthernetTransf er cannot be used with a

Buff eredTransport. To build a specific implementation of a frame-

work for a specific machine, the objects used in the implementation
must be instantiated from the appropriate concrete subclass. It is con-
venient to document this property by associating the abstract classes

that have such machine dependent concrete subclasses with a

parametrized attribute (machine "type"). Such documentation is a
static configuration of the framework. These configuration constraints
cannot be expressed by the previous techniques. We use Venn dia-
grams to represent static configurations. Figure I shows message pass-

ing system abstract classes with particular "types". Those with the
Framework type may be used without restrictions, those with the
Protection Dependent type must be used only with implementations

Figure 8: A Venn diagram of the various sets in the framework

ile.çSyr.ífrtt o

386 Roy H. Campbell and Nayeem Islam



for the same type of protection, and those with the Architecture De-
pendent type must all be implementations for the same hardware ar-
chitecture.

6. Conclusions

A framework defines the architectural design of an object-oriented sys-

tem. It describes the components of the system and the way they inter-
act. In this paper, we propose a method for documenting a framework
and use that method to describe a message passing system that has

been built for an object-oriented operating system. Our work provides

a starting point for understanding and documenting frameworks. We

have found it useful for documenting the message passing system. We

intend to use it to further document other parts of Choices.

We have found the extended typing of synchronization, control
flow and entity relationship diagrams particularþ useful. Typing has

allowed as to reuse design in a consistent manner for different imple-
mentations of Choices. As we move Choices to platforms requiring
different message passing implementations we hope that we will be

able to reuse large parts of our original design. To complete our work
we will also develop extended typing rules for concurrency and the
states of the various objects.

There are, however, certain weaknesses in our model. In particu-
lar, the use of configuration constraints is not as formal as we would
like. One way to remove the need for attributes on classes is to use

multiple inheritance but this creates other problems. The use of multi-
ple inheritance often produces extremely complicated class hierarchies.
We have not found a good way to describe out-of-bounds flow of con-
trol. Irregular control flow tends to complicate the diagrams consider-
ably.

We would also like to develop appropriate program annotations so

that a parser can perform consistency checks for proper subtyping. Our
current approach relies too heavily on programmer conventions. It
would be useful to have a visual tool that shows the abstract entity re-
lationships and control flows. Such a tool should also show the legal
combinations and refinements.

A Technique for Documenting the Framework of an Object-Oriented System 387



Reþrences

Forest Baskett, J. H. Howard, and John T. Montague. Täsk Communication
in DEMOS. ACM Operating Systems Review, pages 23-31, November
1977.

R. H. Campbell. The Specification of process synchronization by Path-
Expressions. In Lecture Notes in Computer Science, pages 89-102,
t974.

Roy Campbell and Nayeem Islam. "A Parallel Object-Oriented Operating
System (to appear)." In Gul Agha, Peter Wegner, and Akinori
Yonezawa, editors, Re se arc h Dire ctions in C oncurrent Obj e ct - Oriente d
Programming. MIT Press, 1993.

Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices, Frameworks
and Refinement. Computing Systems, 5(3),1992,

David Cheriton. The V Distributed System. Communications of the ACM,
pages 314-334, 1988.

Paul Close. The iPSC/2 Node Architecture. In Proceedings 3rd International
conference on Hypercube concurrent computers and applicatíons, Jan-
uary 1986.

Peter Deutsch. Levels of Reuse in the Smalltalk-&0 Programming System.
IEEE Computer Society Press, Cambridge, Mass, 1987.

Peter Deutsch. Design Reuse and Frømeworl<s in the Smallnlk-&0 Program-
ming System. ACM Press, Cambridge, Mass, 1989.

A. Goscinki. Distributed Operating Systems: The Logical Design. Addison-
Wesley, Sydney, Australia, 1991.

Richard Helm, Ian Holland, and Dipayan Gangopadhay. Contracts: Specify-
ing Behavioral Compositions in Object-Oriented Systems. ln ECOOPI
OOPSLA'90, pages 169-180. ACM, 1990.

Nayeem Islam and Roy H. Campbell. "Reusable Data flow diagrams". Tech-
nical Report UIUCDCS-R-92-1770, University of Illinois Urbana-
Champaign, Urbana, Illinois, November 1992.

Nayeem Islam and Roy H. Campbell. "Design Considerations for Shared
Memory Multiprocessor Message Systems". ln IEEE Tiansactions on
Pqrallel and Distributed Systems, pages 702-711, November 1992.

Raþh E. Johnson and Vincent F. Russo. Reusing Object-Oriented Design.
Tþchnical Report UIUCDCS-R-91-1696, University of lllinois, May
199t.

Glen E. Krasner and Stephen T. Pope. A Cookbook for Using the Model-
View-Controller Paradigm in Smalltalk -80. Jourrøl of Obi e ct - Oriented
Programming, pages 26-49, 1988.

Paul Pierce. The NX/2 Operating System. In Proceedings 3rd International
conference on Hypercube concurrent cornputers and applications, Jan-
uary 1986.

388 Roy H. Campbell and Nayeem Islam



Roger Pressman. Software Engineering. McGraw Hill, New York, New York,
1987.

Richard Rashid. Threads of a New System. UNIX Review, 1986.
David Schmidt. Denotational Semantics: A Methodology for Language Devel-

opnnent. rWm C. Brown Publishers, Dubuque, Iowa, 1988.
John M. Vlissides and Mark Linton. Unidraw: A framework for building do-

main-specific graphical editors. ln User Interþce Software Technol.o-
gies, pages 8I-94. ACM SIGGRAPH/SIGCHI, 1989.

Peter Wegner. The Oject-Oriented Classification Paradigm. In B. Shriver and

P. Wegner, editors, Reseørch Directions in Object-Oriented Program-
ming. MIT Press, 1987.

fReceived Mar. 5, 1993; Revised Apr. 14, 1993; Accepted Apr. 28, 1993]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

ATechnique for Documenting the Framework of an Object-Oriented System 389


