Object-Oriented Design
Archaeology with CIA++

Judith E. Grass AT&T Bell Laboratories

ABSTRACT: Increasing numbers of programmers find
that they must work on large software systems that they
did not write and do not entirely understand. In this sit-
uation it is necessary for the programmer to build a
working model of the system’s design. The process of
constructing a working design model from studying the
source code may be called software archaeology.

This paper demonstrates how software archaeology can
be done within the framework of an appropriate design
methodology using good static analysis tools. The
Object-Oriented Design (OOD) methods described by
Grady Booch and James Rumbaugh provide the frame-
work for my investigation. The static analysis tools are
based on CIA++.

The C++ Information Abstractor, CIA++, builds a re-
lational database of information extracted from C++
programs. The database serves as a foundation for the
development of C++ programming tools. Current tools
in the CIA++ system include tools for graphical display
of various views of the program structure, tools for
queries about program symbols and relationships, and
tools that extract cohesive components from a larger
system. These tools can be used as they are, combined
or extended to adapt to specific needs.
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This paper briefly describes the CIA++ system and
demonstrates how it can be used to extract design infor-
mation from a significant system: InterViews 3.0, a
C-++ graphical interface toolkit developed by Mark
Linton at Stanford University.

1. Introduction

In an ideal world, all programs would be well designed, thoroughly
documented and maintained by the same people who originally devel-
oped them. Although Object-Oriented (OO) techniques have promise
in attacking complexity problems and managing software for change,
they do not bring software nirvana. The design of an OO system can
become obscured in a haze of detail, documents vanish or fail to be
provided, and key programmers decamp for an ashram in Tibet. The
result is the same: someone new must come to understand the system
well enough to be able to complete or modify it without destroying its
architecture.

The process of reconstructing a design from its material remains
(the source code) is often referred to as “design recovery,” but it
might be more accurate to describe this process as “design archaeol-
ogy.” The software archaeologist has to dig through many layers of
artifacts to gain an insight into the behavior and structure of a soft-
ware system. It is rare for this effort to result in a complete and
accurate recovery of the original design. Instead, the software archae-
ologist seeks a working model of that design.

Effective software archaeology requires a knowledge of design
methods, a collection of tools and an inquisitive mind. The design
methods provide a framework and guidance for the excavation. An ap-
propriate collection of tools can make the digging more effective and
less time consuming. The process of software archaeology is experi-
mental. The archaeologist starts out with an initial hypothesis about
the program: that its design will conform to the model suggested by
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the design methods. Each probing with the tools either confirms that
expectation, or shows how the code diverges from that model. The ar-
chaeologist adjusts the hypothesis and the excavation strategy accord-
ingly.

The tools traditionally provided in the UNIX environment to sup-
port learning about programs have fallen into two categories: simple
textual tools and special purpose analytical tools. Vi and grep are fa-
miliar examples of textual tools. Analytical tools include such C lan-
guage tools as xref (a cross-referencing tool), prof, ctags and dbx.
Some of these tools have been adapted for C++ and some new spe-
cialized tools added: hier, publik'. The textual tools are weak tools
for analysis because they have no information about program structure
or semantics. Real analysis is left to the programmer. The specialized
tools generally are inflexible in application and tend to demand spe-
cialized parsing of the program text every time they are invoked. This
makes these tools inefficient.

Browsers vary in the amount of analysis they do. Usually they
function like textual tools. They may help programmers search and
navigate from reference to reference in a program, but they cannot
provide generalizations about the overall structure or illustrate how
major components of the system interact.

The CIA++ system [Grass & Chen] provides a powerful platform
for a unified set of analysis tools built around a common relational
program database. These tools are fast and efficient because the pro-
gram is parsed and analyzed only once, when it is entered into the
database. The tools are flexible and combine well because they are
built on a common relational database schema. CIA++ can support
browser systems, but its main goal is higher level analysis of program
structure. This paper briefly describes the CIA++ system and the tools
built upon it. The main part of the paper illustrates their use and flexi-
bility in analyzing a complex software system: the InterViews library.
The intention is not to exhaustively demonstrate the features of
CIA++. Instead, this paper presents an effective procedure for design
archaeology based on OOD principles. This includes illustrations of
how knowledge of design methodology can be applied to the problem
and the kind of thought processes a software archaeologist may em-

ploy.

1. These are tools developed and used within AT&T that respectively display class hier-
archies and list the public interface of a class.
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I have chosen the InterViews library as a test case for several rea-
sons: it is sufficiently complex; it is familiar to many people program-
ming in C++; it is publicly available and it is a program that [ want
to use to implement a graphical interface for CIA++. This paper dis-
cusses the InterViews 3.0 alpha release. The 3.0 release is based on
the latest version of the AT&T C-++ compilation system (2.1) and
makes good use of its features. As such, it is a richer and more inter-
esting system to study than earlier versions of InterViews.

2. An Introduction to The CIA++
System

CIA++ is made up of three major components: ciafront, which ana-
lyzes a C++ source module and stores the results of the analysis in a
database module; the database linker, which combines the modules
into a merged relational database; and the ShareView tools, which ac-
cess the database to answer specific queries about the program. The
database schema and basic toolkit are described in detail in Grass &
Chen. This section provides only a synopsis of that information.

2.1 Ciafront

Ciafront scans, parses and generates a single database module for a
single C++ file. The database it generates includes data from the root
file as well as from all the files that get included by the preprocessor.
Detailed information is saved about the definitions of five kinds of
C++ entities: files, macros, types, functions and variables. Class
members are included. Entities declared within a function are consid-
ered local and not included. The CIA++ database also saves cross-ref-
erencing information. Information is stored about the relationships be-
tween any two kinds of tracked entities. Special information is stored
about inheritance, containment and friendship relations. Ciafront was
implemented by reworking cfront 2.1.

The complete database for an entire C++ program contains infor-
mation from all of the individual database modules from all the rele-
vant source files.
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2.2 The Basic CIA++ Tools

The core of the ShareView toolkit is made up of a small set of pack-
aged query commands: Def, Ref, Viewdef, Viewref. Def executes basic
queries about entity declarations and definitions. For example, the
query Def type ivGlue extracts database information about the type
named ivGlue®. The formatted response to this query appears in the
top half of figure 1. The bottom half of that figure contains an exam-
ple of the unformatted output for the same query. The formatted query
shows the name of the type ivGlue, the truncated name of the file in
which it is declared, its declared type class, the line that the declara-
tion began on and the fact that this declaration is actually a definition
(df). If there were multiple declarations of ivGlue in this library, all
declaration instances would be shown in response to this query.

The unformatted version contains much more complete informa-
tion and untruncated names, but it is not easy to read. This form is
intended to be used as input to other analysis, formatting or user inter-
face tools. The CIA++ tools that generate graphic views are imple-
mented in this manner. All formatted displays can be executed by
generating unformatted responses to queries and passing that through
a formatting filter. This makes it possible to easily customize the dis-
plays. The default formatter truncates fields to allow responses to fit
into an eighty column display, reflecting the least common denomina-
tor terminal environment.

Ref implements cross-referencing queries and presents the informa-
tion in either a formatted or unformatted style. Viewdef and Viewref
support the same kinds of queries, but extract the relevant lines of
code from the source rather than presenting a formatted digest of in-
formation.

The basic CIA++ Def query has the syntax:

Def Entity_description Optional_Selectors,

where Entity_description includes the specification of an entity kind:
file, func, var, macro, type or — and a name. The symbol —

2. In InterViews 3.0 there is a convention that most class names from the 3.0 version of the
library carry an v prefix. This is not easy to spot in the source code files because the
prefix gets applied through macro expansion of the base names. In this example, ivGlue
appears in the source text as Glue. Classes in the library used for 2.6 compatibility are
prefixed by iv26.
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is a wild-card that matches all names and all entity kinds. The Op-
tional_Selectors can be used to restrict the search to database entries
with specific characteristics. Regular expressions may occur in the se-
lection clauses. For example, the command

Def type — dtype=""class$|"$ df="df"

extracts a list of all types defined as either class or struct. The
word dtype is an abbreviation for “data type.” The final selection
clause confines the output to only actual data definitions, as the abbre-
viation df stands for “definition flag.” The notation used for these
commands is terse and rather opaque. The intention is to build GUI
interfaces on top of these and hide them from naive users.

The syntax of the Ref query and other cross-referencing commands
are similar, but describe two entities:

Ref Entity_description_1 Entity_description_2 Optional_Selectors.

The cross-reference query, Ref, presents direct relationships in pairs.

Often the most interesting relationships in programs are not the direct
relationships extracted by the Ref command. Frequently the program-
mer needs to know about indirect relationships.

File inclusion is an interesting illustration of this. In order to com-
pile any particular source code file, the compiler must be able to find
all of the header files that define entities used in the source file. The
source file may directly include several headers, but it may be depen-
dent on many files that it does not directly include, since its own
header files may in turn include other files. The include relationship is
transitive. The entire network of direct and indirect inclusion can be
established through a process of transitive closure. The graph that re-
sults from this process contains the name of all files that the source
depends on and a map of all the direct and indirect dependencies in-
duced by inclusion.

Several CIA++ tools generate closures of the relationships found
in C++ programs. Closure is used to make maps of larger program
structures. As for file inclusion, the relationship maps aid in program
navigation, but also provide an overview of the organization of a sys-
tem. Components that are independent stand out, and components that
work closely together become apparent. A call graph, for example, is
the closure of a simple function cross-reference table. Figure 2 con-
tains the call graph for the function MakeNewPainter in the Inter-
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Views library. It shows all of the functions that may be called when
that function is executed. This could be represented as a table of func-
tion pairs defined by the A_calls_B relationship. However, a call
graph is much more expressive than a table.

CIA ++ generates graphs of program relationships with the Dagen
tool. Dagen is written using the Ref query, a shell script and the awk
language [Aho et al.]. Its output is input for the automatic graph lay-
out program Dag [Gansner et al.]. This in turn generates pic or Post-
Script output that can either be printed or displayed on a workstation.
Dagen is a powerful tool that demonstrates how the toolkit can be ex-
panded and adapted using readily available UNIX system tools. It also
demonstrates how CIA++ follows the classic UNIX system approach
to building tools.

Other tools in the toolkit generate statistics about component con-
nectivity (Ciafan), locate unused entities (Deadcode) and find strongly
connected subsystems (Subsys). As an option, ciafront generates
checksums for all database entities. These may be used to compare
two versions of a program database and to analyze the differences be-
tween the variants.

Many of these tools will be applied in the analysis of InterViews
presented below. CIA ++ toolkit commands will be used directly when
their command syntax is simple. In some cases the syntax and options
for specialized queries may become complex. In these cases wrapper
commands are used. A wrapper command is a simple shell script that
can execute a specialized query, packaging up the normal CIA++
syntax with specialized selector clauses. Translations of some of the
wrapper commands are presented in an appendix.

2.3 Similar Systems

There are several existing systems comparable to CIA++. These in-
clude the ParcPlace ObjectWorks system, the Saber C++ interpreter
and the class browser tool chrowse [Reiss Meyers] and the XREFDB
database and XREF tools [Lejter et al.] in the FIELD system.

These systems differ from CIA ++ and each other in several di-
mensions. Some of these systems implement closed systems which ei-
ther provide a fixed collection of customized commands, or allow only
limited use of pre-existing tools (ObjectWorks, Saber C++). These
tools seem limited in the amount of code that they can handle. The
cbrowse system is, strictly speaking, a browser and does not imple-
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ment semantic code analysis. XREF and XREFDB are quite similar to
CIA++ and could be applied in the same manner’.

3. Design Archaeology

The design methodologies developed in the books by Booch and Rum-
baugh et al. are based on Object-Oriented Analysis |Shlaer & Mellor;
Coad & Yourdon]. Analysis is the process of investigating system spec-
ifications and requirements that yields an abstract model of a client’s
real-world problem. Once an analysis is completed, the design process
can begin. Design is split into two phases: a high-level phase in which
a system architecture is developed and low-level design and implemen-
tation phase. My assumption in doing design archaeology is that accu-
rate and up-to-date documents describing the design are not available.
What is left is the final artifact of that design: the code itself. The task
is to discover as much about the original design as possible using the
tools provided by CIA++. As a side-effect, it may be possible to
make certain inferences about the original modeling of the problem,
but the original analytical model of the problem is far enough removed
from the implementation that these inferences may not be reliable.

3.1 The InterViews Library

The InterViews library [Linton & Calder; Linton et al. 1988; Linton
et al. 1989] implements an OO user interface package in C++ and is
built on the X Window System system. The system contained in the
InterViews 3.0 lib/InterViews directory includes 221 source, header
and bitmap files, and 29,996 lines of code that generates 7,674 data-
base entities*. It is a substantial system, but this directory does not
encompass the entire system. A second directory called lib/IV-X11
implements an X interface. The lib/graphic library directory contains
classes describing graphic classes and routines for drawing. Additional
directories implement a standard “look-and-feel” (lib/IV-look) and
tasking (lib/Task). If these libraries are also considered, the size of the
system increases to more than 470 files and 69,000 lines of code. I
built a database that combined the symbols and references from all of

3. Readers interested in a an overview of OOD tools are referred to Booch & Vliot.
4. This information was provided by the CIA++ tool Ciastat.
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these libraries into a single database. That combined database contains
over 17,000 symbols and over 46,000 cross-references. Most of the ef-
fort will be focused on the database generated from just the lib/Inter-
Views library. This library is the largest and appears to be the most
central.

The combined database generated from all the InterViews libraries
could be studied as a whole. This would be a good approach for doing
a deep study of the system, but using this database would be somewhat
unwieldy as a sample database for a technical paper like this one.
Queries on such a database would tend to generate too much informa-
tion to present as examples. However, | appreciate that isolating the
core library may distort the analysis somewhat.

3.2 Design Methods and Design Archaeology

OOD archaeology must be guided by a deep understanding of the
OOD process and the products of that process. The software archaeol-
ogist must think like a designer in order to know which questions to
ask about the software and how to understand the answers. The learn-
ing process often follows the same path as the creation process, so I
will present a synopsis of the process here.

I use a composite of the OOD methods described in the books by
Booch and Rumbaugh. Each of these presents a pragmatic and effec-
tive procedure for OOD. Their approaches are essentially similar, but
each uses a slightly different terminology and different diagraming
techniques. The CIA++ system and toolkit does not favor any particu-
lar design methodology, as its model reflects the C++ programming
language semantics rather than any design methodology.

As described above, the design process must start with an analy-
sis. The analysis model of a system concentrates on its visible charac-
teristics and behavior. It directly reflects the requirements and
specifications of the customer. According to Rumbaugh et al., the
analysis model typically can be broken into these subcomponents:

* A Problem Statement;
* The Class Model: a static description of important abstractions
and the relationships between them?®;

5. My terminology differs somewhat from Rumbaugh’s. He would call this the Object
Model, which conflicts with the usual terminology used by C++ programmers, who ex-
pect objects to be concrete and instantiated.
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* The Dynamic Model: a dynamic description of instantiated
objects and their interactions®. The dynamic model includes
state transition diagrams and other time dependent information;

* The Functional Model: a description of data flow.

Actual design starts with the design of a system architecture.
During this phase the system is partitioned into subsystems and basic
decisions are made about hardware platforms, performance targets and
fundamental implementation strategies. Some of these decisions will
be apparent in the final implementation code from data structures,
control constructs and code partitions. Other decisions will not be
apparent unless explicitly written into comment blocks in the code.
Architectural decisions can cause a review of the analysis and result
in changes in the analysis model. The OOD process is inherently
iterative.

The complete design model includes system architecture combined
with detailed class, dynamic and functional models. While the analysis
model contains a description of visible characteristics of the system,
the design model is oriented towards implementation. All of the infor-
mation present in the analysis model is present in the design model,
but it is augmented. The design model not only describes what the sys-
tem must do, but how it must do it. Again, as the design model is
built, the designer gains new insights into the nature of the problem at
hand. This may cause revisions of the analysis and architecture.

A successful design translates into code without much fuss or
many surprises. The implementation should be an accurate reflection
of the final, complete design. Because analysis, design and implemen-
tation are so tightly intertwined, much information about the design
and analysis can be recovered by retracing the design process using
analysis tools like CIA++. The rest of this paper illustrates this pro-
cess. Due to length limitations, the analysis presented here is not
exhaustive.

3.3 The Class Model

An analysis of an OO system starts by studying classes and the rela-
tionships between them. This is the Class Model component of the
design. The class model describes the foundation of the design, estab-
lishing the rules within which the entire system operates.

6. Booch refers to this component as the Object Model.

Object-Oriented Design Archaeology with CIA++
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3.3.1 The Data Dictionary

A Data Dictionary is one component of Rumbaugh’s class model. This
contains class names, attributes and behaviors. It also contains infor-
mation about interactions with other classes. The software archeologist
can derive crucial information about the static system structure from
such a dictionary. Rumbaugh discusses this primarily in the context of
analysis. A data dictionary augmented with implementation details is
also part of the design model.

The data dictionary augmented with diagrams that illustrate class
interactions and dependencies present a fairly complete representation
of the class design of a system. Class diagrams may be written using
any of a number of notations. Whether Booch’s Class Relationship Di-
agrams, Rumbaugh’s entity-relationship style Object Model Diagrams
or some other idiosyncratic notation is used, the diagrams will tend to
contain the same information. They will show patterns of inheritance,
use and inclusion.

Since CIA ++ maintains detailed descriptions of type declarations,
class membership and cross-referencing, most of the information in a
data dictionary is easy to recover from the code. The relationship dia-
grams can also be recovered, although at this time they cannot be pre-
sented directly in the form that Rumbaugh or Booch would use.

Building the data dictionary starts by simply requesting a list of
the classes defined in InterViews. This would include both the def-
initions of class and struct types in the program. The command
ClassList produces a list of 335 class definitions. A portion of the
response to this query is presented in figure 3. The first column of the
table gives the name of the file containing the definition. The second
column contains the data type. The third column gives the type name.
The fourth column gives the line number on which the definition be-
gins. The last column shows that all of these are actual definitions,
rather than simple declarations. The full response to this query is pre-
sented in an appendix.

From this list is seems that there are an enormous number of
classes that must be entered in the data dictionary. However, the first
task in studying the system is to understand its overt behavior. In a
well designed C++ program, this should be embodied in public class
interfaces and externally scoped data structures and functions. Imple-
mentation should be encapsulated in private class members and static
or function scoped entities. Efforts to rebuild the data dictionary must

Judith E. Grass
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start with public information, and the result should reflect the analysis
model of the system.

The list of classes presented in figure 3 very much reflects imple-
mentation and private information. Consider the struct_ _mptr in the
table. It is the type of the table of virtual functions generated by the
C++ translator. As such, it is a pure artifact of the compilation pro-
cess and not part of the design or analysis. Compiler generated types,
variables and function calls may easily be identified by their line num-
bers, which are negative. In fact, 79 of the definitions in the class list
are definitions of __ mptr. Another 42 definitions come from the
C++ iostream library and other system header files, which makes
them external to the analysis. There are also 78 classes that are de-
fined inside of source code files (.c¢ files). These class definitions are
not directly available to users of the InterViews library because they
cannot be accessed by the user’s code. They are part of the implemen-
tation and design of InterViews, but probably not part of the analysis.
If all of these special classes are removed from the list, there are actu-
ally only 166 classes that are publicly accessible in this library. These
are the classes that must be considered first. The additional 78 hidden
classes will be taken up in studying the design of the implementation.

In order to capture the entire public interface of this library, I
initially need to know how much of that interface is contained in the
class definitions and how much of it is in external functions and other
external data structures. The query Def — : : . * would extract all sym-
bols that were not class members. It is a bit easier to deal with this
data if it is broken up by symbol type. First, a list of the global vari-
ables is obtained with the command Globalvars which generates a
list like the one presented in figure 4. Once again, the first field given
is the file that contains the variable definition. The second field is the
data type. The column labeled bline shows the definition’s beginning
line.

The third field, labeled sc shows the variable’s “storage class”. In
the response to this query, most of the variables are either statically
allocated and scoped or they are enumerator names. The abbreviation
st in the storage class field indicates a variable that is statically allo-
cated. A variable with static scope is indicated by the abbreviation st
in the sixth field of this table, which is labeled ms for “membership
and scope”. The constant false is both statically allocated and stati-
cally scoped. Enumerator names, for example Dimension_ X, are indi-
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cated by the abbreviation en for “enumerator” in the storage class
field. All of the enumerator names in InterViews that are not class
members are externally visible, so there is no marking in the ms field.
The rest of the variables have static scope, which means that their visi-
bility is limited to a particular file.

There are about ten object pointers which are externally visible.
These include several pointers to ivCursor objects and a few pointers
to ivSensor objects. Not all of the data in this library is entirely encap-
sulated in classes, but it is only a very small collection of rather sim-
ple objects that are visible. This is about what would be expected in an
OOD. These external objects will be considered in greater detail when
the Dynamic Model is built.

The other part of the public interface is made up of publicly de-
clared class members and external functions. Again, I would like to
know how much of the behavior of this system is encapsulated in
the classes and how much is external to the class system. The query
GlobalFuncs produces a list of functions not encapsulated by classes.
Part of this list is presented in figure 5. This list is similar in format
to the lists already seen. The spec field is the only new component.
This field contains additional specification information peculiar to
functions. The letter i in this field means that the function is declared
to be inline. The letter v would mean a virtual function. About half of
the functions appearing in this list are marked st in their scope field.
These are static functions that are probably utilities used in implement-
ing some class associated with the code module. The rest are true ex-
ternal functions. Some of these (like the function sgr in this table
fragment) come from the standard C++ libraries. The ones that are
not from the standard libraries will need to be closely inspected. The
functions contained in the minmax.h header file appear to be simply
math utilities. None of these are marked as const in either their data
type declaration or their specification list. It must be presumed that
they have side effects and may affect the operation of the classes in
this library. However, from the shortness of this list (about 17 inter-
esting functions) and from the names of these functions, it still ap-
pears that the classes encapsulate this library’s behavior.

The fact that InterViews 3.0 is written using C++ 2.1 raises
another interesting possibility. C++ 2.1 allows type definitions to
be nested within class definitions [Ellis & Stroustrup]. This means that
some of the 166 public classes found earlier may be encapsulated
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inside other classes and not part of the public interface. The query
NonGlobalTypes generates the list shown in figure 6. The response
to this query shows that the only member type definitions in Inter-
Views are enumerator definitions. The library does not use the newer
nested type definition feature. As a result, the investigation of the pub-
lic aspects of the library must include an inspection of all 166 classes.

The data dictionary entry of public functions and attributes can
be filled in using queries similar to this one: PublicMembers —
ivInteractor df =df. This query requests information about all
members of any entity kind (type, variables and functions) defined
as members of the class ivinteractor. The truncated response to this
query is in figure 77. The selection clause df =df limits the response
to points of definition only, which prevents names that are declared
multiple times from appearing here more than once. It shows 39 pub-
lic member functions in the class ivinteractor and no public data or
types.

The public members of all the InterViews library classes can be ex-
tracted in the same way. These are overwhelmingly function members.
Public data members include some encapsulated enumerator names and
members of simple “C-style” structs defined in the standard C and
C++ libraries. The entire list of public data members can be generated
with the query PublicMembers var — df =df . If these and the public
data members defined in the InterViews 2.6 compatibility headers are
discounted, there are only 26 classes that expose any of their data
members. Most of these classes are those hidden within source code
files. Only 10 of the classes with public data members are accessed by
library users. Three of these appear to be important because they are
frequently referenced: ivPropertyDef, ivDefaultProperties and ivEvent.

The list of attributes and functions for a particular class that was
built using the PublicMembers command may not completely de-
scribe the public interface of the class. PublicMembers only lists mem-
bers immediately declared within the class definition. The complete
public interface of a class also includes all the features that it inherits
from other classes. The query Public — ivInteractor displays the
entire public interface of the ivinteractor class, including the portions
of its interface that it inherits from its parent classes (an incomplete
list of these is in figure 8). The class ivinteractor inherits a good deal

7. Many of these sample listings are truncated and otherwise shortened, sometimes
severely. The full responses to these queries would generate too many lines to print here.

Judith E. Grass
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of its interface from other classes. Except for a few enumerators inher-
ited from ivGlyph, all that it inherits are functions. The list shows a
number of classes that ivinteractor inherits from, but it does not show
whether the inheritance is direct or indirect. While filling the data dic-
tionary, the focus is on individual classes and not large patterns of in-
teractions.

Inheritance is one way in which classes interact, and probably the
most important interaction in an OOD. Other interactions are interest-
ing as well. This includes relationships of containment, friendship and
use. My investigations have already shown that there are no classes
that contain definitions of other classes, so there are no actual contain-
ment relationships between classes in this code. One might suspect
that the class definitions embedded in source code files might be candi-
dates for nested definitions in a future version of the system. The com-
mand Ref type ivInteractor type — shows all of the direct type
dependencies of the ivinteractor class. A sample of the response is in
figure 9. The columns marked kI and k2 display the entity kind of
the names namel and name2. The query only asked about types, so
these are types. The column marked rk shows the relation kind. Rela-
tions marked r are simple reference relations. It is most likely that the
class ivinteractor has a data member that is an object of this type or a
pointer to an object of this type. The Viewref command could be
used to extract the code containing the reference to verify its nature.
Relations marked i are direct inheritance relations. The class ivinter-
actor has two direct inheritance relations, so it is an example of multi-
ple inheritance. The f marks friend relations. The class ivinteractor is
a friend of the classes ivSensor, ivEvent and ivWorld. This means that
one cannot completely understand those classes without a thorough un-
derstanding of how ivinteractor may change their state.

Since friends may violate normal class access controls, it is impor-
tant to know about them. The query Ref — — type ivInteractor
rkind=f shows any classes or functions that could violate the encap-
sulation of ivinteractor. The results in figure 10 shows three such
classes.

At this point the Data Dictionary for the external view of the
Class Model is essentially complete. If a problem statement or a set
of man pages are available, they can be correlated with entries in the
data dictionary to get a higher level view of the functioning of the
classes. This information may alternatively be captured using the

Object-Oriented Design Archaeology with CIA++

25



¥
¥
F
ad A yx
¥
¥
¥
d u t
I
I
adu T
I
I
ad A ¥x

K1onb pusiiy oy ssuodser pajyeurro g7 2|

JO0QDRISBJUIAT
I090RISJUTAT

' I10300I93UT/

9

PTIOMAT U I03DRILIUT/ 1
[’ JI09D0eId3UT/ 9 OPUTHIOIORISIUIAT UY'I010RI8IUT/ 1%

J030RILJUIAT [ I03DRISJUT/ 1 PUSDSAT Y IO03DRISJUT/ 1
zeureu TOTTE TH Touey 18TTE 1¥
F=PUTHI T03DeId3UIAT adhg - - Foy <87 uooTey

A19nb Joyy 07 asuodsal paljeULIO] :g 9INB1g
PTIOMAT U PTIOM/SHOTA 9 I0QDRISJUIAT Y PTIOA/SHOTA 3
JOSUSGAT Y’ IOSUSS/SMIT 17 I035BISQUTAT Y IOSUSS/SHST 9
JUSATAT U JUOAd/SHOTA 1 I03DRISJUTIAT ' JUSAS/SHITA 2
IoUSQSTTAT U I2USGSTT/SA 3 JI030BISJUIAT U I03DRISIUT/ 1
MOPUTHAT Y MOPUTA/SMAT 3 I030RI9JUIAT Y’ JI03DRISIUT/ 1
PIIOMAT U PTIOM/SMOTA 2 JI030RISJUIAT Y’ I03DRISIUT/ 13
MOTAAT U 'MOTA/SHMOTAI 1 I030RISJUIAT Y I03DRISIUI/ 3
JIOSUIGAT U’ IOSUSS/SHOT 3 I03DRI9JUIAT [ I04DRISZUT/ 3
IS TPURHAT U IeTPUeRYy/sus 19 J090RISJUIAT Y’ JI03DRISGUT/ 3
goureu ZOTTF 2X Teweu TeTTE 14

- adfg xogqoexsqurat odfq Foy <Z9 UODTRF

26



Class-Responsibility-Collaboration model described in a paper by Beck
and Cunningham.

In this paper building the data dictionary is described as if it all
had to be done one query at a time, by hand. This process can be au-
tomated with a simple shell script and a few small awk programs.
Running the script may take some time for a large system, but with
very little direct human intervention it is easy to generate a complete
formatted report for every class in a system. The layout of the report
can be considerably more polished than that generated by the raw
commands shown here. The basic CIA ++ response format is general-
ized and meant to run on the meanest of terminals. The automated
Data Dictionary generator can be much more sophisticated about layout
and text processing tools.

3.3.2 Class Relationship Diagrams

The data dictionary alone does not contain enough information to fully
represent the Class Model. So far an atomistic view of individual
classes has been built. The descriptions of each class include interac-
tion information, but only about direct interactions. Diagrams that
present an overview of these relations are still needed to complete the
model.

An analysis of inheritance provides a quick classification of the
classes into groups that are closely related and reveals important com-
monalities between classes. A simple CIA++ query, HierList
(figure 11), yields a list of 229 class pairs related by inheritance, but a
list of this kind is no help in establishing an overview of the system. A
graphical view makes the hierarchies immediately visible to the eye
and provides a map. The command HeirGraph yields a graph of all
the inheritance hierarchies in the InterViews library. The entire map is
too large to print legibly on a single sheet of paper. Figures 12 and 13
show two independent inheritance hierarchies contained in the com-
plete inheritance map. Solid lines in inheritance graphs show public
inheritance. Virtual inheritance is indicated by the label v on the
arc. Private and protected inheritance relations would be indicated
by dotted and dashed lines, but there are no examples of these in
InterViews. These inheritance graphs are generated by the commands
HierGraph ios and HierGraph ivCanvas. The class hierarchy
rooted at ios uses multiple inheritance. This is actually the structure
of the AT&T iostream library and not a part of InterViews proper.

Object-Oriented Design Archaeology with CIA++
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falcon 121> HierGraph ivCanvas

ivCanvas

/N

ivWindow ivOffscreenCanvas

T

ivManagedWindow ivPopupWindow ivinteractorWindow

i BN

ivApplication Window iviconWindow ivTopLevelWindow

ivTransientWindow

Figure 13: Inheritance Hierarchy for class wCanvas

The class hierarchy rooted at ivCanvas is a fairly simple example of a
single inheritance hierarchy. The complete inheritance map contains
three other small inheritance trees that are externally visible. These
are rooted at the classes ivCompositor, ivLayout and dplOHandler. In
addition there is an immense hierarchy rooted at the class ivResource.
A total of 112 classes part1c1pate in this hierarchy, some of them in-
terrel © "7 " nce. The Dagen tools will allow a very
large map, like this one, to be printed on several sheets of paper that
can be pieced together. Subcomponents of this graph may also be
printed. Figure 14 contains a picture of all the nodes that inherit from
ivinteractor. Figure 15 shows all the classes from which the class ivin-
teractor inherits.

The query HierList shows that all inheritance in InterViews is
public. InterViews uses inheritance only to establish subtypes and not
to establish implementation hierarchies [Liskov]. This also means that
the user has access to all of the header defined classes in the library to
build new derived classes.

Judith E. Grass



falcon 122> HierGraph ivInteractor

ivInteractor
iv2_6Glue ivMessage ivScene

/1 TN

ivHGlue ivVGlue iv2_6Box ivTray iv2_6Deck ivMonoScene

/|

ivHBox ivVBox ivViewport

Figure 14: ivlnteractor and its descendents

falcon 124> ParentGraph ivInteractor

ivResource

[\

ivGlyph ivView

ivMonoGlyph

ivListener

\

ivinteractor

Figure 15: swinteractor and its parents
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The inheritance graph needs to be supplemented with a map of
friendship relations to highlight places where access controls may be
circumvented. Classes that declare friends share a deep dependency on
the friends, relying on them not to abuse their special privileges. A
complete map of friendship relations can be generated with the com-
mand Dagen t t rkind=f. Some of the map is shown in figure 16.
Several simple relationships involving only two classes were removed
from this picture. In general, a complex friendship map in an OOD is
not an encouraging sign. Friend access makes it more difficult to iso-
late the effect of changes during maintenance and localize the cause of
errors when problems are found. Some of the friendship relations in
this map are inherently less complex than others. The classes lacking
the iv prefix are local to specific source files, which in itself limits the
scope of interactions. Friendship here is probably used for efficiency
and convenience. The large friendship relationships between externally
visible library components are a bit more troubling as they signifi-
cantly raise the complexity level of the system.

The friendship system that ivinteractor participates in includes
classes that are components of the ivResource inheritance hierarchy,
isolated classes that participate in no inheritance hierarchies and
classes belonging to other inheritance systems. The friendship relation
ties all of these together in a potentially close dependency. The exact
degree of dependency must be investigated by queries that will tell
precisely what use the friend makes of its special status.

A complete class relationship diagram must also include a map of
simple reference relationships. A direct class to class reference usually
indicates that one class contains an object or a pointer to an object of
another class. This is a use relationship. A use relationship may also
result from class references made in a member function. The map of
the closure of all simple direct class references can be generated by the
command Dagen t — t rkind="r". The resulting map is too large to
print here. The command ClassUseGraph ivInteractor generates
a map showing the closure of the direct use relationship between the
class ivinteractor and other classes (figure 17). This is not quite a map
of all the classes that ivinteractor depends on because this map does
not necessarily include all the classes used by ivinteractor’s member
functions. The query MemberUseGraph ivInteractor generates a
map of these less direct relations.

Judith E. Grass
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So far this analysis has concentrated on public aspects of the de-
sign. Unfortunately, CIA++ does not distinguish between simple ref-
erences that occur in the public portions of the class definition and
those that are enclosed in private or protected portions of the defini-
tion. Once again, the public references are part of the interface of the
class, while the private ones pertain to implementation. The distinc-
tion is important and observed in the diagrams described by Booch
and by Rumbaugh.

With the exception of distinguishing public and private use refer-
ences, this analysis would allow most of the information that would
be in Booch’s Class Relationship Diagram or in Rumbaugh’s Object
Model Diagram to be rebuilt.

Most of the above analysis concerns the public interfaces of
classes. The public interface view strongly suggests the abstract enti-
ties and relationships that would have been part of the original prob-
lem analysis. The same queries directed at the private and protected
parts of the classes can be used to analyze the implementation strate-
gies that realize those abstractions. The implementation design study
begins by augmenting the data dictionary with information about data
and functions declared within the protected and private portions of the
class. The class relationship diagram can be similarly extended.

3.4 The Dynamic Model

Class analysis gives an abstract, static view of the system’s type struc-
ture. The relationships specified in class declarations hold throughout
the life of the system. Objects and object relationships, however, are
more transitory because objects are created, destroyed and change
state. The Dynamic Model captures the way these relationships change
over time. This model consists of a series of snapshots of object con-
figurations at critical points in program execution (referred to as the
Object Model), an analysis of events, state transition diagrams and
other diagrams that capture timing and the flow of control.

CIA ++ only provides tools for static analysis, but some aspects of
the static analysis can illuminate some dynamic relationships. For ex-
ample, object configurations are dynamic relationships that change as
the result of calls to constructor and destructor functions. These calls
are available in the static analysis. The analysis of events, state transi-
tions and control flow is more problematical. CIA++ does not have

Object-Oriented Design Archaeology with CIA++ 35
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any information about the actual values assigned to program variables,
because that can only be determined as the program is running. As a
result, CIA ++ cannot have information about state. Some inferences
may be drawn from the names used and from patterns of function
calls, but other tools are required to complete the analysis included in
the Dynamic Model®.

As in class model analysis, a distinction can be made between as-
pects of the object model that are public and visible and those that are
hidden behind the public interfaces. Public objects are available to be
manipulated by the library users. Objects protected inside the private
portions of other objects, encapsulated by statically scoped definitions
in files, or embedded in local function definitions belong to the imple-
mentation realm. The analysis will start with public entities and rela-
tionships.

The most important objects and object relationships in a system
are those objects and relations that exist for relatively long time spans.
The objects that exist for the longest time spans are usually global
ones, so that is the best place to begin. The command Globalvars
ms="ex" lists all the external global variables and their type declara-
tions (some of these are shown in figure 18). The full response to this
query shows that there are only 22 external global objects in the Inter-
Views library. Aside from a handful of constants, these consist of a
small selection of pointers to ivCursor objects and four pointer to
ivSensor objects. The ivCursor object defines a visual representation for
a cursor, an identifier and initialization code. This is apparent from
the data dictionary. An ivSensor object is much weightier, defining
many operations to specify the handling of input events. This would
include such things as pushing down on a mouse button. These pointer
names are externally visible, but as far as is known from this query,
these pointers are uninitialized. One way to find out if any of these is
statically initialized is to look at the definitions using the command
viewdef . This extracts the actual definition from the source code, as
shown in figure 19. The variable name in this figure contains a regular
expression, so it matches all variables containing the string Event.

8. Rumbaugh and Booch split up the modeling task somewhat differently. Rumbaugh’s Dy-
namic Model primarily consists of event and state diagrams rather than object configu-
rations. Booch maintains Object Diagrams {configuration snapshots) as a model that is
separate from the state and event diagrams. My Dynamic Model analysis captures the in-
formation contained in Booch’s requirements better than it does the information in Rum-
baugh’s model.

Judith E. Grass
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falcon 14> Viewdef v .*Event dtype=ivSensor df=df
Sensor* allEvents;

Sensor* onoffEvents,

Sensor* updownEvents;

Sensor* noEvents;

Figure 19: Response to Viewdef query

The selector clauses limit these to the definitions (df=df) of variables
whose type is derived from ivSensor (dtype=ivSensor). The re-
sponse shows that these are declared of the type Sensor*. Remember,
the name Sensor is macro expanded when the library is compiled.

From this I must conclude that there are no global objects created
within the InterViews library at the time that a system using the li-
brary is created. Either other components in the library construct these
objects, or the library user has to be responsible for that. This is not
an exclusive choice. Since it is only possible to construct new objects
through calls to constructors, the patterns of calls to constructors and
the nature of the constructors can be used to infer the default initial
configuration of the system.

To find the creation of ivSensor objects within the library, a graph
can be generated that shows all calling sequences of functions that may
eventually invoke an ivSensor constructor. This graph, generated
by the command Dagen func — func ivSensor: : ivSensor,
is the closure of the relationship expressed in the query
Ref func — func ivSensor: : ivSensor, or the set of all
functions that directly call any constructor of ivSensor. The
results are presented in figure 20. This figure also contains a similar
chain of calls leading to the instantiations of the cursors. From these
graphs it can be seen that nothing in this portion of the library calls
the constructor for either ivWorld or ivListener, so the construction of
these objects must be done either by some other component of the li-
brary that is not included in this database or by the library user. A
quick inspection of the other library directories turn up no calls to the
ivWorld constructor, so this is apparently a task left to applications.
When an ivWorld is constructed, all of the ivSensor and ivCursor ob-
jects named above are created at once. The query Ref fu — v . *Event
shows that all of the ivSensor event objects are only referred to by
member functions of the ivSensor class, at least within this library.

Judith E. Grass



falcon 140> Dagen func - func ivSensor::ivSensor

ionrld::ionrldH ivWorld::init

ivSensor::init

ivSensor::ivSensor

ivListener:ivListener

falcon 141> Dagen func - func ivCursor::ivCursor

ivWorld::ivWorld —= ivWorld::init ivCursor::init ivCursor::ivCursor

Figure 20: Constructor call graphs reaching iwinieractor::ivlnteractor
and wCursor::ivCursor

Since all of the functions in the constructor call graphs are public,
there is some latitude in how this may be done. The function ivSen-
sor::init is static and parameterless. It always constructs four specific
ivSensor objects with default initializations. The function ivCursor: :init
creates a fixed set of cursors with default patterns. The call is
parameterized for foreground and background colors. These are
generally chosen within the ivWorld object. The command
Viewref fu— fu ivCursor: : ivCursor (figure 21) shows some of
the constructor calls and reveals the default initializations.

While all of the initialization routines are in the public interface, it
is probably unwise to attempt to use them directly because they are
“hard-wired” to external object pointers.

Using the CIA++ queries, I can see that the ivListener constructor
is quite different in its use of ivSensor objects. The ivListener class
contains a private member that is a pointer to an ivSensor. An ivLis-
tener object may be constructed as a dummy that has a null entry for
that pointer, or it may create its own sensor object when instantiated
as a “working” listener. Over time, the object configuration containing
an ivListener may change, but it normally will not contain any of the
external sensors created with an ivWorld object. These are indepen-
dent.

At this point I can be fairly confident about how the few global ob-
jects that have been found are created and initialized, but I have still
not entirely constructed the initial Object Model for this system. The
key to this problem seems to be the ivWorld constructor, as it appar-
ently builds the initial InterViews system configuration. I would like to

Object-Oriented Design Archaeology with CIA++
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know the complete list of objects that it creates. A list of all construc-
tor calls possible when the ivWorld constructor is called can be ob-
tained with the query ObjectList ivWorld: : ivWorld. A partial list
of object kinds potentially created when an ivWorld is created appears
in figure 22. Unfortunately, these are only potential calls, because I
know of these only from a static analysis. Nor can I tell from this how
many of each object may be built or the names of the objects. In order
to collect that kind of information, there would have to be a dynamic
component to the system that would execute in a manner similar to a
debugger and that would do control flow analysis. If I study the code,
I may find that many of these constructors are always called, as hap-
pens with the constructors for the ivSensor and ivCursor objects that I
have already studied. In any case, the lack of this information means
that I can only approximate the contents of the Object Model with this
reasoning.

Destructors are never called for any of these objects, either explic-
itly or implicitly. This suggests that without special intervention in an
application program, the object configuration created at the initializa-
tion of an ivWorld object remains static throughout the life of the
program. Although many objects are created when the ivWorld con-
structor is called, no destructor is called by the ivWorld destructor.
This asymmetrical relation between constructors and destructors sug-
gests that it might be tricky for a library user to dismantle the initial
object configuration any time before the entire program is terminated.

The Object Model analysis already presented concerns only the
initial state of the system and its final state. Usually the model would
contain several snapshots of object configurations occurring at crucial
Junctures of the system’s execution. Identifying these junctures, unfor-
tunately, requires judgement. Fully automating this process is very
much a research topic. Some Object Model snapshots can be approxi-
mated using reasoning similar to that demonstrated above: by tracking
object construction and destruction.

The Object Model is just one component of the Dynamic Model.
The components that are missing include state transition diagrams,
timing diagrams and control flow diagrams. Since the CIA++ is not a
dynamic tool and its database does not capture control flow informa-
tion, it cannot provide much assistance in uncovering these pieces of
the design. This part of the design archaeology needs to be supported
by a tool meant specifically for dynamic analysis.

Object-Oriented Design Archaeology with CIA++
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3.5 The Functional Model

The Functional Model is the final major component of the Design
Model. In the system devised by Rumbaugh, this component describes
computations within the design, generally using data flow diagrams
supplemented with additional information about invariants that hold
during the computations. Not all advocates of OOD would include dia-
grams of this nature in their designs, considering this to be an artifact
of Structured Analysis and Design (see Booch). Booch manages to
embed a lot of the information that would be contained in a data flow
diagram in his Object and Process Diagrams. In Structured Design,
these diagrams often are the centerpiece of the design. In OOD, when
these are used at all, they are used to supplement the Class and Dy-
namic Models and are developed rather late in the process [Coad &
Yourdon; Shlaer & Mellor]. The importance of the Functional Model
in the overall Design Model can vary. Noninteractive programs that
are dominated by their algorithms, like compilers or number-crunch-
ers, will have a major part of their design captured in the functional
model. Other programs that just store and retrieve data will not have
interesting functional models [Rumbaugh et al.].

Data flow diagrams show processes, data flows and objects. Pro-
cesses take data flows as inputs and transform the data to produce out-
put data flows. Objects in a data flow diagram either serve as passive
data stores or as actor objects that produce or consume data. Processes
may contain processes and data-flows, so a data flow diagram may
have many layers of nesting with higher level processes in a diagram
hiding more detailed and concrete internal data flows. None of the
data flow diagrams contain any timing or control flow information.
The Functional Model of a system is entirely static.

Although the Functional Model is static, the static program analy-
sis constructed by CIA++ does not contain what is needed to recover
that model directly. If processes are identified with C++ functions,
then only the nesting of functions within processes is easily recovered
from function call graphs generated using CIA++ and Dagen. CIA ++
was never intended to do data flow analysis, so it does not save infor-
mation about sequences of actions, nor the actual variables that are
passed as arguments to functions nor the variables that those functions
modify. CIA++ records only direct references to global objects. It
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int X,Y,Z;

int F (int i) { return i + Y; }
int H (int i) { return i + Z; }

int G (int j) { j = H(X); return F(j) + X; }

Figure 23: Sample program for function references

does not distinguish between references that are simple read operations
and those that are writes.

Consider the program fragment in figure 23. The CIA++ database
will contain a reference from function H to variable Z because that
global is directly accessed in the function. There will be no reference
recorded from function H to variable X, although that variable appears
in a call to the function. That call generates only a reference between
function G and the functions F, H and between function G and the
variable X. The fact that a call to the function H precedes a call to the
function F and that data flows between these functions is not recorded.

While CIA ++ does not save information about the actual para-
meters of function calls, which is a feature of data flow analysis, it
does save copious information about the function signature and the
types of the formal arguments. This information can be used to in-
directly recover the data flow inputs to a process in the functional
model. Often the names of the formal parameters and their types re-
veal important aspects of the data flow. Consider, for example, the
process of adding a new component to a complex InterViews graphic
interface object, an ivTray. The process is invoked by calling the
Insert function that ivTray inherits from its ivScene base class.
The query Signature displays the formal parameter types of this
function (figure 24). From this alone it is apparent that insertion re-
quires at least one ivInteractor component, and sometimes requires
coordinates and alignment information. Looking at the function defi-
nition headers adds more detail (figure 25). This gives some names
for the coordinates. I would like to know what the reference point for
the x and y coordinates are (relative to the root window? relative to
a component window?), but that is a level of semantics at which no
static analysis tool can help.
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In some cases the signature can help distinguish parameters that
are read-only parameters from those that are modified. For example,
parameters that are declared as const are read-only parameters, as
are parameters that are not pointers or references. Reference parame-
ters usually indicate the intention to modify a parameter, although
sometimes the intention is only to optimize the mechanics of parame-
ter passing. Reference parameters may be both inputs and outputs. In
the Insert function, the coordinate and alignment parameters are
passed by value, so they are only input parameters. The function
ivScene: : DoMove uses coordinate reference parameters (figure 26),
which strongly suggests that the coordinate parameters are used both
for input and output. Pointer parameters may or may not be modified
within a function. Distinguishing the role of a pointer parameter takes
extra work. In order to know the role of the ivInteractor parameter
for the Insert or DoMove functions, the function code must be in-
spected.

The database records the function return type, which helps recover
more information about output. Inputs and outputs to the process that
happen as a result of function side-effects (e.g. direct access to global
data or class data members not explicitly passed in the parameter list)
can be inferred from the function’s list of references to variables.
However, that list does not indicate the roles that the variables play.
Unfortunately, CIA++ does not record which variables appear as the
argument of a return statement, so recovering that information re-
quires reading the code. The return type of Insert is void, so it
does not explicitly return anything.

The actual parameters passed to the Insert function can be found
by viewing function references, as in figure 27. The cross references
show that there are no calls to the multi-parameter version of the
Insert function within the library code. That is an option that would
be used by InterViews application programs. Most of the calls occur
in member functions of the classes ivTray and ivviewport, both of
which inherit the function from the class ivScene (see figure 14).

These member functions are all fairly small. A model of the data
flow in any one of them can be built by looking at the definition. The
function ivTray: : ivHBox is representative (figure 28). In this pro-
cess, up to six pointers to ivIinteractor objects are passed into a
function that packs them into an array (LoadInteractorArray). The
array becomes input to ivScene: : Insert. The Insert function ul-
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timately calls the ivTray: : DoInsert function, which modifies the
ivTray object, making that object an input and output of the inser-
tion and the entire ivHBox function. This is not apparent from the
CIA ++ database, because knowing this requires reading the code and
understanding the dynamic binding of virtual functions. Finally, an
ivTSolver member (the data member tsolver) is used to compute
alignments, using the function AddAlignment.

The object tsolver appears to be a passive object that stores and
calculates representation information for the ivTray class. Its class
definition is buried within the code module for the ivTray class,
which clearly indicates that it is part of the implementation of the
class, and not part of its public interface. Representation informa-
tion from the tsolver object is input to the AddAlignment function.
Nothing is explicitly output, but the representation information is mod-
ified by the call. That function also takes pointers to ivIinteractor
objects as inputs. Those pointers are stored within the tsolver ob-
ject, but they are not altered by it.

The description above is a prose description of the data flow dia-
gram for a process that uses the Insert function. The information
came both from the results of CIA++ queries and manual inspection
of the code. Doing the data flow analysis manually is slow and er-
ror prone. Eventually a new tool should be devised to help with this
chore, or CIA++ will need to be extended. Much of the information
needed to do data flow analysis is present during the compilation pro-
cess. Building a tool for this purpose is largely a matter of picking a
representation for the information and then extracting it in the same
way that CIA ++ extracts the static definition and cross-referencing in-
formation.

3.6 Physical Design

The design analysis that has been presented misses some aspects of the
physical design of C++ systems. The Class, Dynamic and Functional
Models capture system abstractions, but software archaeologists often
are concerned with the way the abstractions are packaged and imple-
mented. The models already investigated cover a great deal of the im-
plementation, but since these focus on features of the C++ program-
ming language, there are issues concerning file partitioning and macro
expansions that have been largely ignored. These physical design issues
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have a serious impact on performance, code size, compilation time,
portability and maintenance.

The file inclusion map for any InterViews file is easy to generate
with the FileMap command. Figure 29 shows the file dependencies
for the file interactor. ¢. This map was hand edited to shorten
some of the file names by abbreviating the directory paths. The abso-
lute paths to the include files in the local environment are long, some
over 75 characters in length. This made the file inclusion graph grow
in size. Filtering the names and replacing the long paths made it possi-
ble to fit this map on a single page.

The file dependency map for all the files in the InterViews library
is so large and complex that a readable copy covers an area the size
of an office door. To be precise, the graph is 30 inches wide and 80
inches tall. This takes 32 pages of 8.5 X 11 paper to print. Keep in
mind, that map contains only the core library of InterViews. It does
not contain the X interface, graphic or “look and feel” libraries or any
of the auxiliary libraries.

The file dependency graph for interactor. ¢ is not a simple
tree. Some of the files are used by multiple header files, and these
might actually be included multiple times in the preprocessing of
the interactor. ¢ file. This is not at all unusual in a large C++
program, and a standard method is used here to prevent the C++
defini-tions in such files from being included more than once during
preprocessing. Most header files are wrapped within conditional com-
pilation statements (#ifndef ) that guard against multiple inclusions.
However, the assumption that none of these header files should be
multiply included would be false. The headers _enter.h, leave.h
and iv. h, for instance, are used to toggle some name conversion
macros on and off. The conversion macros expand key class and func-
tion names within the InterViews library with a prefix that prevents
the InterViews library names from colliding with names used in either
the application or the names or the existing system library environ-
ment.

This is why in figure 25 the query is written with the class name
ivScene and the response to that query uses the name Scene. The
latter is a macro. Figure 30 contains the macro definition queries and
extracted macro definitions for Scene and iv.

The remaining scheme is an important part of the design and
packaging of the InterViews library. The earlier release of the library

Object-Oriented Design Archaeology with CIA++
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did not attempt to isolate its names from those already in the user’s
environment. This led to serious problems building the library for
users unlucky enough to have conflicting names.

3.7 Gaining Perspective

The practice of software archaeology, as shown so far, has concen-
trated on details. Reconstructing the various analysis and design mod-
els pulls the archaeologist into a rather myopic view of a system as
characterized by lists of symbols and the relationships between them.
A complete understanding of the system also requires stepping back
from the details to consider the design as a whole. Inevitably, the ar-
chaeologist will want to evaluate the design either against known de-
sign principles or against other OO systems. Some comparisons can be
captured in numbers: the number of symbols and lines of code in a
program, the size of class and function definitions. Metric tools can be
used to study these aspects of a design. Some evaluations are harder
to characterize: how well inheritance is used, how complete class
definitions are. The archaeologist forms a general impression about
these as the digging proceeds.

From consideration of the InterViews design, it seems that its de-
signers followed some basic OOD principles. The library is built
around a number of basic classes that appear, from the names of their
functions, to define coherent subsystems. InterViews builds a relatively
shallow hierarchy of subclasses from these. As discussed above, most
of the functionality of the library is encapsulated in the classes and
virtually all of the data structures used in InterViews are hidden in the
private declarations of these classes. These characteristics of the li-
brary should be helpful when the library must be extended [Rumbaugh
et al.].

When I built the various design and analysis models, it seemed
that the classes and functions in the system were rather small. This
impression was confirmed using a few simple metrics tools imple-
mented in the CIA++ toolkit.

Typical classes actually are quite small. The average InterViews
class has eight members, with the majority of the members being pub-
lic functions. The small class size seems to be the result of factoring
the feature set of major classes in the library into small classes captur-
ing discrete pieces of the feature set. The small classes are used to
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compose larger ones through inheritance and delegation. This approach
should increase the fiexibility of the library and enhance reusability of
the components.

The functions in InterViews also tend to be small. In InterViews
the largest function (regmatch) has 170 lines. There are only three
functions that contain over 90 lines. The average number of lines in an
InterViews function is eight’. InterViews functions are fine-grained
and fairly primitive. According to Booch, this is a desirable feature in
OOD. Small, coherent functions are more likely to be reusable than
large functions that do several unrelated things [Rumbaugh et al.].

Multiple inheritance in C++ is a controversial feature that many
designers feel should be avoided [Cargill]. In this library only the
ivInteractor class uses multiple inheritance. This class inherits out-
put characteristics and input sensing from the ivListener base class
and the ability to update its presentation when it senses an event
through its ivview base class. The designers have anticipated that
users may want to extend the InterViews classes using multiple inheri-
tance. In some cases virtual inheritance is used to derive some “term-
inal” classes that should be maintained as a single resource rather than
duplicated when these are used in multiple inheritance derivations.

Consideration of these issues is part of a fully characterized design,
although this may be hard to capture in any kind of formal way.
CIA++ can generate lists of statistics, but from these alone it is hard
to conclude that the system is or is not a good example of OOD. There
is no consensus on metrics for OOD. Judgement about the quality of
the design and the overall value of the system usually lies with its
users.

3.8 Evaluating CIA++

At this point I should admit that the original purpose for undertaking
this study of InterViews was to test the CIA++ toolkit and schema
against the demands of a realistic problem. Experience with the
CIA++ system prior to this effort was somewhat limited. Mostly it
had been used for browsing and generating very specific information
to support fixing software that already was fairly well understood. It

9. This partially explains why it was difficult to find an interesting function for data flow
analysis.

Object-Oriented Design Archaeology with CIA++

53



54

hadn’t been used to do the kind of all-encompassing dig on a large
and unfamiliar piece of software that is described here.

Lots of things happened as a result of this experiment. Various
kinds of information were added to the database schema when I found
that they were missing. The original database schema did not differen-
tiate abstract classes or functions from fully defined ones, nor did the
database have an adequate containment relationship. Both of those
were added as a result of this experiment. These are just examples,
there are others as well.

Many new tools were added to the CIA++ toolkit as a result
of this study. Some of these were added just to save typing long,
error-prone and common queries (ClassList for example). Others
combined sequences of queries where each query depended on C++
semantics and the results of an earlier query. One example is Public,
which generates a complete public interface for a class. Public gener-
ates a list of class names from an input regular expression, generates
the inheritance graph for each of these classes, computes the list of
members for the entire inheritance graph, and then applies visibility
rules to prune the member list down to those that would be publicly
visible for the requested classes. This study identified a few more
query tools that still remain to be written.

In doing this experiment, I tried to apply CIA++ in lots of places
where it was never meant to go. It was never intended that CIA ++
would generate a complete program representation. A database con-
taining a complete program representation would be a lot larger and
heavier on its feet than the CIA++ database. Completeness was
sacrificed for compactness and speed. Primarily this accounts for the
lack of local (function scoped) variables in the database. It also ac-
counts for the lack of data flow information, even though that is also
static information. Extracting data flow information is hard, and mod-
eling it may also be hard. The extraction could not be done with the
simple lexer-parser based abstractors that generated the database for
CIA ++’s predecessor, the C Information Abstractor (CIA) [Chen et
al.]. It can, however, be done within an abstractor that uses the power
of a complete compiler, as does CIA ++. This experiment persuaded
me that I must look at the problem.

Dynamic analysis is another area that should be pursued. What is
surprising about applying CIA ++ in this realm is not so much where it
fails, but rather the number of places where it seems to succeed. The
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database contains a fairly complete picture of the potential interactions
between components. This is like a map: it shows all the places you
can go, and all the ways to get there. However, on any particular trip
only some of the places will be visited and only some of the roads
traveled. The static database combined with a runtime component
could generate the snapshots required for recovering the Dynamic De-
sign Model, and do a lot more besides. This is work in progress.

CIA ++ proved to be a powerful tool for software archaeology
when used inside the framework provided by OOD methods. This ex-
periment confirmed that this kind of tool has broad applicability. It
also pointed out where some changes need to be made and some new
tools need to be devised.

4. Conclusions

This paper has demonstrated how CIA-++ can be used, within the
framework of OO Design methods, to study a significant C++ system.
The work described here confirmed that CIA++ is a powerful tool for
design analysis. It also identified useful changes and additions to the
CIA++ database schema and resulted in many new tools being added
to the CIA++ toolkit.

Static analysis tools, like CIA++, are not a complete solution to
the problems of design archaeology. Such tools are strong in support-
ing analysis of static syntactic and semantic relationships and can be
used effectively for some kinds of browsing tasks. They can also be
used to generate interesting program statistics. On the other hand,
static tools provide only weak support for analysis of the dynamic be-
havior of programs. Other kinds of tools must supplement static tools
to effectively recover these aspects of design. Other than debuggers
and profilers, tools adapted to this kind of analysis are not common.
This study helped identify some of the characteristics of a tool that
would support dynamic analysis for OOD.

Effective use of whatever tools are available depends on knowing
something about the design principles and methods because these
provide the framework that underlies the analysis. Reference to the
framework helps the archaeologist plan a dig and it makes it possible
to evaluate the results of each step of that excavation. As an example,
consider the class relationship diagram for the InterViews library. If
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the only graph generated for the class relationships were the graph of
the inheritance relationship, the class relationships would appear to be
rather simple. The assumption would be that classes implemented well
encapsulated abstractions. When the inheritance relationship is supple-
mented by class usage relationships, in particular the friendship graph,
it becomes clear that more careful study is merited. The friend classes
may violate some of the encapsulation expectations of the OOD
model.

Although using appropriate analytical tools inside a good theoreti-
cal framework can significantly help in understanding a design, there
are many aspects of design that will not be captured that way. The
original design documents would specify class invariants, performance
characteristics, and probably contain references to specific algorithms
or domain specific abstractions. Some of this may be rediscovered by
reading the code. Some of it may only be learned by asking a domain
expert. In any case, the design information recovered by the dig pro-
vides a strong context for direct code study and identifies where expert
help is needed.

The InterViews system appears to be a good example of OO De-
sign. As such, it is probably easier to use the CIA++ tools and get a
good result. The same tools applied to a program that was poorly de-
signed would throw a spotlight on the design problems. This is also a
useful result, if not as satisfying.

The CIA++ system is a research prototype, however it is in daily
use by many C++ programmers. This study has already helped im-
prove CIA++. I hope that this paper will also help the users of these
tools (and similar tools) to reap more benefit from them.

Judith E. Grass
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Appendix A:
Some CIA++ Commands

ClassList: Def type — dtype=""class$| " struct$" df="df"
ClassXref: Ref type — type — dtypel=""class$| " struct$"\
dtype2=""class$| "struct$".
HierList: Ref type — type — rkind="i"
HierGraph: Dagen type — type — rkind="i"
Friendof: Ref — — type "$1" rkind="f"
AllFriends: Ref — — type — rkind="f"
FriendGraph: Dagen type — type — rkind="f".
GlobalVars: Def var ::.* df=df
Constructors: Ref — — func "$1::$1"
FuncXref: Ref func "$1" func -
FuncGraph: Dagen func "$1" func -
ObjectList: Subsys —u fu "$1" fu - |\
grep "__ct" | Ciadef_filt | Dispdef fu -
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Appendix B:
An Example of Uncondensed Query
Output

I have avoided presenting complete listings of CIA++ query re-
sponses in the body of this paper. This complete listing is provided in
order to demonstrate how complete and detailed the information gen-
erated by the queries can be. Comprehensive listings of this kind can
be overwhelming. The scope of this query can be narrowed by provid-
ing regular expressions for the class name (ClassList ivReq. * for
example) by adding additional attributes to the query (ClassList —
file="window.h"). As I mentioned above, the multiple definitions
of mptr in this list are an artifact of the way cfront generates virtual
function pointers.

falcon 99 ClassList -

file dtype name bline df
../pattern.c struct _ mptr -2 df
nterViews/resource.h class ivResource 34 df
Interviews/pattern.h class ivPattern 39 df
../strut.c struct _ mptr -2 df
de/IntervViews/font.h class ivFontFamily 45 df
de/Interviews/font.h class ivFont 63 df
nterviews/geometry.h class ivRequirement 37 df
ntervViews/geometry.h class ivRequisition 68 df
ntervViews/geometry.h class ivAllotment 86 df
ntervViews/geometry.h class ivAllocation 110 daf
ntervViews/geometry.h class ivExtension 131 df
e/InterViews/glyph.h class ivGlyph 44 df
e/IntervViews/strut.h class ivStrut 36 df
e/IntervViews/strut.h class ivHStrut 55 daf
e/IntervViews/strut.h class ivvStrut 72 df
.. /textbuffer.c struct _ mptr -2 df
/IntervViews/regexp.h struct regexp 44 df
/IntervViews/regexp.h class ivRegexp 61 df
erViews/textbuffer.h class ivTextBuffer 36 df
1/include/CC/stdio.h struct  iobuf 66 daf
clude/CC/sys/types.h struct _physadr_t 56 df
clude/CC/sys/types.h struct label t 57 df
clude/CC/sys/types.h struct _quad t 67 df
clude/CC/sys/types.h struct fd_set 101 df
cal/include/CC/pwd.h struct passwd 26 df
cal/include/CC/pwd.h struct comment 42 df
/include/CC/malloc.h struct mallinfo 40 df
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falcon 99 ClassList

file dtype name bline df
../psfont.c struct _ _mptr -2 df
e/Interviews/world.h class ivWorld 87 df
/Interviews/psfont.h class ivPSFont 37 df
../psfont.c class PSFontImpl 38 df
tervViews/propsheet.h class ivPropertyDef 46 daf
tervViews/propsheet.h class ivPropertySheet 56 df
e/Interviews/world.h class ivPropertyData 49 df
e/InterViews/world.h class ivOptionDesc 64 daf
e/IntervViews/world.h class ivDefaul tProperties 72 df
../action.c struct _ mptr -2 df
/Interviews/action.h class ivAction 36 df
/Interviews/action.h class ivMacro 45 df
../align.c struct _ mptr -2 df
/Interviews/layout.h class ivLayout 35 df
e/InterViews/align.h class ivAlign 36 df
.. /strtable.c struct _ mptr -2 df
../strpool.h class ivStringPool 37 af
../strtable.h class ivStringld 34 df
../strtable.h class ivStringTable a7 df
.. /composition.c struct _ mptr -2 df
/InterViews/canvas.h class ivCanvas 40 df
/InterViews/canvas.h class ivOoffscreenCanvas 97 df
ude/InterViews/hit.h class ivHit 46 df
terviews/monoglyph.h class ivMonoGlyph 36 df
.. /composition.c class ivCompositionComponent L 43 df
.. /composition.c class ivBreak List 94 df
erViews/compositor.h class ivCompositor 37 df
../composition.c class ivBreak 49 df
rViews/composition.h class ivComposition 35 df
rViews/composition.h class ivLRComposition 89 df
rViews/composition.h class ivTBComposition 100 daf
terViews/fixedspan.h class ivFixedSpan 34 df
terViews/forcedraw.h class ivForcedDraw 34 df
de/InterViews/glue.h class ivGlue 36 df
de/Interviews/glue.h class ivHGlue 51 df
de/InterViews/glue.h class ivVGlue 60 daf
ude/IntervViews/hit.h class ivHitIterator 73 df
ude/InterViews/box.h class ivBox 40 df
ude/IntervViews/box.h class ivLRBox 81 df
ude/IntervViews/box.h class ivTBBox 91 df
ude/Interviews/box.h class ivOverlay 101 df
de/InterViews/tile.h class ivTile 34 df
de/InterViews/tile.h class ivTileReversed 50 df
.. /composition.c class CompositionComponent 38 df
.. /rubcurve. c struct _ mptr -2 dar
/InterViews/window.h class ivWindow 41 df
/InterViews/window.h class ivManagedwWindow 103 df
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falcon 99 ClassList

file dtype name bline df
/IntervViews/window.h class ivApplicationwindow 149 df
/Interviews/window.h class ivTopLevelWindow 157 df
/InterViews/window.h class ivTransientwWindow 168 df
/Interviews/window.h class ivPopupWindow 180 df
/Interviews/window.h class ivIconWindow 188 df
IntervViews/iwindow.h class ivIinteractorwindow 38 df
InterViews/painter.h class ivPainter 50 df
InterViews/rubband.h class ivRubberband 41 df
nterviews/rubcurve.h class ivRubberEllipse 34 df
nterviews/rubcurve.h class ivslidingEllipse 55 df
nterviews/rubcurve.h class ivRubberCircle 71 df
nterViews/rubcurve.h class ivRubberPointList 83 df
ntervViews/rubcurve.h class ivRubberVertex 98 df
nterViews/rubcurve.h class ivRubberHandles 113 daf
ntervViews/rubcurve.h class ivRubberSpline 126 df
nterviews/rubcurve.h class ivRubberClosedSpline 136 df
ntervViews/rubcurve.h class ivSlidingPointList 146 daf
nterViews/rubcurve.h class ivSlidingLineList 162 df
nterViews/rubcurve.h class ivScalingLineList 172 df
ntervViews/rubcurve.h class ivRotatingLineList 193 df
lude/floatingpoint.h struct quadruple 27 df
lude/floatingpoint.h struct decimal_record 75 df
lude/floatingpoint.h struct decimal mode 100 df
al/include/CC/math.h struct exception 367 df
al/include/CC/math.h struct complex 562 df
../scene.c struct _ mptr -2 daf
e/IntervViews/event.h class ivEvent 63 df
erViews/interactor.h class ivinteractor 62 df
nterViews/listener.h class ivListener 40 df
de/IntervViews/view.h class ivview 43 df
Interviews/subject.h class ivSubject 38 df
Interviews/subject.h class ivSubjectIterator 64 df
Interviews/subject.h class IntSubject 112 df
InterViews/subject.h class LongSubject 113 df
InterViews/subject.h class FloatSubject 114 df
InterViews/subject.h class DoubleSubject 115 df
6/InterViews/scene.h class ivScene 36 df
6/Interviews/scene.h class ivShape 37 df
6/Interviews/scene.h class ivMonoScene 75 df
../cursor.c struct _ mptr -2 df
e/InterViews/color.h class ivColor 35 df
/InterViews/cursor.h class ivCursor 47 df
../stencil.c struct _ mptr —2 df
/Interviews/bitmap.h class ivBitmap 42 df
ntervViews/renderer.h class ivRenderer 41 df
IntervViews/printer.h class ivPrinter 40 df
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falcon 99 ClassList

file dtype name bline df
IntervViews/stencil.h class ivStencil 37 df
.. /transformer.c struct _ mptr -2 df
rViews/transformer.h class ivTransformer 38 df
../center.c struct _ mptr —2 df
/InterViews/center.h class ivCenter 36 df
/InterViews/center.h class ivHCenter 56 df
/IntervViews/center.h class ivVCenter 62 df
.. /forcedraw. c struct _ mptr -2 df
./table.c struct _ mptr -2 df
.. /geometry.c struct _ mptr -2 df
../tray.c struct _ mptr -2 df

./tray.c class ivTrayElement 1835 df
../tray.c class ivTSolver 1246 df
.6/IntervViews/tray.h class ivTGlue 40 df
.6/Interviews/tray.h class ivTray 51 df
../tray.c class TElement 38 df
../tray.c class TList 176 df
../tray.c class TElementList 265 df
../tray.c class TTermination 327 daf
../tray.c class TLoop 346 df
../tray.c class TNode 362 df

. /tray.c class TNodeList 577 df
../interactor.c struct _ mptr -2 df
/IntervViews/sensor.h class ivSensor 38 df
../group.c struct _ mptr -2 df
terViews/aggregate.h class ivAggregate 38 df
e/Interviews/group.h class ivGroup 33 df
.. /rubverts.c struct  mptr -2 df
ntervViews/rubverts.h class ivGrowingVertices 35 df
ntervViews/rubverts.h class ivGrowingMultiline 57 drf
nterViews/rubverts.h class ivGrowingPolygon 67 df
nterviews/rubverts.h class ivGrowingBSpline 77 df
nterviews/rubverts.h class ivGrowingClosed BSpline 87 df
../page.c struct _ mptr -2 df
de/InterViews/page.h class ivPage 34 daf
.. /page.c class ivPageInfo List 58 df

. /page.c class PageInfo 39 df

./color.c struct  mptr -2 df

./color.c class ColorImpl 40 df

./color.c class ColorRepItem 29 df

./color.c class ColorRepList 37 df
.. /character.c struct _ mptr -2 daf
tervViews/character.h class ivCharacter 37 df
../box.c struct _ mptr -2 df
../box.c class ivBoxComponent_List 43 df
../box.c class ivBoxAllocation List 55 df
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falcon 99 ClassList

file dtype name bline df
tervViews/superpose.h class ivSuperpose 34 df
../box.c class BoxComponent 38 af
../box.c class BoxAllocation 46 df
../label.c struct _ mptr —2 df
e/IntervViews/label.h class ivLabel 37 df
.. /compositor.c struct _ mptr -2 df
.. /strpool.c struct _ mptr -2 df
../printer.c struct _ mptr -2 daf
e/InterViews/brush.h class ivTransformer 38 df
e/IntervViews/brush.h class ivBrush 40 df
nclude/CC/iostream.h class ostream 463 df
/InterViews/raster.h class ivRaster 40 df
nclude/CC/iostream.h class streambuf 179 df
nclude/CC/iostream.h class ios 49 df
nclude/CC/iostream.h class istream 346 df
nclude/CC/iostream.h class iostream 560 df
nclude/CC/iostream.h class istream withassign 568 df
nclude/CC/iostream.h class ostream withassign 576 df
nclude/CC/iostream.h class iostream withassign 584 df
nclude/CC/iostream. h class Iostream_init 605 df
../printer.c class PrinterInfo 75 daf
.. /rubgroup. c struct _ mptr -2 df
ntervViews/rubgroup.h class ivRubberGroup 34 df
.. /rubgroup. c class RubberList 31 df
.. /image.c struct _ mptr -2 df
e/InterViews/image.h class ivImage 36 daf
../simplecomp. c struct _ mptr -2 daf
erViews/simplecomp.h class ivSimpleCompositor 30 df
.. /arraycomp. C struct _ mptr -2 df
tervViews/arraycomp.h class ivArrayCompositor 36 df
../discretion.c struct _ mptr -2 df
erViews/discretion.h class ivDiscretionary 34 df
.. /deck.c struct _ mptr -2 df
de/Interviews/deck.h class ivDeck 32 df
../deck.c class ivDeckInfo List 35 df
../deck.c class ivDeckInfo 30 daf
../margin. c struct _ mptr -2 daf
/InterViews/margin.h class ivMargin 34 daf
/InterViews/margin.h class ivHMargin 68 df
/InterViews/margin.h class ivVMargin 80 df
/InterViews/margin.h class ivLMargin 92 daf
/IntervViews/margin.h class ivRMargin 99 df
/InterViews/margin.h class ivTMargin 106 df
/InterViews/margin.h class ivBMargin 113 df
../hit.c struct _ mptr =2 df
.. /shape.c struct _ mptr -2 df

Judith E. Grass



falcon 99 ClassList

file dtype name bline df
.. /texcomp. c struct _ mptr -2 df
Interviews/texcomp.h class ivTeXCompositor 30 df
.. /texcomp. c class BreakSet 32 df
../subject.c struct _ mptr -2 df

. /subject.c class SubjectRep 37 df
../subject.c class SubjectIteratorRep 92 df

. /subject.c class ViewList 34 df
.. /rubrect.c struct _ mptr -2 df
IntervViews/rubrect.h class ivRubberRect 34 df
InterViews/rubrect.h class ivRubberSquare 53 df
IntervViews/rubrect.h class ivSslidingRect 65 df
InterViews/rubrect.h class ivStretchingRect 80 df
IntervViews/rubrect.h class ivScalingRect 96 df
IntervViews/rubrect.h class ivRotatingRect 112 df
../glyph.c struct _ mptr -2 df
.. /xymarker. c struct _ mptr -2 df
ntervViews/xymarker.h class ivXyYMarker 36 df
.. /fixedspan.c struct _ mptr -2 daf
../glue2 6.c struct _ mptr ] df
.6/Interviews/glue.h class ivGlue 37 df
.6/Interviews/glue.h class ivHGlue 47 df
.6/Interviews/glue.h class ivVGlue 57 df
../world.c struct _ mptr -2 df
Dispatch/iohandler.h class dpIOHandler 34 df
ispatch/dispatcher. h class dpDispatcher 39 df
IntervViews/handler.h class ivHandler 34 df
../world.c class ivWorld IOCallback 51 df
../world.c class ivWorld _HandlerCallBack 472 df
.. /viewport.c struct __ mptr -2 df
rViews/perspective.h class ivPerspective 39 df
nterviews/viewport.h class ivViewport 39 df
.. /rubline.c struct _ mptr -2 df
InterViews/rubline.h class ivRubberLine 34 df
InterViews/rubline.h class ivRubberAxis 53 df
Interviews/rubline. h class ivSslidingLine 65 df
InterViews/rubline.h class ivScalingLine 80 df
InterViews/rubline. h class ivRotatingLine 95 df
.. /resource.c struct _ mptr -2 daf
.. /patch.c struct _ mptr -2 daf
e/InterViews/patch.h class ivPatch 34 df
../regexp.c struct _ mptr -2 df
include/CC/iomanip.h class smanip_int 105 df
include/CC/iomanip.h class sapply int 105 df
include/CC/iomanip.h class imanip_int 105 df
include/CC/iomanip.h class iapply int 105 df
include/CC/iomanip.h class omanip_int 105 df
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falcon 99 ClassList

file dtype name bline df
include/CC/iomanip.h class oapply int 105 df
include/CC/iomanip.h class iomanip_int 105 daf
include/CC/iomanip.h class ioapply int 105 df
include/CC/iomanip.h class smanip_long 106 daf
include/CC/iomanip.h class sapply_long 106 df
include/CC/iomanip.h class imanip_long 106 df
include/CC/iomanip.h class iapply_long 106 df
include/CC/iomanip.h class omanip_ long 106 df
include/CC/iomanip.h class oapply long 106 df
include/CC/iomanip.h class iomanip_ long 106 df
include/CC/iomanip.h class ioapply long 106 df
ude/CC/stdiostream. h class stdiobuf 18 df
ude/CC/stdiostream. h class stdiostream 37 df
include/CC/fstream. h class filebuf 17 df
include/CC/fstream.h class fstreambase 49 df
include/CC/fstream.h class ifstream 71 df
include/CC/fstream.h class of stream 86 df
include/CC/fstream.h class fstream 101 df
.. /monoglyph. c struct _ mptr -2 df
../target.c struct _ mptr -2 df
/IntervViews/target.h class ivTarget 42 df
.. /border.c struct _ mptr -2 daf
/InterViews/border.h class ivBorder 36 df
../listener.c struct _ mptr -2 df
.. /lrmarker. c struct _ mptr -2 df
ntervViews/lrmarker.h class ivLRMarker 36 df
../brush.c struct _ mptr -2 df
.. /shapeof.c struct _ mptr -2 df
InterViews/shapeof.h class ivShapeOf 34 df
../box2_6.c struct _ mptr -2 df
../box2_6.c class ivBoxElement 34 df
../box2_6.c class ivBoxCanonical 48 df
2.6/InterViews/box.h class ivBox 39 df
2.6/Interviews/box.h class ivHBoOx 70 daf
2.6/InterViews/box.h class ivVBox 95 df

./box2_6.c class BoxDimension 41 df

. /propsheet.c struct _ mptr -2 df
.. /propsheet.c class ivPropDir 89 df
.. /propsheet.c class ivPropPath 118 df
.. /propsheet.c class PropertyStringList 39 df
nclude/CC/sys/stat.h struct stat 28 daf
.. /propsheet.c class PropList 42 df
.. /propsheet.c class AttrList 61 df
.. /propsheet.c class DirList 75 df
.. /propsheet.c class PropPathElement 110 df
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falcon 99 ClassList

file dtype name bline df
.. /background. ¢ struct _ _mptr -2 df
erViews/background.h class ivBackground 38 df
.. /shadow. c struct __mptr -2 daf
/InterViews/shadow.h class ivShadow 36 df
../tile.c struct _ mptr -2 df
.. /textdisplay.c struct _ mptr -2 daf
rViews/textdisplay.h class ivTextDisplay 46 df
.. /textdisplay.c class TextLine 37 daf
../space.c struct _ mptr -2 af
e/IntervViews/space.h class ivSpace 33 daf

. /table2.c struct _ mptr -2 df

. /sensor. c struct _ mptr -2 df

. /superpose.c struct _ mptr -2 df

. /perspective.c struct __ mptr -2 df
.. /perspective. c class ViewList 32 df
.. /aggregate.c struct _ mptr —2 df
.. /aggregate. c class ivAggregateInfo List 43 daf
.. /aggregate.c class AggregateInfo 34 daf

./glue. ¢ struct _ mptr -2 daf
.. /message.c struct _ mptr -2 df
InterViews/message.h class ivMessage 36 df
.. /layout.c struct _ mptr -2 df
../rule.c struct _ mptr -2 df
de/IntervViews/rule.h class ivRule 36 df
de/IntervViews/rule.h class ivHRule 51 df
de/IntervViews/rule.h class ivVRule 57 daf
.. /painter.c struct _ mptr -2 df
.. /rubband. ¢ struct _ mptr -2 df
../deck2 6.c struct _ mptr -2 df
.6/Interviews/deck.h class ivDeck 36 df
../deck2_6.c class Card 35 df
.. /tformsetter.c struct _ mptr -2 df
rViews/tformsetter.h class ivIransformSetter 31 df
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