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ABSTRACT: Persistent object systems greatly simplify
programming tasks since they hide the traditional dis-
tinction between short-term and long-term storage from
the applications programmer. As a result, the pro-
grammer can operate at a level of abstraction in which
short-term and long-term data are treated uniformly. It
is important that such a persistent system be capable of
being used concurrently; such concurrent usage may
arise because of parallel process facilities in the pro-
gramming language concerned, or because of multiple
users of the same persistent store. Concurrent access
has not been satisfactorily supported in existing persis-
tent store implementations and a number of significant
research issues remain to be investigated. This paper
describes an architecture that supports concurrent ac-
cess to a shared persistent object store. The persistent
distributed architecture represented by our system ex-
ploits a number of the facilities provided by the Mach
distributed operating system.
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1. Introduction

Persistent programming is a relatively new paradigm that makes data
intensive application programming significantly easier. The idea behind
persistence | Atkinson, et al. 1983 ] is a simple one: data in a system
should be able to persist (survive) for as long as that data 1s required.
Orthogonal persistence means that all data may be persistent and that
data may be manipulated in a uniform manner regardless of the length
of time it persists. In other words, the right for data to survive for a
long (or short) time is independent of the type of data. Programs
manipulating data do so in a uniform manner, whether the data is
short or long lived.

Conventional programming languages require the programmer to
explicitly manage persistent data: to save data, the programmer must
traverse the in-memory data structures and create an isomorphic struc-
ture in the file system. Similarly when that data is later required, the
reverse process must be executed: the data in the file system must be
traversed and the in-memory structure re-created. Furthermore, to
protect the integrity of the data, great care in programming is needed;
for example, the modification of a data structure in the file system
must avoid corruption even in the event of power failures or system
crashes.

Using a traditional database avoids many of these problems, for ex-
ample, updates to persistent data are controlled by carefully designed
transaction mechanisms. However, there is a hidden cost with data-
base systems: the representation of data in the data base seldom
matches the type system used by the programming language. There-
fore the programmer must still manage the conversion of data from
one form into another. This problem is sometimes called the
impedance mismatch problem | Bancilhon and Maier 1989 ].
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Persistent programming eliminates impedance mismatch by provid-
ing a high level language in which data of arbitrary longevity (short or
long) may be created, stored and manipulated. Persistent systems sup-
port long lived data objects of arbitrary complexity—such data objects
may not only outlive instantiations of the program that created them,
but also outlive versions of the program, or even the useful life of the
program in all its versions.

This paper describes an architecture designed to support applica-
tions written in persistent programming languages. The architecture
maintains an orthogonally persistent programming environment that is
coherent across a number of clients and is supported by a resilient
object store. It is capable of supporting the majority of persistent,
algorithmic, object-oriented and applicative programming languages
currently in use, as well as being sufficiently flexible to be used as an
experimental platform. However, the original motivation for construct-
ing the architecture was to support the persistent language Napier88
[ Morrison, et al. 1989].

The model of persistent store supported by Casper is a conceptu-
ally infinite, shared and resilient data store. The aim of the architec-
ture described in this paper is to support concurrent access to the
persistent store by users on workstations connected by a local area
network. This model of persistence has lead us naturally to a design
which provides a persistent store abstraction similar to Distributed
Shared Memory [ Philipson, et al. 1983 ] with all clients sharing the
same address space (the persistent store). The needs of persistent pro-
gramming make particular demands upon the maintenance of this ad-
dress space beyond the conventional needs of coherency in DSM. For
example, the ability to maintain a self consistent and recoverable state
in the stable store is an attribute normally associated with databases
but one central to the success of our design.

1.1 Napier88

One difference between Napier88 stores and traditional database sys-

tems is that in addition to the usual passive data, the stable store con-
tains meta data such as procedures and functions [ Atkinson and Mor-
rison 1985 ]. This allows Napier88 stores to be used as repositories for
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programs. It also allows data to be encapsulated within the closure of
functions and procedures providing a level of abstraction not available
in relational systems. Such functionality permits the persistent pro-
gramming environment to subsume the roles of traditional file and
database management systems.

The state of all processes executing within the store is also part of
the persistent environment. Thus, should some component fail due to
a hardware malfunction or power failure, the user processes executing
in the system will continue execution upon restart.

Another difference between Napier88 systems and database man-
agement systems is that database management systems require a se-
quence of update operations by a user process to be contained within
an atomic transaction. That is, either all modifications are completed,
or none are made. Traditionally, such atomicity is achieved by either
locking portions of the database, or duplicating portions, so that while
a transaction is in progress, no other user process may view modified
data [ Eswaran, et al. 1976 ]. Casper does not force all data accesses to
be serialised; instead, the grain of atomicity is that of the operations in
the Napier88 language.

The Napier88 language was developed by the PISA project
[ Atkinson, et al. 1986] as a test-bed for experiments in type systems,
programming environments, concurrency, bulk data objects, and per-
sistence. The Napier88 type system is polymorphic and evolved at the
same time as Cardelli and Wegner [ Cardelli and Wegner 1985 ] pub-
lished their work. Many of the ideas are related to theirs and some
have been borrowed from them. The philosophy is that types are sets
of values from the value space. The possibility of static type checking
is retained wherever possible. However, dynamic projection out of the
types any and environment | Dearle 1989 ] permits the dynamic bind-
ing required for true orthogonal persistence. Napier88 is unusual in
that, like its predecessor PS-algol, it is a store-based language with
higher order procedures and block retention [ Berry 1971]. The
Napier88 system consists of the language and its persistent store. This
persistent store is populated with objects, some of which are used to
support itself. Examples of such tools include an object browser, a
window manager and the Napier88 compiler, which may be called dy-
namically to provide ad-hoc polymorphism and reflection.
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1.2 Mach

We have implemented Casper using the Mach operating system

[ Acceta, et al. 1986 ] ; Mach provides a suitable base for the system’s
implementation through its support for programmable page fault
handling, inter-process communication, exception handling and
multiple threads.

Under Mach, the user is permitted to provide a process called an
external pager which services page faults. If an external pager is asso-
ciated with a user process, the Mach kernel will forward page fault ex-
ceptions to that external pager, which will return the required data (in
the case of a read fault) or may write the data to some stable medium
(for pages removed from the client’s physical memory). This external
pager mechanism implements most of the functionality needed to sup-
port the coherent persistent address space described later.

The inter-process communication (IPC) structure available in Mach
permits a transparent interface to be built, independent of the physical
location of the communicating parties.

Mach supports more than one thread of execution in a single vir-
tual address space, which is exploited by the architecture described
in this paper. We have found this to be especially useful in building
asynchronous communication protocols, such as our cache coherency
protocol.

2. Implementation Structure

2.1 Overview

The architecture of our persistent system is depicted in Figure 1. A
number of clients execute against a shared stable store using a coher-
ency protocol that guarantees data integrity; client code executes in an
environment that is robust and guarantees correct execution regardless
of the failure of parts of the system. Each client has an interface to the
Stable Store Server, which gives access to the stable persistent store;
the interface at the client is called the Client Request Handler. In addi-
tion, each client contains a thread executing the user’s code (compiled
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Figure 1: A distributed persistent architecture.

Napier88 programs) and a page cache which holds copies of pages re-
quired by the user program. Within a client, coherency is maintained
by the Client Request Handler and the external pager.

A stable store is defined by Lampson [ Lampson, 1981 ] to be a set
of objects which move from one consistent state to another atomically.
In the Casper system, the stable store is provided by the Stable Store
Server. The Stable Store Server consists of four components: the
Server Request Handler, the Stable Store Manager, the Stable Store
Garbage Collector and the stable medium. At the lowest level of ab-
straction, the stable store is implemented using a stable medium such
as disk storage. The objects resident on the stable medium are man-
aged by the Stable Store Garbage Collector, while the physical pages
are managed by the Stable Store Manager. Finally, the interface to
the outside world is provided by the Server Request Handler.

In addition to the usual passive data found in traditional database
and file systems, the Stable Store contains active data including the
state of all processes executing within it. This provides the potential
for restarting processes found in the persistent store should some ele-
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ment of the system fail. The protocol definition includes the mainte-
nance of structures needed to correctly roll back the execution state of
interdependent clients should failure occur in any part of the system.
Those parts of the system that can continue without jeopardising the
store’s integrity are unaffected.

2.2 Stability and Coherency

As stated earlier, our system does not force accesses to the database to
be serialisable. Instead, anarchic access to the store is permitted and
synchronisation is provided by language level mechanisms. However,
the store itself must be kept consistent, which presents two problems:

* the contents of the store may never represent an inconsistent
state. Whenever a snapshot of the executing environment is
made it must be done in such a way as to create a new self
consistent state, or fail in the attempt and roll back the
environment to the previous self consistent state.

* no process must view or act upon out-of-date data, or be able to
modify a data item concurrently with another process.

In this system, store stability deals with the first aspect, and the cache
coherency protocol with the latter. Store stability is the subject of
Section 3, coherency is discussed in Section 4.

3. Store Stability

As described in the previous section, all access to the persistent store
is controlled by the Stable Store Server. It has three main functions:
managing the supply of pages upon demand to clients, ensuring that
coherent versions of the pages are supplied, and maintaining the in-
tegrity of the Stable Store. It also allocates ranges of the persistent
address space to processes and garbage collects the main heap.

Since the persistent store is used as the repository for all objects
shared by clients, it is imperative that the contents of the store remain
stable (i.e., have the ability to survive failures). This requires the use
of a reliable mechanism to maintain consistency within the stable
store.
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In the Napier88 system, the underlying data repository moves be-
tween stable states through stabilise operations. A stabilisation is usu-
ally initiated by user code via a predefined Napier88 function which is
always guaranteed to succeed. As described in Section 3.1, stabilisa-
tion may occur asynchronously with respect to a client due to the
sharing of data with other clients combined with a stabilisation request
made by one of those clients.

In Casper stabilisation involves flushing those pages onto disk
which have been modified since the last stabilisation. A new stable
state is achieved when a known set of such pages has been secured;
any record of their contents in the previous stable state can then be
safely discarded. In this way, there is always a recent, reliable state
to which it is possible to return following failure in some part of the
system. This is discussed in more detail in Section 3.3.

3.1 Associations

In Casper, clients may share modified data. This presents the problem
of maintaining a consistent view of the persistent environment. Con-
sider the case where two clients, « and 3, both share data. If client «
stabilises its state independently of 8 an inconsistent view of data will
be created. This can be seen by considering the consequences of a sys-
tem crash immediately after the stabilisation of a. a and S revert to
the state at the time of their last stabilisation, and these times are dif-
ferent. Therefore the state of @ would be consistent but 8 would view
non shared data at the time of its last stabilisation but shared data at
the later time of the last stabilisation of «.

There are three solutions to this problem:

1. prevent clients from sharing data modified with respect to the
stable store,

2. make all clients stabilise together, and,

3. make interdependent clients stabilise together.

Wu and Fuchs [ Wu and Fuchs 1990 ] describe a hardware imple-
mentation in which clients are prevented from sharing modified data.
This is achieved by forcing clients to perform checkpoint operations as
soon as another client requests the use of any updated data. A major
concern of their work has been to limit roll-back propagation, so that
the failure of any client affects only that client.
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The approach of making all clients stabilise together has been im-
plemented in Monads [ Henskens, et al. 1991 ], a persistent system
that allows clients to share modified pages.

We adopt the solution whereby clients may share modified data
and only interdependent subsets of clients must stabilise together. We
term interdependent clients associates and a set of mutually dependent
clients an association. It is important to note that associations are dy-
namic in nature, with clients being added and associations merging
over time. These associations are maintained by the Stable Store
Server. The maintenance of associations is described in Section 4.2.

3.2 Failure

Failures are characterised as the non-recoverable loss of either a client
or the server. Such failures may be caused by power failures, operating
system errors or the crash of the system itself. Such failures must be
reliably detected and the system state recovered in a manner that does
not compromise the integrity of the store.

Communication between elements of Casper uses the IPC mecha-
nisms provided by Mach. Internally, Mach IPC implements a virtual
circuit and is able to detect the loss of any element of the system.
Depending upon which element fails, different action is taken.

If a single client that is not a member of an association fails it is
only necessary for the Stable Store Server to remove its record of data
pertaining to that client. If a client that is associated with other clients
fails, the failed client is treated similarly to the single client case, but
in addition all of the other members of the association are forced to
revert to the state represented in the stable store. This is their state at
the time of their last stabilisation.

Reversion is performed by invalidating all of the modified pages
within the clients and then recovering the internal register state of the
executing processes from the stable store. Reverted processes effec-
tively travel back in time and then continue to execute, albeit without
their failed associate.

Failure of the store server currently results in all of the clients
terminating and requires human intervention to restart. Runnable
processes are resumed from their saved state in a manner similar to
that described above.
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3.3 Shadow Paging Scheme

Stabilisation requires that a set of objects move from one state to an-
other atomically. In Casper this is achieved using a shadow paging
technique [ Lorie 1977 ] combined with an atomic commit operation.

Shadow paging means that a dirty page may never overwrite a
clean version of a page in the stable store. Instead, dirty pages are
written to another location, with these copies of the pages being
known as shadow copies. Thus, when a page is modified for the first
time, a shadow location for it is allocated in the stable store. At most
one shadow copy of each page exists and once a shadow copy of a
page exists, that page is used for future operations. Stabilisation
changes the status of shadow pages so that they are now considered
the clean version and further modification of the page results in the
allocation of a new shadow page. The old clean page is free to be
reused. Maintaining a shadow copy permits the system to roll back
should a failure occur, since the original pages are never overwritten
until after the successful completion of a stabilisation operation.

To implement such a system, a mapping must be maintained that
maps the address of a persistent page to its location in stable memory
(i.e., disk). This mapping table is called the Logical to Physical map
(L-P map). As shown in Figure 2, each entry in the L-P map contains
three fields: the physical page location of the stable version of the
page, the location of the shadow copy of the page (if one exists) and a
single bit selecting which entry holds the address of the stable page.
Since the L-P map must be robust, it is natural to place it within the
persistent store which it manages. Consequently, there may be two
versions of the data structure—a stable version and a shadow version.

Stabilisation requires that a new consistent stable state be created
from a set of pages consisting of some newly created shadow pages
and some existing stable pages. Furthermore, it must be performed in
such a way that it is always possible to recover the state before stabili-
sation, even if a failure occurs during stabilisation.

The stabilisation sequence is as follows: the modified pages are
first written from the clients to their shadow locations on disk. In the
normal course of events, modified pages may also have been delivered
to the stable store by the coherency mechanism if there was in-
sufficient space for them within a client’s physical memory. These
pages are also written to their shadow locations and are regarded as
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Figure 2: The L-P map.

having been written back as part of this stabilisation. Once all of an
association’s pages have been secured in the stable store, the selection
bit on each of these pages is flipped to indicate that the shadow ver-
sion is to be used as the current version once the stabilisation is com-
plete. Next, the L-P map entries containing modified selection bits are
written back to their appropriate shadow locations. Once this is com-
plete the new stable state is secured in stable memory but will not be
used until a final atomic operation has completed. This final operation
must be indivisible—that is it either completes successfully or not

at all.

The final atomic operation is implemented by swapping the roles
of two header pages as described by Challis [ Challis 1978 ]. From the
header page, the current and shadow versions of all the stable store
data structures can be found. Each header page fits within a single
physical disk block and therefore can only be written to disk as a sin-
gle hardware operation. Each header page is time-stamped; thus, it is
always possible to determine which header is the most up-to-date. The
time stamp is written at the beginning and end of each header. If the
two time-stamps disagree, the system can conclude that the header
block is corrupt and elect to use the other header. The alternate will
still describe a consistent view of the persistent store, but it will be
one that represents the state of the system at the conclusion of the last
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successful stabilisation. Thus, the system will survive failure even dur-
ing the final commitment of the stable structures.

It is possible for several independent stabilisation operations to be
in progress at any time. Consequently, pages from more than one sta-
bilisation may be written to the stable store concurrently. However,
care must be taken to ensure that the stable store moves from one sta-
ble state to another in an atomic fashion. In practice, the final stages
of stabilisation must be serialised. In particular, the L-P map can only
make one flip at a time.

4. Cache Coherency

4.1 Communication Architectures

Previous designs for coherency of shared persistent data have focussed
on tightly coupled hardware. Such designs make use of the low cost of
broadcast messages and snooping on bus traffic to implement co-
herency. Our design is aimed at distribution over a local area network
where both broadcast and snooping are costly.

The protocol can be characterised as a central directory, multiple
readers, single writer protocol. The design assumes that communica-
tion is reliable and that ordering of messages is preserved over point
to point links. This assumption is safe when implemented using the
Mach IPC abstraction.

The general aim of the protocol is to allow multiple clients to read
the most up-to-date copy of a page, or a single client to write to the
page without compromising the coherency of the pages. All read and
write requests are made directly to the Stable Store Server. If a page
has been modified since the last stabilisation and a current copy is not
available in the store, read requests for the page are forwarded to a
client with an up-to-date copy of that page. The server only services
requests itself when it holds a valid copy of the page. Thus, up-to-date
page copies may be distributed among the clients and the Stable Store.
The aim is to maximise the freedom with which a client process is
able to run, and prevent the server from becoming a bottle-neck for
page retrieval and supply.
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The Stable Store Server maintains all the information concerning
the distribution and modification of pages. A data structure known as
the V-list contains the identity of all clients holding a valid copy of a
page. Similarly, the dependency list, or D-list, records which clients
hold or have held a modified copy of a page since they last stabilised.
If a client wishes to modify a page, it must already have read access to
that page. If the page is not shared, a client may freely modify the
page, although it must inform the Stable Store Server of the
modification if the page was previously unmodified; the client does not
require an acknowledgment before proceeding with modification of
unshared pages.

These concepts can be illustrated as shown in Figure 3, which de-
picts the events involved in the modification of a page. As a result of
each of the clients A, B and C attempting to read the page x, they
have all been added to the V-list for that page; this is shown in Figure
3(a). Client A is attempting to modify the page and must forward to
the Stable Store Server a modification request (Modify signal), as
shown in Figure 3(b). The Stable Store Server next instructs all other
clients with an up-to-date copy of the page to invalidate their copy;
the identities of the clients to be notified are found from the V-list for
the page, as shown in Figure 3(c). These clients must reply with an
acknowledgment to the Stable Store Server on completion of the inval-
idation (Invalidate Acknowledge signal shown in Figure 3(d)). Upon
receipt of an acknowledgment from a client that client is removed
from the V-list for the affected page, recording that that client no
longer holds a valid copy of the page. Once all acknowledgments are
received the client modifying the page is inserted into the page’s D-
list, recording that client’s dependence upon the page. The Stable
Store Server now sends a Write Acknowledge signal to the originally
requesting client, as depicted in Figure 3(e), granting write permis-
sion. Any other client accessing the page results in that client receiv-
ing the up-to-date, modified page copy and being inserted into the V-
and D-lists for that page.

The state to which a page belongs in both the server and the
clients indicates which of the various properties are applicable to the
page at that particular time. The states include: modified, shared, read
requested (but not yet resident), valid copy held, modification re-
quested (but not yet granted) and invalidation expected.
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Figure 3: The modification protocol for a shared page.

4.2 Maintenance of Associations

Associations are dynamic in nature and are constructed between sta-

bilise cycles by the server. Associations may merge over time due to

the sharing of data between previously independent associations.
Figure 4 illustrates a combination of requests which lead to the ex-
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Figure 4: Expanding associations.

pansion of an association. Firstly, Figure 4(a) depicts a collection of
clients which do not share any pages; thus each association consists of
precisely one client. Figure 4(a) also shows that client A modifies x

and client B modifies y. Figure 4(b) depicts clients B and C each re-
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questing pages held by client A; since client B is requesting page x,
which has been modified by client A, the Stable Store Server merges
the associations containing clients A and B. The association contain-
ing client C is not merged with this association, as the page requested
(page z) is not modified. Thus, the failure or stabilisation of client A
or C will not affect the other. The result of this operation is shown in
Figure 4(c). A further request from client D for another modified page
(page y) is shown in Figure 4(d); since this page has been modified by
client B, it causes the association containing client D to merge with
that containing A and B. The result of this interaction is shown in
Figure 4(e).

5. Clients

As shown in Figure 1, a client is divided into three main threads: the
user program, the Client Request Handler and the external pager. Ide-
ally, user programs should not be aware of the existence of the other
parts of the client, perceiving only a single, flat, virtual address space.
In reality, a few concessions must be made. The whole address range
cannot be made available since a small area is required within which
to place both the run time system and the coherency mechanisms. This
area is reasonably small (a few megabytes) compared to the entire ad-
dress space and is demand-paged by the default pager since it is not
persistent.

The external pager handles any page faults or protection faults
caused by the user program’s attempts to access non-resident or pro-
tected pages. The Client Request Handler and the external pager
jointly implement the client’s part of the cache coherency protocol
and are discussed in Section 5.1.

The Client Request Handler, described in Section 5.2, handles all
incoming messages to the client from the Stable Store Server and from
other clients. The cache coherency protocol requires that messages be-
tween particular pairs of communicants are delivered in the order in
which they are generated. To maintain temporal ordering, all commu-
nications must be passed through the Client Request Handler.

As described earlier the system implements Napier88 operations
atomically. Therefore the system must provide support for those opera-
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tions which are not intrinsically atomic, such as multiple word reads or
writes. This is discussed in Section 5.3.

5.1 External Pager

The abstraction of the persistent address space within a client is man-
aged by the external pager. The coherency protocol requires the abil-
ity to be able to detect and service page faults and to selectively pro-
tect pages and handle attempts to violate those page protections within
the persistent address space. The external pager provides this function-
ality.

The external pager is divided into two parts: a thread which fields
requests from the kernel for maintenance of the persistent address
space, and a routine library which is used by the Client Request Han-
dler to perform maintenance requests on the address space. The Client
Request Handler maintains coherency; this may be as simple as chang-
ing local state information or may involve dialogue between the Client
Request Handler and the Stable Store Server.

All protection exceptions and page faults caused by the user pro-
gram’s attempts to access pages are handled by the external pager. For
example, when the coherency protocol requires notification of an at-
tempt to modify a page, the page is protected against modification.
Any subsequent attempt by the user program to modify the page will
result in a page protection violation, which will be delivered to the
external pager. The external pager will translate this into a Client
Modification request and forward it to the Client Request Handler. In
response to coherency management requests, the Client Request Han-
dler will call the appropriate routine in the external pager interface,
which replies to the kernel; this, in turn, reschedules the user pro-
gram. The user program will retry and successfully execute the in-
struction which originally caused the exception or page fault.

The external pager also handles the return of modified pages to the
Stable Store (to relieve pressure on local physical memory). If a re-
moved page has been modified, an up-to-date copy must be returned
to the Stable Store. If a removed page has not been modified, the Sta-
ble Store Server is notified that this client no longer holds a valid page

copy.
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In releases of Mach derived from Mach 2.5, the Mach kernel only
informs the external pager of the removal of a locally modified page.
In order to receive information on the removal of all pages (modified
and unmodified), the external pager must ensure that all pages are
modified (non-destructively) when they are brought into the client.

5.2 Client Request Handler

The Client Request Handler is the client’s interface to the outside
world. Some requests generated within a client are also passed to the
Client Request Handler’s port. The cache coherency protocol requires
that messages between particular pairs of communicants are delivered
in the order in which they are generated. To maintain temporal order-
ing, all external communications relating to a resident page must be
passed through the Client Request Handler. The Client Request Han-
dler is also responsible for maintaining the appropriate state informa-
tion caused by external events via the coherency protocol.

The responsibility for start-up and creation of the other threads in
the client rests with the Client Request Handler. It must also handle
client termination and restart.

5.3 Atomic Access

The Napier system requires that accesses to objects are atomic. This is
necessary so that an object is never left in a partially modified, and
hence inconsistent, state. If one process writes a value 7 into a loca-
tion and another writes €, either 7 or € will always be read, never a
mixture of the two. This is true regardless of the type of 7 and €.
Most accesses are made to aligned 32-bit words, which is atomic at
the machine level. However, there are some occasions when the atom-
icity provided at this level is insufficient. Such cases include accessing
multiple word objects, such as real numbers (which are 64-bit quanti-
ties), bitmaps and discriminated unions. This requires a mechanism
capable of providing user programs with atomic access to multiple data
locations at arbitrary addresses.

In an unshared system it is possible to provide a lock on each ob-
ject to which atomic access is needed. However this is undesirable
when data is shared, since shared read only pages become modified
when locks are set; voiding the gains made by though sharing. The

354  Vaughan et al.



Casper solution is to modify the cache coherency protocol so that it
can be employed to deny access to pages that contain objects that are
being accessed atomically.

This may be achieved using a structure which we call a latch. The
semantics of a latch is analogous to a door latch: it may be set before
the door is closed, but once the door is closed, the door will not open
again until the latch is released.

Atomic access to multiple locations at arbitrary addresses may be
implemented via latching each affected page. Two latches are provided
per page—a read latch and a write latch. A latch, when set, prevents
the release of the page to any other client for the purpose indicated by
the kind of latch. If a page is required for an atomic read operation,
the write latch is set and so a write operation by another client occur-
ring part way through the read operation is prevented. If an atomic
write is desired, the read latch is set to prevent the page from becom-
ing shared part way through the write.

When the need arises to access more than one page, pages are
latched serially and in ascending address order to prevent circular de-
pendencies with competing clients, and hence avoid deadlock. Once
all of the necessary pages are resident and have the appropriate latches
set, the atomic access is performed and the latches released.

The design of the latching mechanism has aimed for efficiency,
particularly for common cases, such as when only one page is needed
and the page is already resident. Although shared by concurrently ex-
ecuting threads (the user program and the Client Request Handler)
latches do not require protection from concurrent access since
they are:

» only ever set by the user program,

» released by the user program or by the Client Request Handler
(when the user program is guaranteed to be blocked), and,

* only read by the Client Request Handler.

Thus a request to latch a page only takes a few machine instruc-
tions and has minimal effect on execution speed.

5.4 Local Heap Management

Each client maintains a local heap for local object creation; this is a
previously unused set of contiguous pages drawn from the persistent

Casper: a Cached Architecture Supporting Persistence

355



address space. Local heaps are small enough to always remain resident
within the client’s page cache during normal execution. Our experi-
ence with earlier implementations has shown that significant improve-
ments in performance may be obtained if the local heap area is rarely
paged; furthermore, greater locality of reference is obtained using this
model. This can result in improved performance from better page fault
behaviour and improved processor cache utilisation.

If transient objects are confined to a localised area, they may be
garbage collected locally at low cost. Local heaps may be safely
garbage collected provided that no external references (from other
processes or the Stable Store Server) point into them. Fortunately, the
creation and export of such pointers is easily detected, making this
technique tractable. The Casper system utilises an algorithm [ Koch, et
al. 1990 ] based on generation-based garbage collection [ Ungar 1984 ]
to maintain the local heap.

6. Conclusion and Future Plans

The architecture described in this paper supports concurrent access to
the persistent store by users on workstations connected by a local area
network. This architecture consists of an arbitrary number of clients
sharing a coherent persistent store managed by a central server. De-
spite the fact that this architecture is designed to support an object-
based language, the coherency of the stable store is maintained at the
page level. Many other persistent object architectures have chosen to
employ software object address translation when objects are moved
from long term to short term memory. The motivation for this work
was to experiment with the utilisation of hardware address translation
mechanisms via the Mach external pager mechanism.

This approach has led to some complications, such as those dis-
cussed in Section 5. However, we believe that the benefits outweigh
the disadvantages. One of these benefits is that our scheme exploits
object clustering on pages within the persistent address space to reduce
the frequency of requests to the Stable Store Server by providing a de-
gree of prefetching.

Overall, the Mach operating system has proven to be an excellent
platform for the conduct of this research. In particular, the use of ex-
ternal pagers to support programmable page fault handling is central to
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the implementation of cache coherency in Casper. Furthermore, the
single inter-process communication (IPC) structure available in Mach
permits a transparent interface between components of the architec-
ture, independent of the physical location of the communicating
parties. However, our work with Mach has highlighted some
deficiencies in the current version of the operating system.

A significant inconvenience is the kernel’s removal of pages ac-
cording to its own LRU algorithm. It would be more useful if the ker-
nel requested the external pager to remove one or more pages, rather
than sending its own choice of pages to the external pager for re-
moval. This is due to the fact that the pages selected may contain
pointers into the client’s local heap area, in which case removal is a
costly operation in our system. The external pager can determine more
appropriate candidates for efficient page removal through the available
state information.

The architecture described in this paper is an experimental frame-
work for further investigations. These experiments will focus on three
areas: garbage collection algorithms, the utilisation of pointer swiz-
zling to implement very large address spaces and clustering al-
gorithms. At the time of writing, Casper is running under Mach 2.5
on a Sun 3/60.
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