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ABSTRACT We present a method for designing operat-

ing systems as an object-oriented framework of general-

ized, abstract components. The framework is special-

ized into further subframeworks to implement
subqystems of the operating system. Each subframework
introduces constraints and relationships between the ab-

stract classes of the components. The constraints are

inherited by the instantiations of the framework.
Choices is an object-oriented operating system designed

and implemented using frameworks. In this paper, we

explain the application of our design approach to
Choices. We describe the following subsystems and

their subframeworks: virtual memory, persistent stor-
age, process management, message passing and device
management subframeworks. We discuss the advan-

tages and disadvantages of using frameworks to design

and implement object-oriented systems.
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I . Frameworks in an Object-Oriented
Operating System

Frameworks [6, 5] characterize the architectural design of an object-
oriented system. The Model-view-controller of smalltalk-8O systems

[14] and the Unidraw graphical editor [24] arc two documented exam-
ples of frameworks for graphical user interfaces. In this paper, we
present a framework for Choices, an object-oriented operating system.

The design of Choices [3] comprises a hierarchy of frameworks. In
that design, the concept of a framework subsumes the conventional
organization of an operating system into layers [22]. Frameworks not
only allow the design of layers, but they also permit the construction
of more complex structures. The use of frameworks permits design
and code reuse and the consistent imposition of design constraints on
all software, independent of the level at which it may be used.

The object-oriented operating system approach builds system soft-
ware that models system resources and resource management as an
organized collection of objects that encapsulate mechanisms, policies,
algorithms, and data representations. A class defines a collection of
objects that have identical behavior. Class hierarchies define relation-
ships between classes that share common behavioral properties. Inheri-
tance and inclusion polymorphism permit the methods of a concrete
subclass to implement operations on an abstract class. A framework of
classes defines an architecture that expresses the organization of an ob-
ject-oriented design of a system. The framework can be refined into
subframeworks, corresponding to the composition of a large complex
system out of smaller interacting subsystems. A particular operating
system implementation is just one of many possible ways that a frame-
work for an operating system can be "instantiated."

Choices was designed from the beginning as an object-oriented
operating system implemented in C**. The system runs stand-alone
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on the Sun SPARCstation II, Encore Multimax, Apple Macintosh IIx,
IBM PS/2, and AT&T WGS-386. It supports distributed and shared

memory multiprocessor applications, virtual memory, and has both
conventional flle systems and a persistent object store. The system has

over 300 classes and 150,000 lines of source code.
In this paper we will describe how we have used the object-

oriented notion of a framework in our work. Choices has the following
frameworks: process management and exception handling, scheduling,

synchronization, memory management, persistent storage, device

management, message passing, communication protocols, application

interface, and instrumentation. We will discuss how particular frame-
works in Choices have contributed to the organization of the system,

techniques we have found helpful for building frameworks, and why
frameworks are useful.

In Section 2 we review the concept of a framework, and in Sec-

tion 3 we discuss the techniques for building frameworks. Section 4

introduces the frameworks in the Choices object-oriented operating
system. Each of the major frameworks of Choices are then described
in turn: the virtual memory subframework in Section 5, the process

subframework in Section 6, the persistent storage subframework in
Section 7 , the message passing subframework in Section 8, and the
device management subframework in Section 9. The advantages of ex-

plicitly using a framework for design are discussed in Section 10, and

Section 11 describes how, in practice, subframeworks evolve over time
and what changes we have made to the Choices frameworks. In Sec-

tion 12, we conclude by reviewing the lessons we have learned from
using frameworks to design an object-oriented operating system.

2. What is a Framework?

A framework is an architectural design for object-oriented systems. It
describes the components of the system and the way they interact. In
frameworks, classes define the components of the system. The interac-
tions in the system are defined by constraints, inheritance, inclusion
polymorphism, and informal rules of composition (see Section 3 for
details on these techniques) . Choices frameworks use single inheri-
tance to define class hierarchies and C* * subtyping to express inclu-
sion polymorphism. In practice, we have found that the design of a
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complex system such as an operating system is best defined as a frame-
work that guides the design of subframeworks for subsystems. The
subframeworks refine the general operating system framework, as it
applies to a specific subsystem.

The framework for the qystem provides generalized components
and constraints to which the specialized subframeworks must conform.
The subframeworks introduce additional components and constraints
and subclass some of the components of the framework. Recursively,
these subframeworks may be refined further. Frameworks simplify the
construction of a family of related systems by providing an architec-
tural design that has common components and interactions. An in-
stance of a framework is a particular member of the family of systems.

Frameworks both support and augment the traditional layered ap-
proach that has been used to design operating systems. In both
approaches the problem domain is divided into smaller domains. A
layer represents an abstract machine that hides machine dependencies
and provides new services. The abstract machine is presented as a set
of subroutines. A framework introduces classes of components that en-
capsulate machine dependencies and define new services. A layer in-
troduces an interface between implementations that is constrained by
the set of calls that are defined. A framework defines interfaces in the
form of the public methods of abstract classes. It imposes restrictions
on the implementation of an interface by the constraints it imposes. In
the layered approach, the design of each layer is independent. Al-
gorithms or data structures in one level may be similar to those in
other levels, but the level approach to design has no way to express
that similarity. Instead, a framework may have several different instan-
tiations and implementations within a system; it may be reused. The
constraints of a framework allow more complex interactions than be-
tween levels. The framework approach subsumes the layered approach
because the basic properties of the layered approach can be modeled
by frameworks. However, the framework approach also allows the
constraints within a particular layer to be expressed. Finally, a frame-
work can be defined in terms of abstract classes that are bound to
specific concrete classes at run-time using inheritance and inclusion
polymorphism. This provides the compile time independence that is
exhibited by, for example, the application interface layer but also al-
lows dynamic binding as, for example, is necessary to allow device
drivers to be added or changed in a running system.
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3 . Techniques for Building Frameworks

In this section, we identify and describe some useful techniques for
implementing frameworks. We provide example uses from Choices.

. Abstract classes provide generalized interfaces for concrete
classes. Concrete classes are implementations of abstract
classes. A framework of abstract classes introduces constraints
between objects in the system that are specialized and
augmented by corresponding concrete classes. In Choices, tbe
persistent storage framework involving Per si st entstore s,

Per sistentStoreC ontaíner s, and P er sistentStore Dictionar ie s

introduces constraints on the partitioning of various kinds of
disks, the provision of various formats of logical files, and the
implementation of various methods of file naming.

. Inclusion Polymorphisrn refers to a subclass being a subtype of a
superclass. This allows a subclass to be used wherever a
superclass is expected. In Choices, all devices and device
controllers are derived from a device-driver framework. Any
device written to use an abstract controller interface may use
any instantiation of a controller such as a SCSI bus controller.
Further, given a request for a particular implementation of an
I/O interface, the system is free to bind that request to any
convenient implementation of the interface provided that the
class of the object requested and class of the service offered
satisfies the subtyping requirement.

. Constraints are descriptions of relationships between abstract
classes of frameworks or the relationship between concrete and
abstract classes within a framework. The use of constraints is
most evident in how instances of concrete classes are combined.
For example, in the message passing subframework certain
primitives intended for distributed memory computing cannot be
mixed with those that assume a shared memory architecture.

. Dynamic code loading allows one to specify an abstract class
when the system is designed and add a concrete descendant
class of the abstract class at run-time. For example, a Choices
device driver consists of a DevicesController class and a
number of Device classes. A new device driver can be added
to the system by loading the concrete subclasses of the
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DevicesController and the Device classes that form the device
driver.

. Delayed Binding is the ability to determine dynamically the
methods to which an object responds (often referred to as the
signature of the object). In object-oriented systems this binding
is not known until run-time. In C++, delayed binding is a
result of using virtual functions. All abstract classes in choices
use virtual functions.

- ' conversion allows objects to be changed at run-time into other
objects. Conversion does not modify the original object; instead,
a new one is created using the data of the old object. subclasses
of ProxiableObject implement the conversion process by
responding to the asA message [16]. The method takes an
argument that may be the name of either a concrete or an
abstract class and returns a reference either to an instance of the
argument or an instance of a concrete subclass of the argument,
respectively. The asA method uses the supports method to
ensure that the underlying data is compatible with the given
class. For example, in the Choices device management
subsystem a serial line can be converted to an input stream and
an output stream. In the persistent storage system, a persistent
store can be converted into a persistent object.

Another type of constraint we describe involves abstract crass rela-
tionships. we will use a modified version of pressman's [20] entity-
relationship and instance connection notation to describe abstract class
relationships. we also annotate the links between the abstract classes
with labels to make the type of relationship between classes more ex-
plicit. By presenting information about abstract classes we are able to
provide a concise, yet high level description of the system. These rela-
tionships are maintained by the instances of the concrete class imple-
mentations of the abstract classes. Figure 1 shows the notation we will
use to represent one-to-one and one-to-many relationships. These rela-
tionships may be mandatory (denoted by an additional line) or op-
tional (denoted by a small circle).

=g< ,.*#
-tt_

Í:f

Figure 1: Description of Links between Abstract Classes
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4. Choices Frameworks

The framework for Choices defines abstract classes that represent the
fundamental components of an operating system. Subframeworks spe-

cialize these components for use in the context of a subsystem of the
operating system. The Choices framework imposes design constraints
upon the subframeworks, which ensure that they may be integrated
into a coherent system. The Choices framework consists of three ab-
stract classes: Memoryobject, Process, and Domain. Figure 2

shows an abstract class relationship diagram that defines how these

components interact, The classes represent the three general compo-
nents from which operating systems are built: storage for data, threads
of control which execute a sequential algorithm, and an environment
that binds the names processed by the threads of control to storage lo-
cations. The figure shows that a Process must have a Domain and
that several Processes may have the same Domain. The Dornain has

several Memoryobj ects that store program code and data. A Memo-
ryobj ect may be associated with one or more Domains. Specializa-
tions of the components are required in order to implement the differ-
ent subsystems of an operating system. For example, the
Memoryobj ect is specialized in the virtual memory subsystem to rep-
resent both physical memory and virtual memory. In the f,le system,
the Memoryobj ect is specialized to represent disks and files. The
constraints imposed between the abstract classes of the Choices frame-
work are inherited by the subframeworks. Thus, in either case one or
more Domains may be associated with a file, a virtual memory, or
with physical memory. Similarly, processes are associated with a

Domain.
In more detail, the system has one kernel Domain with which are

associated various system Processes, see Figure 3. System ero-
cesses execute operating system programs. Physical memory is
mapped into virtual memory one-to-one and is represented by a tvtem-

oryobj ect associated with the Domain. Storage associated with a

Figure 2: An abstract class relationship diagram for the three
fundamental components of Choices
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Figure 3: An abstract class relationship diagram for the three
fundamental components of Choices

running Process is allocated by the kernel Domain from this Memo-

ryobject. Figure 3 shows an abstract class relationship diagram that
defines how these components interact.

Application processes are associated with user Domains. The vir-
tual memory used by a user process is divided into regions represented
by Memoryobj ects or data stores associated with the Domain of the
application. App 1 i c at i onPr o ce s s e s execute application programs in
"user mode." They may also execute operating system procedures in
the kernel in "supervisor mode." When a user Process executes in
user mode, it is associated with a user Domain. When a user Process
executes in supervisor mode, it is associated with the kernel Domain.

A particular region of virtual memory can be shared between two
or more concurrent applications. In this case, the MemoryObj ect rep-
resenting the region is associated with two or more user Domains. A
region of virtual memory can also be shared between applications and

the operating system code. In this case, the Memoryobj ect is associ-

ated with both the kernel and user Domains.
Before describing the subframeworks built from the Choices

framework, we must clarify what it means for Choices to be an object-

oriented system. In Figure 4, we describe the constraints that we im-
pose on the fundamental components of Choices to make the system

object-oriented. Each object in the system is related to a class and this
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Figure 4: Runtime representation and access of Classes in Choices

relationship is represented explicitly at run-time. Choices objects rep-
resent classes and the class class. Each constraint is implemented at

run-time by a link between objects. For example, the figure shows in-
stances of Memoryobj ect, a MemoryObj ect class object and an ob-
ject representing the class cLass and includes the subclassing and in-
stantiation relations.

The components of the subsystems of Choices are defined in vari-
ous subframeworks. For example, the virtual memory subframework

[12] inherits the constraints imposed upon Memoryobj ect and Do-
main, defines specializations of these classes, and introduces new ab-
stract classes to define the necessary additional components that are
required to implement a virtual memory system.

In the next five sections, we discuss the following subframeworks
of Choices: virtual memory, process management, persistent storage,
message passing, and device management.

There are four parts to the description of a Choices subsystem and
its subframework. First, a generalized set of orthogonal components is

defined. Second, an architectural overyiew of the subframework is
given. The architectural overview consists of the abstract classes corre-
sponding to the components. A set of concrete classes that are imple-
mentations of the abstractions are also described. Instances of these
concrete classes constitute the Choices operating system at runtime.
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The abstract class relationship diagram for the subframework specifies

the constraints between the various classes. Third, a design overview
provides detailed accounts of the methods of the classes. Finally, the
interaction of this subframework with the rest of Choices is provided.

5. Virtual Memory

The Choices virtual memory system supports multiple 32 bit virtual
memory address spaces, one and two level paging and shared mem-

ory. The system is implemented by representing the components of
the system as objects. Each virtual memory is supported by a oonain
which provides the mapping between the virtual memory addresses

used by processes and storage. A virtual memory can provide access

to multiple different data stores. Each data store is mapped into a re-
gion of virtual memory and is represented by a Memoryobj ect. The

data store represented by each Memoryobj ect is paged and may be

larger than physical memory. Multiple applications may share the data

in a Memoryobj ect by mapping it into each of their Domains. A
Memoryobj ect may be shared across a network by multiple applica-
tions using distributed shared virtual memory techniques. Memory
mapped files are supported by allocating a Memoryobi ect that repre-
sents the file. In this section, we examine the virtual memory system

framework of Choices.

C)MP)NENTS The virtual memory system of Choices has the

following components:

1. The MemoryObject
represents a data store. The store might contain a process stack,
code, heap, or data area of a program. Any one of several

subclasses of Memoryobi ect may be used, including subclasses

of Persistentstore that represent various kinds of disk and

files. When a Memoryobject is cached in memory, virtual
memory addresses may be used to reference the contents of the

store. The Mernoryobj ectCache that caches the MenoryObj ect
pages the contents of the store to and from the data store into
physical memory.

2. The Domain (Address Space)

maintains the mapping between virtual addresses and data

stores. When a Memoryobj ect is added to a Domain, the
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Domain assigns a virtual address range to the contents of the

data store and builds a Memoryobj ectcache to cache the

contents of the data store in physical memory. Processes

accessing the data store use virtual memory addresses. If the

data in the data store is not resident in physical memory, a page

fault will occur. The oornain maps a page fault virtual address

into an offset within the data store and sends a message to the

appropriate Memoryobj ectCache to fetch the appropriate page

of data from the data store.

3. The PageFrameAllocator
allocates and deallocates physical memory. It is used by the

virtual memory system to reserve pages for paging.

4. The Addressllranslation
encapsulates the address translation hardware of the computer.

The virtual memory system makes requests to
AddressTranslation to add and remove virtual memory to
physical memory page mappings.

5. The MemoryObjectCache
stores the mapping between virtual memory pages of a
Memoryobj ect and the physical memory pages in which the

data is actually stored. The mappings in the

Mernoryobj ectcache are maintained in a machine independent

form.

ARCHITECTURAL ovERVIEw This section describes the virtual
memory system class hierarchy and the relationships between its ab-

stract classes. The class hierarchies for the virtual memory system are

shown in Figure 5. These hierarchies show the abstract classes and

their concrete subclasses. The abstract class interfaces are preserved in

the subclasses and superclass code is reused in the subclasses.

Figure 6 is an entity diagram showing the relationship between the

abstract classes of the virtual memory subframework. The diagram

AddressTranslation 

- 
TwolevelPageTable

rFile
MemoryObject 

- 
PersistentStor" tp¡r¡

¡- PagedMemorYObjectCache
Memoryobjectcache -L go."¡.¡purposeÇache 

-prepagedMemoryobjectcache
Figure 5: Virtual Memory System Class Hierarchies
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Figure 6: An Entity diagram showing the relationship
between objects of the virtual memory subframework

shows one or more Domains sharing one or more MemoryObj ects.
The Mernoryobj ect reads and writes data from and to a data store
represented by a nileobj ect. Each Memoryobj ect that is mapped
into virtual memory has a corresponding MemoryObj ectCache that
records in a machine independent way the mapping of pages of the
data store that have been copied into physical memory. The Domain
handles page faults by requesting the Memoryobj ect to read the page

into physical memory. The Menoryobj ect returns the page frame that
contains the data to the Domain which then adds a virtual memory
mapping for that page frame to its eddressTranslation object.
Each Domain has its own AddressTranslation object but in a single
processor system, only one of the AddressTranslation objects will
be active at any one time. Page replacement algorithms may free
physical memory pages for reuse. For each physical page, the Memo-

ryobjectCache records all the AddressTranslations that map vir-
tual addresses to that page. The page replacement algorithm selects
pages of information to return to the data store and removes the hard-
ware virtual memory mapping by making requests to the appropriate
AddressTranslation.

DESIGN OVERVIEW This section discusses the methods of par-
ticular classes in more detail. A Memoryobj ect supports access to an

array of equal-sized logical units, where each unit is a block of bytes.
A unit corresponds to a disk block, physical memory page frame, or
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number of bytes. The main access methods for a Memoryobj ect are
read and write. The buildcache method of a Menoryobject re-
turns a MemoryobjectCache. The MemoryobjectCache uses page

frame units to read and write physical page frames that cache the con-
tents of the Mernoryobj ect. The Mernoryobj ect converts page frame
unit requests from its cache into units that are appropriate for its per-

manent storage. This allows, for example, the virtual memory system

to page from a disk in blocks or a file in bytes.
A Dornain maps a set of Menoryobj ects or data stores into a vir-

tual address space so that the contents of the data in the stores can be

accessed by a virtual address. For example, the Mernoryobj ects may

contain the local variables, the shared variables, the stack, and each

file that a Process references, respectively. A Donain associates pro-
tection with each Mernoryobj ect and it ensures that the virtual ad-

dresses that it uses for each memory object do not overlap. Domains
have operations to add and remove Memoryobjects, to lookup or find
the Memoryobj ect at a particular virtual address and to handle a page

fault repairfault. Each oomain has an AddressTranslation
object which, when activated, controls the hardware memory manage-
ment unit of the processor. In order to fix a page fault, the Domain
sends a cache message to the appropriate Mernoryobj ect to obtain a

physical page mapping for the missing virtual memory address. It then

sends an addMapping message to the AddressTranslation.
The oisk specifies the behavior of permanent storage in Choices.

Its subclasses are device drivers. It exports the methods read,
write, sizeofUnits and nunberofunits. The design of device

drivers is described in Section 9 on device management.
The MemoryobjectCache caches all, part, or none of the data of

a Menoryobj ect in physical memory. It keeps track of the physical

address of each unit that has been cached. Its main methods are

cache, rel.ease and protect. The cache method ensures that a
particular unit is in the cache and returns the corresponding physical

memory address. The release removes a unit from the cache. Each

unit is given a protection level when it is cached; protect sets the

maximum protection level of a unit and can change the protection of
an already cached unit.

The eagedttlernoryobj ectCache is a concrete class of Memory-
obj ectcache. It implements cached data using page frame sized

physical memory storage units.

Choices, Frameworks and Refinements 229



The machine dependent code associated with the page mapping
hardware is encapsulated in eddressTranslation. There is one
AddressTransl,ation per Donain. On a shared memory multi-
processor, several AddressTranslations may be active, one for
each processor. Addres sTrans l- at i on has methods addMapp ing,
removeMapping and changepernission. addMapping is invoked
by the Domain after querying MemoïyObjectCache for a physical
address using the cache method.

Every Processor has an AddressTranslation which is respon-
sible for mapping whatever memory management unit (MMU) or
translation lookaside buffer (TLB) is provided on the processor to the
page table data maintained in an AddressTranslation.

The ehysicallylddressableUnit (PAU) is a machine-
independent page descriptor associated with a Memoryobj ectCache.
Dirty and referenced bits are maintained in the PAUs by the Memory-
Obj ectCache and are used in machine independent paging al-
gorithms. The eagerrameallocator manages physical memory page
allocation and has allocate and free methods. PAUs corresponding
to free pages that are not in use by any MemoryobjectCache are kept
in the PageFrameAl locator.

THE CHOICES FRAMEWORK AND VIRTUAL MEM0RY The viTtual
memory framework interfaces to many of the other subsystems in
Choices through the protocols it inherits from the Choices framework.
The ponain provides an interface through which system processes
anipulate virtual memory. The Mernoryobj ect allows the memory
mapping and caching of many different data stores, supports sharing,
and allows policies and mechanisms involved in paging to be cus-
tomized for a specific region of virtual memory. In the next section,
we examine process management.

6. Process Management

Choices is a multitasking operating system that supports multiple
threads of control or processes. Processes provide the active computa-
tional part of an operating system. We model a process as an object
that has methods that may be invoked to change its state. Choices

supports grouping a number of Processes together into a gang. Gang
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scheduling permits the processes in a gang to be dispatched on a mul-

tiprocessor simultaneously. A variety of other process scheduling poli-
cies are supported.

C)MPùNENTS The process management framework of
Choices has the following components:

1. The Process
is a control path through a group of C** objects. A
systenProcess runs in the kernel and is non-preemptable. An
ApplicationProcess runs in user and kernel space. An
rnterruptProcess is used to handle the occurrence of an

interrupt. Each process is associated with exactly one Domain,
and it executes in that Domain. PTocesses may share a Domain
with other processes. Context switching is lighrweight
between processes in the same domain and is heavy-weight
between processes in different domains.

2. The ProcessorContext
saves and restores the machine dependent state of a Process.
Every Process has exactly one ProcessorContext, and each

ProcessorContext belongs to exactly one Process.
3. The Processor

encapsulates the processor dependent details of the hardware

central processing unit (CPU) including the hardware CPU

identification numbers and the state of the hardware interrupt
mechanism. It also contains a pointer to its ready queue, a
queue of Processes that are ready to run.

4. The Gang
is a group of Processes that should be gang scheduled, or run
simultaneously, on the processors of a multiprocessor. The

cang allows the collection of Processes to be manipulated as

a single unit.
5. The ProcessContainer

implements scheduling in Choices. For example, processes are

run by inserting them into a ProcessContainer ready queue.

The processor removes a Process from its ready queue

Processcontainer before dispatching the Process. For
multilevel feedback queues and other scheduling disciplines, the

ProcessContainer insertion and removal methods are

specialized to provide a given scheduling policy.
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Figure 7: Process System Class Hierarchies

ARCHITECTURAL OVERVIEW The process management system
has the following class hierarchy and relationships between its abstract
classes. The class hierarchies for the process system are shown in Fig-
are 7. These hierarchies show the abstract classes in bold font. The
abstract class interfaces are preserved in the subclasses and superclass
code is reused in the subclasses. A process has four concrete sub-
classes. The Sys temProces s, Preemptab I eSys temProcess and
rnterruptProcess are kernel processes associated with the kernel
Domain. ApplicationProcess is a user process associated with a

user Domain. The abstract class cang is also a subclass of Process.
The ProcessorContext class hierarchy mirrors the Process class

hierarchy and manages the processor-dependencies associated with im-
plementing a thread of control. The Processor hierarchy is proces-
sor-dependent and has subclasses for each type of central processing
unit to which Choices has been ported (the class hierarchy is incom-
plete). The Processcontainer has concrete subclasses for FIFO
scheduling, round robin scheduling and two corresponding schedulers

that handle cangs as well as regular Processes.
Figure 8 is an abstract class relationship diagram for the process

subframework. Each Processor has exactly one running Process
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Figure 8: Abstract class relationship diagram for
Process Management

and one systemschedul-er ready queue from which it dispatches

Processes. The systernscheduf er gives priority to the System-
Processes in the ready queue over ApplicationProcesses. When
the currently running Process blocks or voluntarily relinquishes its
Processor, the Processor retrieves a new Process to run from the

ready queue. A particular Processcontainer may be a ready queue

of more than one, but not necessarily all, the Processors in a multi-
processor system allowing such systems to have scheduling partitions.
A ProcessContainer may contain more than one Process or Gang.

Each Process has a ProcessorContext and a ProcessContainer
which is the ready queue to which it should be added when it is ready

to run. A cang has a rrroGangscheduler and a special Process-
container for holding its Process members. When a cang is first
dispatched from the ready queue, the systemschedul-er notes the

number of gang members and assigns the processor to dispatch an ac-

tual gang Process member from the FrFocangscheduler. The

FrFoGangScheduf er is empty and the Processor busy waits for the

scheduler to fill. When the required number of Processors have been

collected, the systenscheduler adds the cang members in the gang
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ProcessContainer to the FIFocangscheduler. The processors

then dispatch gang members from the Frrocangscheduler one by
one.

DESIGN ovERvIEw Some of the more important methods of
the process system classes are as follows. A Process has methods
block to block the process, giveProcessorTo to give the processor

to a specified process, relinquish to return the process to the ready
queue in order to allow the processor to run other processes, and

ready to put the process on its ready queue. The methods block and

relinquish are implemented using giveProcessorTo. Its methods
save and basicRestore are used for saving and restoring processor

independent information during a context switch. These methods are

called by the giveProcessorTo, which is the primary method that
implements context switching in Choices. The methods becomeunin-
terruptable and becornelnterruptable are not handled directly
by a Process but instead are translated to methods on the appropriate
Processorcontext since they are machine dependent operations.

Pr oces sorcontext implements processor dependent methods in-
cluding checkpoint for saving and restore for restoring processor

dependent state, registers, frame pointer, stack pointers and program
counter. The checkpoint and restore are called by the givePro-
cessorTo of Process.

Processor has methods to query and initialize the central pro-
cessing unit. The chiprniti al-ize method initializes the central
processing unit. The installnxceptions method installs exception
handlers. The f lushAddre s sTr ans I at i onCache method flushes

virtual addresses from the MMU Thanslation Lookaside Buffer. The
idleContainer method returns the ready queue ProcessContainer.

A Processcontainer has methods add and remove and

isnmpty. The cang has methods addMember to add processes to it,
scheduleMembers to schedule the gang members by adding them to
the rlrocangScheduler, ready to add the gang to the ready queue

and returnProcessor to relinquish the gang processes' processors.

THE CHOICES FRAMEWORK AND PROCESS MANAGEMENT ThE

implementation of a process is encapsulated completely within the pro-
cess management framework and provides abstractions for many of the
other subframeworks like the message passing system and device
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driver system. In the next section, we examine the persistent storage

framework.

7. Persistent Storage

Tapes and disks provide persistent storage of data for a lifetime that is

independent of power being supplied to the computer system. The

Choices persistent storage framework [16] introduces a hierarchy of
classes that can be combined to build both standard and customized

storage systems. It is flexible enough to support both persistent storage

systems and traditional file systems efficiently [23].

C1MP)NENTS The framework contains the following major

components:

1. The PersistentStore
stores and retrieves blocks of persistent data and has random

access methods. A PersistentStore is a subclass of Memory-

Obj ect.
2. The PersistentObject

encapsulates and provides an operational interface to the data

managed by a persistent data store'

3. The PersistentStoreContainer
divides the contents of a Persistentstore into an indexed

collection of nested, smaller Persistentstores (i.e. a
collection of files). The persistentStoreContainer shares

storage devices by dividing a PersistentStore into smaller

ones. Its methods create, make accessible, and delete these

nested Per s i stentStor es. Per s i s tentStoreContainers
supports the multiple levels of storage management in the

framework and can be nested to an arbitrary depth' The
persistentStoreContainer in the lowest layer divides a disk

into several partitions. The persistentStoreContainer in

the next layer subdivides partitions into logical storage for

various types of files.

4. The BlockAllocator
manages the allocation of the Persistentstores within a

PersistentStorecontainer. In particular, it keeps track of
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which data blocks are currently allocated to a
PersistentStore and which blocks are free. Subclasses
encapsulate various mechanisms to manage block allocation,
including free-lists or bit-maps.

5. The PersistentStoreDictionary
maps symbolic names to the indices used by persistent-
StoreContainers. The indices may be used to refer
unambiguously to the contents of a persistentStore. V/hile
Files must be contained in exactly one container, they can be
named by several dictionaries. Within any dictionary, the keys
must be unique, but several keys may map to the same logical
name. An example of a persistentStoreDictionary is a
System V UNIX directory, which maps fixed-length symbolic
keys to indices or logical names called inumbers.

6. The PersistentArray, RecordFile, and AutoloadPersistentObject
are three different models for structuring the data within files:
as arrays of bytes or words (defined by subclasses of
PersistentArray), as collections of records (defined by
subclasses of PersistentRecordFile), and as data structures
encapsulated by persistent objects (defined by subclasses of
Autoloadpersistentobj ect). The first model is suited to the
C programming language and the UNIX and MS-DOS operating
systems. The file system presents a random-access interface to
sequences of bytes and imposes no additional structure. The
second model fits programming languages like Cobol, PLII,
and Pascal and operating systems like VMS. The file system
presents data as records that can correspond to the types of data
structures of the language. The third model fits programming
languages like C++ and object-oriented operating systems
llke Choices. The object storage system presents data as

objects that are instances of user-defined subclasses of
AutoloadPers i stentObj ect.

ARCHITECTURE OVERVIEW The persistent storage system has

the following class hierarchies and relationships between its abstract
classes. The persistent storage framework categorizes most persistent
data into two fundamental classes: PersistentStores and persis-
tentobj ects shown in Figure 9 and Figure 10, respectively. A eer-
sistentStore provides random access to an uninterpreted sequence

of blocks of data while a Persistentobject interprets the data as
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having a format. For example, a UNIX inode is a Persistentstore,
while a UNIX directory is a Persistentobi ect. A disk is a Per-
sistentStore, but a table of descriptors for the files stored on a disk

is a Persistentobi ect. All PersistentStores have the same in-
terface, much of which is inherited from Memoryobi ect, but the in-
terfaces of different subclasses of Persistentobj ect differ greatly.

The concept of a Persistentstore is used both for physical and

logical storage devices, allowing reuse of code. The concrete sub-

classes of Persistentstore, shown in Figure 9, belong to one of
two categories represented by the following subclasses:

. Disks that encapsulate physical storage devices like hard disk
drives, floppy disk drives, and RAM disks. Disks communicate

with objects in the I/O subsystem.
. Files that encapsulate logical storage devices like UNIX inodes

and disk partitions. Each file has a source PersistentStore
that supplies it with data from a lower level of the file system.

Files provide awindow into their source PersistentStore.
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The size of this window can be fixed or variable and can range
from zero up to the size of the source persistentstore. The
window can be contiguous or divided into discontiguous regions
of blocks. Ultimately, the data read from and written to a rile
is also read from and written to a tisk.

The persistentobject class defines objects that encapsulate and
provide operations on the data managed by a persistent store. Sub-
classes of PersistentObj ect, shown in Figure 10, abstract the orga-
nization, sharing, naming, and data structuring properties of the per-
sistent storage framework.

The persistent storage framework divides a persistent storage sys-
tem into three layers and is, therefore, an example of a framework
that subsumes a traditional layering structure. Figure 11 is an abstract
class relationship diagram for the persistent storage system. The top
layer contains objects that present application interfaces, the middle
layer contains objects that name files and structure the data within

Figure 11: Abstract class relationships for the Persistent
Storage System
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files, and the bottom layer contains objects that store and organize
persistent data. The bottom layer can be further divided into several
levels.

A user Domain must have one or more Filesystemlnterfaces
to access persistent storage. The rileSystemlnterf ace allows the
process to open zero oÍ more persistentObj ects which include
RecordStreams and to examine the contents of one or more per-
s i stentStoreDi ct i onar i e s. Multiple processes in the same
Domain may share the same FileSysternlnterface.

The middle layer contains Per s i s tentStor eD i c t i onar i es,
Pers i s tentArrays, and Per s i s tentRe c ordf i I es that structure
the data that can be accessed through Files and persistentStore-
Containers. For example, a PersistentStoreDictionary struc-
tures the data in a BSD container subclass of persistentStoreCon-
tainer to have the BSD UNIX format.

PersistentArrays give read/write access to bytes of data and
PersistentRecordriles give read/write access to variable or fixed
length records. Each RecordStream user interface has either a corre-
sponding PersistentArray or PersistentRecordFile. A per-
sistentArray or PersistentRecordFile may be opened and
shared by many different RecordStreams, some of which may have
been opened by processes in different Domains.

The lowest layer contains Files, PersistentStoreContain-
ers, BlockAllocators, and Disks. Each rile has a persis-
tentStoreContainer and a Oisk. PersistentStoreDictionar-
ies access a PersistentStoreContainer as part of the
implementation of opening a storage object and access dictionary in-
formation that is stored in a rile. The classes in this layer have con-
crete subclasses which, for example, format physical data on disk as a
System V UNIX file system. In this case, the File would behave like
a System V UNIX inode, the persistentStoreContainer would
behave like a System V UNIX inode system, and the oisk would be-
have like a disk partition.

Files and pisks inherit a common interface from Memoryob-
j ect which allows the lowest layer to be recursively divided into
many layers. To subdivide the lowest layer, one emulates a Disk using
a File. The rile can now be managed like a disk by a persis-
tentStoreContainer and can contain the data for other "higher"
level riles. One application of this recursion is to divide physical
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disks into partitions and build file systems in each partition. Another
possible application is to build a System V UNIX file system out of a
BSD UNIX file.

DESIGN OVERVIEW Some of the more important methods of
the file system classes are as follows. PersistentStores provide ac-
cess to raw data, but other interfaces are also needed to satisfy the re-
quirements of the clients of a file system. Some examples include: a
container, which treats the data as a collection of files; a dictionary,
which treats the data as a collection of file names; and a record f,le,
which treats the data as a collection of records. Subclasses of Persis-
tentobject define these and other customized interfaces to a Per-
sistentstorers data. The Persistentobj ect class and its abstract

subclasses provide methods that control the activation and deactivation
of persistent objects, how these objects are mapped into memory, and

how they are garbage collected. Each persistentstore has an asso-

ciated Persistentobject class that provides a, data abstraction and

encapsulation of the persistent data in the store. At run-time, there is

a one-to-one correspondence between an instance of a Persistent-
Store and its associated Persistentobject.

The persistentStore asA method returns a reference to the
store's Persistentobject. If the persistentobject has not yet
been instantiated, the method instantiates the object by mapping the
store's data into memory. The persistentobj ect encapsulates

this data as its state data. The Persistentstore thus provides the
underlying data for its associated Persistentobject. Persistent-
obj ects and their underlying Persistentstores provide the foun-
dation for the Choices persistent storage framework. They implement
object-oríented access to persistent data. The asA method takes an

argument that may be either a concrete or an abstract classl and
returns a reference either to an instance of the argument or an instance

of a concrete subclass of the argument, respectively. The asA method
relies on the supports method to perform the following steps:

l. determine if the stored data structure is compatible with the
requested class or any of its subclasses, and

I See [7] for a description of first-class classes in Choices.
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2. if the requested Cf ass is compatible with the stored data
structure:
(a) return the requested class if it is concrete,
(b) otherwise, return the appropriate concrete subclass.

3. if the requested class is incompatible with the stored data
structure, return zero.

Several file system clients may access the same persistent data.
To provide data consistency for concurrent updates to persistent data
through the methods of a persistent object, the PersistentStore en-
sures that there is, at maximum, only one instance of its associated
Persistentobj ect. When a PersistentObj ect is no longer
needed in primary memory, its finalization code calls the close
method on its underlying Persistentstore to inform the Persis-
tentStore that it is also no longer needed in primary memory. A
further asA request will instantiate a new PersistentObj ect that
uses the existing persistent data.

PersistentStores also provide methods to report the size of
their blocks and records and to report and set their length in both
blocks and records. Block and record sizes are given as numbers of
bytes. In general, records may span blocks.

The major methods supported by eersistentStoreContainers
are create, open, and cf ose. The create method returns a newly
created File. The open method takes an index as an argument and
returns the corresponding FiIe. The close method informs a

PersistentStoreContainer that a currently open FiIe is no longer
being used by any other object in the system.

Files whose size can change, e.g. those that represent variable-
length files, use the allocate and free methods of BlockAlloca-
tors to request and release the blocks of storage. AIlocate reserves

a block of storage and returns its index, and free releases a block of
storage that is no longer needed.

Naming is orthogonal to storage organization. Using symbolic
names, PersistentStores can be opened from, created in, added

to, and removed from PersistentstoreDictionaries. The open
method takes a key as an argument and returns the named Persis-
tentstore. It obtains the PersistentStore by invoking the open
method on its PersistentStoreContainer using the id-number that
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corresponds to the key. Two methods, create and add, allow Per-
sistentstores to be added to dictionaries. The create method
performs the same function as open for existing keys; if the key does

not exist, however, the operation creates and returns a new Persis-
tentStore. The add method takes a symbolic key and a Persis-
tentstore as arguments. It inserts the key and the id-number of the

PersistentStore into the dictionary. The remove method deletes a

mapping from a key to an id-number.

APPLICATI)N INTERFACES The interfaces provided by the
naming and data structuring classes are abstract enough to be used di-
rectly by application programs; but conventional file systems com-
monly def,ne an additional layer of abstraction between files and appli-
cation programs.

A rilesystemrnterface object unifies the name-spaces pro-
vided by PersistentStoreDictionaries by parsing sequences of
symbolic keys, called pathnames, and resolving them to Persistent-
obj ects. Each symbolic name is interpreted sequentially by the in-
stance of PersistentstoreDictionary specified by the pathname

prefix composed of the previous symbolic names. An example of a
FileSystemrnterf ace is the UNIX file system interface, which uses

a root directory, a current directory, and a mount table to provide a

unified name space for all files within a computer system. A
Filesystenrnterf ace that implements the BSD version of UNIX
file naming would also use symbolic links.

The public methods of the Filesystemrnterf ace are similar to
several UNIX system calls including: open, stat, link, unlink,
mkdir, and chdir. These methods manþlate or return references to
RecordStreams, Persistentobj ects, or PersistentStores.

Subclasses of the Recordstream class provide stream-oriented
application interfaces for both PersistentArrays and Persistent-
RecordFiles. RecordStreans provide the concept of a current file
position, i.e. the location within the file where the next read or
write will occur.

Because RecordStreans introduce the concept of a current file
position, they support the setRecordNumber method, which allows
programs to reset the current position, and the recordNumber
method, which returns the current position. Application programs can

read from and write to Recordstreams sequentially. The read and
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write methods also update the file position. Each instance of Record-
Stream gets data from or sends data to an underlying Persistent-
Obj ect.

rH¿'CHOICES FRAMEWORK AND THE PERSISTENT STORAGE

FRAMEWORK The persistent storage framework interfaces to all the
other Choicøs subsystems through the protocols it inherits from the
Mernoryobj ect. The Mernoryobj ect allows physical and logical stor-
age like disks and files to be used interchangeably, allowing redirec-
tion and recursive layering.

8. Message Passing System

Many modern operating systems support distributed computing on lo-
cal area networks of workstations using message passing systems [4,
2l) or distributed shared memory [15]. Some operating systems also
provide message passing on shared memory machines U, 2ll for par-
allel programming. This section describes a subframework for message
passing designed to support parallel message-based applications. It de-
scribes facilities for creating structured messages and sending and re-
ceiving messages on a variety of architectures. In Choices, messages
are sent to MessageContainers that are similar to Mach ports [21].
Communication may take place between entities in the same address
space, between different address spaces (or different protection do-
mains) on the same machine or between different machines. If the un-
derþing hardware is unreliable, message delivery may be unreliable or
some special recovery protocol such as exactly-once may be imple-
mented. The message passing system supports applications on the En-
core Multimax shared memory multiprocessor and a network of
SPARCstations. The software architectures of the system has been
geared towards high performance [11].

COMP)NENTS The message passing system has the following
components:

1. The MessageContainer
is a named communication entity for buffering messages. A
Messagecontainer can have multiple senders and multiple
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receivers. Once a Messagecontainer has been created, it is
registered with a Nameserver using an appropriate name. A
process intending to send a message to a Messagecontainer
must look the name up in the NameServer. On lookup, a

sender is given a handle called a containerRepresentative
that forwards messages to the MessageContainer.

2. TheKernelMessageSystemlnterface and UserMessageSystem-
Interface
support two alternate implementations of the message passing

system, the former in the kernel and the latter in user space. In
the UserMessageSystemlnterface, a send or a receive passes

message data through user shared memory, not through the
kernel. In the KernelMessagesystemlnterface, a send or a
receive passes message data through the kernel and the kernel
checks any message parameters. The semantics of the message

passing system interface allows messages to be sent and received
synchronously or asynchronously.

3. The Tlansport
class specifies the mechanism that is used to move a message

from a sender to a receiver. A local message may be transported
by a separate process or copied by the sender and receiver
processes. A remote message is transmitted across the network.

4. The Synchronization
between processes may be through busy-waiting or blocking.

5. The Datalfransfer
class concerns the buffering strategies used in sending a

message. On a shared memory multiprocessor, message sends

may be double buffered, single buffered, or passed by reference.
In a distributed system, messages are buffered for the message

transport mechanism.
6. The Reliability

class allows messages to be sent unreliably, with at-most-once

semantics, and exactly-once [8] semantics.
7. The FlowControl

class uses rate based flow control to ensure that the sender and
the receiver are not overrunning one another's data buffers.

ARCHITECTURAL OVERVIEW The message passing system class

hierarchies and the relationships between its abstract classes are as fol-
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lows. Figure 12 shows the class hierarchies for the message passing

system. These hierarchies include the abstract classes and the concrete
classes that are subclassed from them. The abstract class interface is
inherited by the subclasses and the superclass code is reused in the
subclasses.

The abstract classes in the system are Messagecontainer,
Kerne lMessagesystenf nterf ace, UserMessagesys temlnter -
face, Transport, Synchronization, Data Transfer, ReIi-
ability, and FlowControl. Concrete subclasses implement the
various design options.

There are three concrete subclasses of Transport. Pro-
cessTransport uses a separate process to transport the message.

Buff eredTransport requires the receiver to fetch the message. Eth-
ernetTransport delivers the message across an ethernet.

Synchronizationhas two concrete classes. A semaphore blocks
the process. A spinlock busy waits on a shared variable.

The class DataTransfer has four concrete subclasses. In the con-
crete class Doublecopy the message is copied into a temporary buffer
by the sender and then copied from the temporary buffer into a re-
ceiver buffer by the receiver. In the concrete class singlecopy the
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message is copied once from the sender buffer to a receiver buffer in a

shared memory region. The receiver incurs the cost of the copy. In
the concrete class PointerTransfer buffer pointers are exchanged

between the sender and the receiver but data is not physically copied.
The concrete class EthernetTransf er manages ethernet driver
buffer regions, and copies the data from network to user buffers and

vice versa. The three concrete subclasses of Retiability implement
the functionality implied by their names. The concrete subclass of
Flowcontrol implements the functionality rate based flow control. It
has the concrete class RateBased.

Given the above framework it is possible to create a specific mes-
sage passing system. Instances of these concrete classes appear in an
implementation of a framework. For example, a collection of instances

of the classes, Kerne LMes s ageSys temlnterf ace, Buf f eredTrans -
port, Spinlock, and ooubleCopy, defines a message passing system

that is kernel based, lets the receiver process incur most of the cost of
message transfer, provides synchronization through spin-locks and

copies the message into the kernel domain and then into the user ad-

dress space (double copy semantics).
Figure 13 is an abstract class relationship diagram for the message

passing system. Several App 1 i cat i onProce s s es send messages

through the MessageSystemrnterface but there is only one Mes-
sagesystemfnterf ace for all the epplicationProcesses. The
Me s s ageSys t em r nt erf ac e knows about multiple Cont a i nerRepre -
sentative and multiple Messagecontainers. A send uses the con-
tainerRepresentative to deliver the message. On a receive the
Messagecontainer is used to buffer messages. For shared memory
an optimization transfers control between the containerRepresen-
tative to the Messagecontainer with very little overhead. When
the containerRepresentative and MessageContainer are on dif-
ferent machines the overhead of ethernet packet setup and transmission
is incurred. There may be several Transport options for the con-
tainerRepresentative and MessageContainer. The transport
class has several Reliabitity mechanisms to choose from, but this
functionality is optional. There may be a variety of optional Flow-
Control mechanisms to choose from and a variety of DataTransf er
mechanisms to use.
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Figure 13: Abstract class relationship diagram for the
Message Passing System

DESIGN ovERvIEw The important methods of the message

system classes are described in this section. A MessageContainer
has a queue associated with it. Concurrent access is permitted on this
queue as message senders and message receivers deposit and remove

messages from the MessageContainer. The class MessageCon-
tainer exports three operations: get, put and isEmpty. put adds a
message to the container, get retrieves a message from the container
and isEmpty checks to see whether the MessageContainer is

empty. There is one receiver thread per Messagecontainer. Multiple
senders may send messages to the MessageContainer. Once a Mes-
sagecontainer has been created it can be registered with the tla¡ne-

Server.
A process intending to send a message to a Messagecontainer

must look up its name in the NameServer using a appropriate name.

On lookup, a sender is given a handle called a containerRepresen-
tative. A ContainerRepresentative has the information to lo-
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cate and deliver messages to the MessageContainer for which it is a
representative. A representative needs to differentiate between three
CASES:

. when the sender and receiver share an address space.

. when the sender and receiver ars on the same machine but do
not share an address space.

. when the sender and receiver are on different machines.

The containerRepresentive has a send method that invokes the
appropriate method on a Transport object (see below).

Two styles of communication are supported in the KernelMes-
s age Sys t em rnterf ac e and Us erMe s s age I nt erf ac e : asynchronous

and qynchronous. In the Asynchronous style, when a message is sent,
the process does not wait for the message to be delivered to the buffer
of the receiving process. A copy of the message is made and the ker-
nel returns from the call immediately. When a process attempts to re-
ceive a message of a particular type, if the message is not in its con-
tainer, the receive returns immediately with an identffier that the
receiver process can later use to get the message. If the message is in
the container the receiver receives the message immediately. In the
Synchronous style when a message is sent, the process blocks until
the system can send the message to the receiving process. V/hen the
receiving process receives a copy of the message the sender is un-
blocked. When a process does a blocking receive, it waits for the
sender to send the message. V/hen the message system is implemented
in user space a send or a receive does not involve passing data through
the kernel but is implemented using user shared memory. When the
message system is implemented in the kernel, message parameters are

checked by the kernel.
The synchronization class defines the two operations acquire-

Resource and releaseResource. acquireResource is used to gain

access to the shared or critical region and the operation release-
Resource is used to exit from or give up the shared resource.

It is possible to send messages unreliably, with and without
notification of failure using the class neliability. It is possible to
set the timeout period for retransmissions. The abstract class defines

the operations de I iver, de 1 iveryWi thNot if i cat i on, and

setTimeout. In the concrete class unneliable, all delivery is
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unreliable. The class Flowcontrol receives information about packet
loss from Reliability and changes the interpacket gap if necessary.

It exports the method regulate to regulate the flow control.

THE CHOICES FRAMEWORK AND MESSAGE PASS/NG SYSTEM

Various parts of the Choices framework use message passing. The

Kerne IMes sagesystemlnterf ace and UserMe s s agesys temlnter -
f ace provide interfaces for parallel and distributed computing for ep-
p I i cat i onProces ses. The oi s tr ibutedNameServer uses it for
maintaining a consistent view of the name space.

9. Device Management

The I/O architecture of Choices allows a Process to communicate
with peripheral devices. Several different I/O devices were examined
before a set of abstract classes were designed to provide a uniform in-
terface for device management. Although the Choices device drivers
were influenced by those of UNIX, there are some notable differ-
ences. First, Choic¿s device drivers have an object-oriented design

and this decomposition leads to less complex device drivers for asyn-

chronous I/O. Second, the device management subframework does not
use the file system for naming nor does it use the file system interface.

COMPONENTS The device management subframework of
Choices has the following major components:

1. The Device
acts as a server for components of other Choic¿s subframe-
works. For instance, the concrete class oiskpevice acts as a
server of the classes of the file system framework. In turn, most
of the Devices act as clients of Devices-Controller objects.
For instance, two DiskDevices representing disks attached
to the same hardware controller act as clients of the same
DiskController.

2. The DevicesControllers
represent hardware I/O controllers. A DevicesControlLer
acts as a server for possibly several Devices. A Devices-
controller is not visible to the user of a device. I/O
operations should only be requested from a Device.
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3. The DevicesManager
supports the addition and removal of devices and controllers.
Each system has only one object of this class. When a
DevicesController is loaded into the system it registers itself
with the DevicesManager object. Hardware controllers and

devices that are added to the system are also registered with the
DevicesManager. The oevicesManager is informed of the
addition and removal of hardware components by the system

administrator or by the cooperation of hardware and

machine-dependent software. The oevicesManager matches

physical controllers with registered Devi cesContro 1 I ers. For
each physical controller a "matching" DevicesController is

instantiated. In addition, for each physical device a Device is
constructed and returned when the method attachDevice is

invoked on the Devicescontroller. The new Device is then
bound to the Nameserver.

ARCHITECTURAL ovERvIEw The device system class hierarchy
and the relationships between its abstract classes are described in this
section. The class hierarchies of the device management system are

shown in Figure 14. These hierarchies show the abstract and concrete
classes of the device management subframework.The abstract class in-
terfaces are preserved in the subclasses, and superclass code is reused

in the subclasses. The class hierarchies show subclasses of Devices
and DevicesController for handling disks and character devices

such as keyboards and serial lines.
Figure 15 is an abstract class relationship diagram for the device

management framework. Devi cecontro I I er s register themselves

on creation with a DevicesManager and are associated with one

DevicesManager. There is a DevicesController for each type of
device. A DevicesController controls a group of Devices of the

D evìcesCont roller

DiskController

SCSIDiskController
CharacterDisplayController

InputDevicesController 

- 

SeriallineController

rDiskDevice
Devices -{L CharacterDevice

Figure 14: Device Management Class Hierarchies
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Figure 15: Abstract Class Relationship diagram for the
Device Management framework.

same type. A class of Devices may be used with more than one class

of Devicescontrollers, and are thus highly reusable. User Pro-
cesses interact with oevices which translate the user commands to
controller specific commands. As a result, Devices may need to per-
form buffering between the user Process and a particular Devices-
Control Ier.

DESIGN OvERvIEW The more important methods of the device
system classes are described in this section. The protocol of a Device
depends on the physical device it represents. For instance, DiskDevices
have read and write methods that transfer a number of disk blocks. On
the other hand, a CharacterDevice has additional methods to trans-
fer strings of characters, such as stringArrived, and control meth-
ods such as setBaudRate to set control parameters. When a newly
created concrete subclass of Device is created it is bound to a Name-

Server. Processes may access this device after looking it up in the
NameServer. An appropriate interface to Device may be chosen by
invoking the asl on Device. This is often necessary since the default
interface to Devices may be too low level. Because Devices act as

intermediaries between higher level I/O objects and the Devices-
controllers, they need to buffer input and output requests to periph-
eral devices.
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The interface between a Device and a DevicesController is
based conmand objects. User requests for reads and writes on
Devices cause the construction of one or more Commands which are
then sent to a DevicesControlJ.er object using the sendCommand
method. There is an extensive class hierarchy of comrnands. Examples
of Cornnands include, FlushoutputCommand, to flush output to a
character device, and setparityCommand to set the parity on a serial
line. The interface between the DevicesController and the Device
uses pointers to pass Commands for two reasons. The first is that a
Device can be reused with different DevicesControllers. For ex-
ample, a DiskDevice can be used as the Device of a machine-de-
pendent Di skContro I I er and a machine-independent SCSIDi skCon-
troller. The second advantage of this interface is that it does not
force a DevicesControLler to have a specific interface that depends
on its devices. The protocol of a DevicesController subclass can
change without requiring a change to existing Devices. On the other
hand, this interface cannot be checked at compile-time to ensure con-
sistency. As this interface is internal to the device management frame-
work, this does not appear to be a problem. A rich set of command
classes makes this interface extremely flexible [13].

T¡18 CHOICES FRAMEWORK AND DEVICE MANAGEMENT

Other frameworks use the device management framework with the
heþ of classes that provide communication between the two frame-
works. For instance, a Disk is a persistentStore that does Input/
Output using a DiskDevice. Devices are converted to objects in
other hierarchies using the choices conversion mechanism. conversion
is a term introduced in Smalltalk [7] and used for the collection
classes. We generalize the conversion mechanism to apply to any
class. we also combined the conversion mechanism with double dis-
patching [9] so that new inter-subframework classes can be added to
the system without changing existing classes inside the frameworks.

10. Advantages of Frameworks

In this section, we describe some of the major advantages of using
frameworks for designing an operating system. lve demonstrate the ad-
vantages with examples from the Choices operating system.
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, Code Reuse is normally achieved through the reuse of existing

components and through polymorphism. With frameworks, code

can also be reused through inheritance. The use of virtual
functions in C** o for example, allows large bodies of code to

be reused. In the persistent storage subframework, several

abstract classes, including Per s i stentstoreContainer and

Pers i stentStoreDi c t i onary, implement all public

operations. These operations are defined using several simple

operations that subclasses must implement.

. Design Reuse is achieved in frameworks by reusing abstract

concepts from one subframework in another framework. For

example, Mernoryobj ects may be used in the persistent store

subframework as well as in the virtual memory subframework.

Frameworks allow this commonality to be described and reused.

. Portability is achieved in frameworks by separating machine-

dependent parts of design from the machine-independent parts.

For example, an abstract class may have implementations of the

machine-independent parts of a component, but machine-

dependent parts will be specified by pure virtual functions that

must be supplied by a subclass. For example, there is a CPU

class that is machine-independent but it has concrete subclasses

that are tailored to the SPARC, i386, NS32332, and MC68030

processors.

' Rapid Prototyping of different concepts is possible in
frameworks because it supports code and design reuse. Code

reuse and design reuse reduce coding time and design time,

respectively. Once an abstract class has been built, it is only

necessary to supply implementations of its pure virtual functions

in a concrete class. For example, \rye were able to compare and

contrast several message delivery mechanisms in the Choices

message passing subframework.

. It is possible to customize for performance. Fot example, in the

message passing subframework we allow synchronization

through semaphores and spin-locks. For hypercube applications,

the spin-lock version is a faster synchronization mechanism.
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1I . Evolution of the Subframeworks

The subframeworks described above have been reached though itera-
tive improvement of their designs. A concept was tried and when it
did not work or it proved inflexible it was modified. Often subframe-
works need to be modified to encorporate a new concept. This may re-
quire substantial changes to the original framework. Often the changes
lead to better insights into the original concepts as well. We have en-
countered instances of both types of changes to our frameworks and in
this section we discuss evolutionary changes to the message passing
system and persistent storage frameworks.

One of the most important aspects of the design is reuse. For ex-
ample, it is possible to combine a Spinlock class with either a
singJ-eTransfer or DoubleTransfer. An earlier design merged the
transfer and the synchronization hierarchies. This was clearly a mis-
take as the synchronization and transfer mechanisms are separate con-
cepts. The old design forced the transfer mechanism to be replicated
for both the semaphore and spinJock modes of synchronization. Keep-
ing these separate allows one instance of the transfer mechanism to be
used with several synchronization mechanisms.

During the evolution of the persistent storage subframework, there
have been three versions [19, 18, 16]. The ûrst version supported the
design and construction of UNIX-like file systems, and its major ab-
straction was the Memoryobj ect. Inheritance was used to both model
is-a and has-a relationships. For example, subclasses of persistent-
objects inherited from subclasses of persistentStores. This
overuse of inheritance made the framework inflexible.

The second version restricted the use of inheritance to model ¿s-ø
relationships. Besides the Menoryobject, the version introduced the
MemoryObj ectContainer and MemoryObj ectDictionary abstrac-
tions. We found that the framework could then model many types of
stream-oriented file systems, including both UNIX and MS-DOS file
systems. Despite the improvements in the second version, it was still
incapable of modeling object-oriented or record-oriented file systems,
since it lacked a well-defined concept of a persistentobject.

The current version of the framework supports the design and con-
struction of stream-oriented, object-oriented, and record-oriented file
systems. It was motivated by an effort to model a persistent object
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store and to be a dynamically extensible system. The features of the
Memoryobj ect class that related to persistent data were split into a

subclass of Memoryobj ec t, class Pers i s tentStore. This enabled

the Choíces file system framework to be further refined without requir-
ing changes to the Choices virtual memory framework, which also re-
lied on the Mernoryobj ect class as a key abstraction. The addition of
the PersistentStore class to the framework allowed the constraint
that the data managed by each persistentStore must also be encap-
sulated by a eersistentobject. Tþis version refined the abstractions

used in the second version and added abstractions for PersistentAr-
rays, Per s i stentRecordFi I es, and Auto 1 oadPers i stentOb -
j ects.

12. Conclusions

Our experience has shown that an object-oriented framework is an ef-
fective technique for designing a complex software system such as an

operating system. In this paper, we have shown how complicated com-
ponents of the operating system can be designed and the interfaces be-
tween the different components defined using frameworks. We also

show how a framework for a system can be used to help design the
subframeworks required for subsystems of the system. Parts of the
framework are refined and specialized for the subframework. There
are, however, critical parts of a framework that have only informal
definition. In particular, we found that a suitable notation for express-

ing many of the informal constraints between components of a system

is lacking. The relationships that can be expressed by the classes in
C** were insufficient to express all the constraints that accompanied

the design of the Choices frameworks. There has been little work in
formally specifying constraints. A notable exception is the work on
contracts [10]. In a more recent paper we have discussed techniques

for more formally and concisely describing frameworks [2]. We intend
to use these concise techniques for further describing all the subframe-
works described in this paper.
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