The Prospero File System
A Global File System Based on

the Virtual System Model

B. Clifford Neuman
Information Sciences Institute,

University of Southern California

ABSTRACT: Distributed file systems play an important
role in today’s computer systems. Many allow files to
be accessed over large geographic areas and across or-
ganizational boundaries. However, few systems to date
have given much thought to how information should be
organized in such a global environment.

This paper describes the Prospero File System, a file system
based on the Virtual System Model, a model for building large
systems within which users construct their own virtual systems
by selecting and organizing the objects and services of interest.
This customized view of a global file system makes it easier for
users to keep track of files that they have identified as being of
interest.

This is a revised version of a paper that appeared in the Proceedings of the USENIX Workshop
on File Systems, May 1992. The research described herein began as the author’s dissertation at
the University of Washington. It has been supported in part by the National Science Foundation
(Grant No. CCR-8619663), the Washington Technology Center, Digital Equipment Corpora-
tion, and the Defense Advance Research Projects Agency under NASA Cooperative Agreement
NCC-2-539. The views and conclusions contained in this article are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of
any of the funding agencies.

© Computing Systems, Vol. 5 * No. 4 « Fall 1992

407

Tools are provided to allow views to be kept up-to-

date, and to allow views to be defined as functions of

other (possibly changing) views. These tools promote

sharing and enable the organization of files in ways that

make it easier to identify information of interest than it

is in existing systems.

The use of multiple name spaces can cause confusion. Such
confusion is eliminated by support for closure: every object has
an associated name space, and names specified by the object
are resolved in that name space.

The prototype implementation has been used to orga-
nize information available from Internet archive sites;
its directory service has been used from more than
10,000 systems in 30 countries. This paper discusses
the goals of the Prospero File System, describes the
prototype implementation, and discusses experience
with the use of the system to date.

1. Introduction

Much attention has been paid to distributed file systems in recent years.
Many of these systems allow files to be accessed over large geographic
areas and across organizational boundaries. To date, however, most of
the work on such systems has concentrated on access mechanisms, and
less attention has been paid to the problems such environments present
for the organization of information.

The Internet contains a massive amount of information, but it is
hard to use that information. There are several barriers to usability:
it is difficult to identify the information of interest; it is difficult to
keep track of this information once found; it is difficult to share infor-
mation about what is available, or to collaboratively maintain such
meta-information; and the information is often scattered across multi-
ple file systems of different types, meaning that different mechanisms
are needed to access different information.

408 B. Clifford Neuman

This paper describes the Prospero! File System. Prospero is based
on the Virtual System Model, a model for building large systems that
allows users to organize the information and services available to
them. By themselves, neither Prospero nor the Virtual System Model
help users find information of interest. Their contributions are in en-
couraging and enabling users to organize information in ways that
make it easier to find things.

Prospero supports customized views of a global file system, mak-
ing it easier for users to keep track of files that they have identified as
being of interest. In traditional systems, a customized name space
would cause confusion since the same name might refer to different
objects at different times. Prospero avoids this problem by supporting
closure: every object has an associated name space, and names
specified by the object are resolved in that name space.

Tools are provided to allow users to keep their name spaces up-
to-date. These tools allow views to be defined as functions of other
views. They improve the user’s ability to organize information, mak-
ing it easier to identify information of interest than it is in existing file
systems.

The Prospero File System is heterogeneous; instead of providing
its own methods for storing and accessing files, it relies on existing file
systems for storage and supports multiple underlying access methods.
Prospero is implemented as a distributed directory service that names
individual files, plus a file system interface that calls the appropriate
access method once a name has been resolved. The file system inter-
face supports access to files available through the Sun Network File
System, the Andrew File System, and the File Transfer Protocol
(FTP), and to documents available through the Wide Area Information
Service (WAIS) and Gopher. For FTP, WAIS, and Gopher, the file or
document is automatically retrieved and a locally-cached copy is
opened.

A prototype is running and has been used from more than 10,000
systems in 30 countries on six continents. Experience with this

1. From The Tempest by William Shakespeare. Prospero was the rightful Duke of Milan
who escaped to a desert island. When his enemies were shipwrecked on the island, Pros-
pero used his power of illusion to separate the party into groups, each of which thought
they were the only survivors. Thus, he caused each group to see a different view of the
world. As time went on, the shipwrecked parties slowly learned about the others, and
thus, the pieces of the other views were added to their own.

The Prospero File System

409

prototype has shown that the organizational flexibility provided by the
Virtual System Model is useful. Initial observations have provided in-
sight into the way that users organize and look for information when
they are not constrained to use a single, monolithic name space.

Our discussion begins by describing existing distributed file system
approaches, highlighting the advantages and disadvantages of each.
Section 3 describes the Virtual System Model, a model for organizing
large systems that allows users to organize available information and
services as they see fit. Prospero is an operating system based on that
model. The file system prototype is discussed in Section 4 and perfor-
mance figures are provided. Section 5 discusses experience with Pros-
pero and describes some of the ways that it has been used to organize
information on the Internet. Related work is presented in Section 6
and future plans in Section 7. Section 8 summarizes the material
presented in this paper and draws conclusions.

2. Existing Systems

The naming of files in existing distributed systems falls into four cate-
gories: host-based naming, global naming, user-centered naming, and
query-based naming. This section will describe systems that fall into
the first three categories, and will discuss the advantages and disad-
vantages of each. Systems falling into the fourth category are recent
and are described as related work in Section 6.

2.1 Host-Based Naming

Early distributed file systems employed host-based naming to identify
objects (files or directories). Examples of host-based naming include
FTP [19] and Sun’s Network File System? [22]. In host-based naming,
the user must know the name of the host on which an object resides in
order to access it. While relatively simple to implement, host-based
naming makes it difficult to organize and locate information: the first
part of a file name (the host) usually has little or no relation to the
topic; logically related information stored on different systems is scat-
tered across the name space; and as these systems are implemented, it

2. In NES, the user must specify the host on which the file resides when mounting the file
system.

410 B. Clifford Neuman

is difficult to add links that cross system boundaries (a link is a refer-
ence from a directory to an object).

Because of these problems, many users make local copies of infor-
mation that they have found on the Internet out of fear that it might
move, or that they might forget where it is. Often the information is
not used locally; it is copied just in case it is later needed. Others
maintain huge lists of the information available and periodically
distribute the lists through electronic mail.

A more recent system, Alex [3], addresses the third problem by
allowing files available by FTP to be named and manipulated using the
syntax of local file names. This allows users to use their local file sys-
tem to create aliases for files on remote systems. Unfortunately, if the
name of the remote file changes, the alias will cease to work.

2.2 Global Naming

An alternative to host-based naming employed in a number of recent
systems is global naming. The Andrew File System [8], Locus [27],
and Sprite [15] are among the systems that employ this approach. In
global naming, all names are part of a single name space, and the
name of the system on which an object resides is not explicitly part of
the object’s name. As these systems are implemented, however, ob-
jects with similar names must usually be stored on the same system.

A global name space solves some of the problems encountered by
the host-based approach. In particular, the name of the storage site is
no longer part of an object’s name. It is also possible to add links to
objects on other systems, though as implemented, these links are
aliases: they return a new name that must be further resolved. This
means that if the name of the target of such a link changes, the link
will no longer work.

Unfortunately, a global name space runs into problems as a system
scales, especially once the system spans administrative boundaries. Or-
ganizations, and even users, want control over part of the name space.
This results in a name space whose top levels are often the names of
organizations, and whose second levels are often the names of users.
Such an organization results in logically related information being scat-
tered across the name space.

The alternative is to organize information by topic, rather than ac-
cording to the administrative structure of the system. The difficulty

The Prospero File System

411

with this approach is that, in a large system, there will be disagree-
ment on what topics should appear near the top of the tree, and once
topics are agreed upon, there will be disagreement on which files
should be included under each topic. This problem is apparent on
Usenet, a worldwide distributed message service for disseminating
messages on many topics. A significant share of the messages sent on
Usenet discuss what messages are appropriate for particular news-
groups, whether new newsgroups should be created, and what they
should be called. This clearly demonstrates the problem of reaching
consensus on globally shared names.

2.3 User-Centered Naming

One of the problems with large systems is that there is a huge amount
of information, and much of that information is not of interest to a
particular user. User-centered naming attempts to address this prob-
lem by allowing each user to choose what is to be included in his or
her name space. User-centered naming is employed by Tilde [4],
QuickSilver [2], Plan 9 [20], Prospero [13], Jade [17], and some
object-based systems such as Amoeba [26].

The customization supported by these system is important for a
number of reasons: it reduces clutter in the user’s name space; it al-
lows users to define shorter names for frequently referenced objects;
and it allows users to replace entire portions of the name space with
alternative views that are more appropriate for the particular user.

User-centered naming presents several problems of its own. The
lack of name transparency has the potential to make sharing difficult
and to cause confusion. The problem is that the same name might
refer to different objects when used in different name spaces.

Another problem is that in many user-centered systems, an object,
or collection of objects, must first be added to the name space before
it can be accessed®. Adding an object often requires that the user
specify a globally unique name for the object, reintroducing all of the
problems associated with the global naming approach.

3. Naming in these systems might be better described as user-exclusive since objects that
have not been explicitly included in the name space can not be accessed.

412 B. Clifford Neuman

A final problem is that, with the exception of Prospero, systems
supporting user-centered naming do not provide adequate tools for
constructing derivative views as functions of existing views. In Tilde
and Plan 9 part of the problem is that views are not persistent. In-
stead, they are constructed by a process (often using a configuration
file) and they only live as long as the processes that use them.

The problems just described are addressed by Prospero and the
Virtual System Model.

3. The Virtual System Model

The Virtual System Model [14] provides a framework for organizing
large systems within which users construct their own virtual systems
by selecting objects and services that are available over the network;
users then treat the selected resources as a single system, ignoring
those resources that were not selected. By supporting a customized
view of the system, information of interest to a user is prominently lo-
cated near the center of the user’s name space, while information that
is not of interest is kept out of the way. To ease the construction and
automate the maintenance of virtual systems the Virtual System Model
allows users to define views of information as functions of one or
more other views. The derivative view automatically reflects any
changes that occur in the views upon which it is based.

Users are able to organize the objects and information about which
they know in multiple ways. The process of object discovery is facili-
tated by these multiple organizations, and by the fact that the informa-
tion specified by users, when customizing their own name space, can
be combined with other information and made available for use by
others.

The fact that the same name may refer to different objects at dif-
ferent times can make a user-centered name space confusing and can
hinder sharing. In the Virtual System Model, every object has an
associated name space, forming a closure [12, 21]. In this way, the
context within which a name is to be resolved can be automatically
determined based on the object specifying the name. Although the
same name may refer to different objects within different contexts,
the correct context is always known.

The Prospero File System

413

3.1 Multiple Views of a Global Name Space

Within the Virtual System Model, the global naming network forms a
generalized directed graph. Internal nodes in the graph represent phys-
ical directories and leaves correspond to files. The value of a directory
is a collection of links, each mapping a single component of a name to
a file or a directory. Each link in a physical directory is represented
by a labeled edge in the graph from the node representing the physical
directory to another node. Each link may have an associated function,
called a filter, which when applied to the value of a directory yields a
virtual directory (which defines a new view of a directory). Like a
physical directory, the value of a virtual directory is a collection of
links.

The Virtual System Model supports a user-centered, or more pre-
cisely, an object-centered name space. Each name space is a view of
the global naming network, selected by choosing a starting node from
the graph. We call the starting node the root of a virtual system.

Figure 1 shows a simple naming network where n1 is the root of a
name space that names two programs, /bin/pl and /bin/p2. A second
name space, rooted at n2, has its own bin directory in which p2 refers
to a different file; the directory /bin from nl has been renamed to
obin.

Most objects start as part of a user’s name space, but with long
names. As users identify information of interest, they can move that

Figure 1: Two name spaces

414 B. Clifford Neuman

information closer to the center of their name space by adding addi-
tional links. These links are added either to a physical directory, in
which case other users with views of the physical directory will see
the change, or they are added to a view of a physical directory, in
which case the change is visible only to other users sharing the view.

3.2 Filters and Union Links

The Virtual System Model supports customization by allowing a vir-
tual directory to be specified as a function of other directories. This is
made possible by the filter. A filter is a program, attached to a link,
that allows the view of the target directory to be altered. For example,
in Figure 2 files are named with the labels a though g. Associated
with each file is an attribute list, one attribute of which is the language
in which the text was written. The value of the language attribute is
shown in the box representing the file. By attaching the distribute()
filter to a link to the directory, a derived view is created within which
the files appear to be distributed across subdirectories according to the

value of the language attribute. The derived view is shown in Figure 3.

A filter takes the value of a directory as an argument and returns a
new directory. By composing a filter with another filter already associ-
ated with a virtual directory a view can be specified as a function of
another view.

o
[=H
¢

English German German Japanese]

French English English

Figure 2: Directory before application of a filter

The Prospero File System

415

) Japanese
English " prench German
a
- y f b ¢ g
English c
French Japanese
English English ,
German German

Figure 3: Directory with distribute() applied

Because filters are associated with links, and because the result of
applying a filter is a list of links (the value of a directory) a filter can
attach additional filters to the links it returns. This allows a filter to
modify more than one level of the hierarchy to which it is attached. It
also allows the creation of ghost hierarchies, parts of the name space
which are specified entirely within the filter.

As described so far, views are not shared, but physical directories
are. Each view of a physical directory is distinct and if a change is
made to a filter that maintains a view, that change will not be visible
through other views. There are cases, however, when it is desirable to
share a view. For a view to be shared, the filter that implements it
must appear on a link leading out of a physical directory. Unfortu-
nately, the label on the link also names the view. If we want to share
a view, but not the name of the view, we must support links that are
not named.

The union link is such a link. The target of a union link is another
directory. After any filters associated with a union link are applied,
the result is merged with the contents of the physical directory con-
taining the union link. Conceptually, the union link is an epsilon tran-

416 B. Clifford Neuman

sition in the global naming network. Such a link is called a union link
because the resulting directory appears to contain mappings that are
the union of the normal links and the links from each of the directo-
ries included through union links.

The use of a union link on a physical directory containing any
other links might result in more than one mapping for the same name.
When resolving a name, each of the mappings must be tried*. As im-
plemented, however, the union link is combined with a filter that will
only pass a single mapping for each name. If an included directory
contains a mapping that conflicts with one that exists in the originating
directory, or from an earlier union link, then the conflicting mapping
is returned separately or ignored.

Filters and union links provide a powerful mechanism for support-
ing customization and the manipulation of name spaces. Filters are
written in standard programming languages and can take any action
that can be specified in such languages. The union link allows the ma-
nipulation performed by a filter to affect the directory containing the
filter.

3.3 Closure

Names of objects can be embedded within other objects. An object’s
closure is the name space within which names embedded in the object
are to be resolved. In the Virtual System Model, the closure of an ob-
ject is represented as a distinguished reference from the object to the
node in the naming network that is the root of the closed name space
(closure references are not shown in the figures).

4. The Prospero File System

The Prospero file system applies the Virtual System Model to the de-
sign of a global file system. In Prospero, files that are logically related
can be grouped together, even if scattered across multiple systems.

4. This is similar to the way search paths work.

The Prospero File System

417

Prospero supports multiple views of the global file system and views
may be defined as functions of one or more other views. A prototype
of the file system has been constructed and is in use across the In-
ternet.

4.2 Implementation

The names of Prospero files are resolved by contacting directory serv-
ers on the hosts that store Prospero directories. The server accepts the
system level name of a directory and optionally the name of the link
to be returned. The server returns the links in the directory that
match the specified name, or all links if the name was not specified.
Attributes are associated with objects and the directory server re-
sponds to requests for specific attributes associated with an object.
Among these attributes is a reference to the name space closed with
the object.

A Prospero link specifies the name of the host that stores an ob-
ject, and the system level name of the object on that host. The link
also specifies other information including whether the link is a union-
link, and any filters associated with the link. If the target of the link
is a directory, the link provides the information needed to resolve a
name in that directory by contacting the directory server on the host
specified by the link. To access an object that is not a directory, a
request is made to the directory server for the value of the ACCESS-
METHOD attribute. The response includes a list of acceptable access
methods, and the information needed to access the object using each.
Prospero presently supports the NFS, AFS, FTP, WAIS, Gopher, and
local file system access methods.

The structure of the Prospero directory server is similar to that in
capability based systems, such as Amoeba [26] in that the directory
server has no idea how its directories fit into the name space. Each
directory is a separate object that may be referenced by many other
directories. Cycles are even allowed. The Prospero directory service
is not capability-based in that the links (object handles) do not grant
authorization to access the object. Additionally, links in Prospero
contain information about the storage site for the object whereas in
most capability based systems they provide a unique ID for an object
which must be located using other mechanisms.

418 B. Clifford Neuman

The Prospero client (application) maintains a reference (the host
plus a handle for a directory) to the active virtual system and the cur-
rent working directory. When the user specifies a name, the first com
ponent is resolved by sending a query to the appropriate directory
server. The next component is resolved by sending a query to the di-
rectory server named in the link returned by the first query. This pro-
cess is repeated until all components of the name have been resolved®.
If the named file is to be accessed, an additional query is made to ob-
tain the access method.

If the name to be resolved is embedded in another object (e.g. an
include file specified by a source file, or a filename hardcoded into an
executable) the application first finds the name space closed with the
object by requesting the value of the CLOSURE attribute. The name is
then resolved in the name space so identified.

Communication with the directory server is accomplished using a
reliable delivery protocol implemented on top of UDP [18]. This re-
duces the overhead that would otherwise be incurred when establishing
connections to multiple directory servers.

At any point in the resolution of a name, the directory server
might return one or more union links. Such a response indicates that
the directory has not been completely searched, and that the current
component of the name should be resolved in the directories named in
the union links®.

If a filter is associated with a link, the filter is applied to the result
of the directory query before the current component of the name is re-
solved’. A filter can remove links from or add links to a directory,
change the names of links, or even change the way a directory hier-
archy appears to be organized (e.g., creating subdirectories). Filters
are dynamically linked with the name resolver when applied.

Figure 4 shows C code implementing the distribute() filter. The
distribute() filter works by reading the value of the specified attribute
for each file in the target directory, and creating a new link to the

5. An optimization allows a directory server to resolve more than one component of the
name at a time as long as all intervening directories are stored on the same server.

6. If the directory is being listed, then the results of querying the union linked directories
are merged with the rest of response from the directory that returned the union links.

7. For this to work, the directory server is instructed to return all links in the directory, not
just those matching the component.

The Prospero File System

419

VDIR filter(dir,ip,argc,argv)
{
vdir_init(ad);
s8d = vlcopy(dirlink,0);
avf = rd_vlink("/1lib/filters/avalue.o");

/* Step through attribute values creating subdirs */
¢l = dir->links;
while(cl) {
attributes = pget_at(cl,argv[0]);
for(ca = attributes;ca;ca = ca—>next) {
/* If not first link, then make copy */
if (nd->links) sd = vlcopy(nd->links,0);

/* Set name of new subdir and insert it */
sd->name = stcopyr(ca->value,sd->name);
if(vl_insert(sd,nd) == PSUCCESS) {
/* 1f successful, then set filter arguments */
/* Find last filter on current subdir */
for(avf=sd->filters;avf->next;avf=avf->next);

sprintf (farg,"%s 4s",ca->aname,ca->value);
avf->args = stcopyr(farg,avi->args);
}
}
atlfree(attributes);
¢l = cl->next;

}

/* Return the result in the original directory*/
vdir_copy(nd,dir);

return(dir);

Figure 4: Simplified code for the distribute filter

target directory for each distinct value. The name of the new link is
the value of the attribute, and a filter is attached that selects only those
files whose attribute matches that value.

Although users can write their own filters, most users can get by
using the predefined ones. Among these are: flatten()—take a direc-
tory hierarchy and make it appear like a single level name space,
match()—pass links matching a specified list of names, match-
host()—pass links whose target is stored on the matched hosts, dis-
tribute()—create subdirectories for each value of the specified at-
tribute and distribute files among those directories according to that
attribute, and attribute()—pass only links for objects with attributes
matching those specified.

420 B. Clifford Neuman

Time to resolve a name in Prospero | Negotiate Open
Number of components Access Access
Storagesite | 1 2 | 3 | 4 5 Method | Method | Time
Remote 38ms | 76ms | 115ms | 153ms | 191ms 32ms NFS | 125ms
Local 2lms | 43ms | 63ms | 86ms | 107ms - Local | 27ms

Table 1: Approximate time to resolve a name and open a file

Protection of objects in Prospero is based on the protection mech-
anisms associated with the underlying access method. The ability to
resolve the name of an object does not grant permission to access the
object. Protection of directory information is based on access control
lists associated with directories and individual links within directories.
Such authorization attributes apply to the ability to resolve names, ac-
cess attributes, and modify the directory. They do not apply to the
referenced object itself’. When the need for strong authentication is
indicated®, Prospero uses Kerberos [25] to authenticate clients.

4.2 Performance

Table 1 shows the performance of the Prospero client on a DECstation
5000. The remote Prospero server is running on a second DECstation
5000 on the same Ethernet. The numbered columns represent the time
required to resolve a name with the specified number of components.
The second to last column is the time required to negotiate the access
method and the final column is the time it takes to open the file. Since
Prospero uses the existing access methods of the underlying system,
the last column is also the time it takes to open the file without Pros-
pero.

In compiling these figures, the optimization that resolves multiple
components at the same time has been disabled. Thus, the time to re-
solve a name with consecutive components stored on the same server
would be less; if all components are stored on the same server the
time would be close to that in the first column.

8. Though the attributes of an individual object may include the access control information
for the underlying method by which the object will be accessed.

9. The need for strong authentication is indicated by specifying the authentication method
in an access control list entry. Strong authentication methods besides Kerberos may be
indicated in such an entry, but Kerberos is the only method presently supported.

The Prospero File System

421

The time required to open a file with a one component name using
Prospero (name resolution + negotiation + open) is less than twice
that required to open the file directly. This is very good when one
considers that at least one extra pair of network messages is involved.
Once a file is open, no additional overhead is incurred beyond the ac-
cess times of the underlying file system. While the performance is
quite good for a prototype, it is even better when considered in light
of the real contribution of this work: that it enables users to better or-
ganize information.

5. Experience

Prospero has been available since December 1990. The prototype im-
plementation allows users to construct virtual systems and to navigate
through them. Programs linked with the Prospero compatibility library
are able to specify file names relative to the active virtual system
when opening files. In addition to the basic release, there are several
standalone applications that rely on Prospero to retrieve directory
information from indexing services.

The prototype has been used to organize information on Internet
sites world-wide and Prospero-based applications are used on more
than 10,000 systems in 30 countries on six continents. On a typical
day, Prospero is used by more than 1,800 users on more than 1,500
systems to make more than 12,500 queries.

As distributed, a user’s virtual system starts out with links to di-
rectories organizing information of various kinds in several ways.
When a Prospero file name is mentioned in a mail or news message,
a reference to the name space that was active when the message was
sent appears in the header of the message!®. Recipients are thus able
to properly resolve the name, as well as add links to the object from
their own name spaces. This mechanism makes it easy for a user to
keep track of files of interest without having to retrieve the file right
away. If the file moves and the storage site supports forwarding

10. This is an alternate closure mechanism used by mail and news, which would not other-
wise transport closure information.

422 B. Clifford Neuman

pointers (which will be the case if the file is moved using Prospero),
the link to the file is updated when next referenced.

Users find information by moving from directory to directory in
much the same manner as they would in a traditional file system. Fig-
ure 5 shows a sample session with Prospero. Users do not need to
know where the information is physically stored. In fact, the files and
directories shown in the example are scattered across the Internet. At
any point, a user can access files in a virtual system as if they were
stored on his or her local system.

In the example, the user starts from the root directory and lists it
using the 1s command. The result shows the categories of information
included in the virtual system. The information includes online copies
of papers (in the papers directory), archives of Internet and Usenet
mailing lists (in the mailing-list and newsgroups directories), releases
of software packages (in the releases directory), and the contents of
prominent Internet archive sites (in the sites directory). Files of inter-
est can appear under more than one directory. For example, a paper
that is available from a prominent archive site might also be listed
under the papers directory.

Next, the user connects to the papers directory, lists it, and finds
the available papers further categorized as conference papers, journal
papers, or technical reports. The technical report directory is broken
down by organization, and by department within the organization.
The journals directory is organized by the journal in which a paper
appears, and the two journals that are shown are further organized by
issue. Though not shown in the example, papers are also organized
by author and subject in other directories from the same virtual
system.

% cd /

% 1s

afs info papers
archie 1lib projects
databases mailing-lists releases
documents newsgroups sites

% cd papers

% 1s

authors conferences subjects

Figure 5: Sample session

The Prospero File System

423

bibliographies journals technical-reports
% cd technical-reports

% 1s

Berkeley IAState OregonSt UCalgary UWashington
BostonU MIT Purdue UColoradoe Virginia
Chorus NYU Rochester UFlorida WashingtonU
Columbia NatInstHealth Toronto UKentucky

Digital OregonGrad UCSantaCruz UMichigan

% 1ls UCSantaCruz

crl

% 1s UCSantaCruz/crl

ABSTRACTS.1988-89 ucsc-crl-91-01.ps.Z

ABSTRACTS. 1990 ucsc-crl-91-02.parti.ps.Z
ABSTRACTS. 1991 ucsc-crl-91-02.part2.ps.2
ABSTRACTS. 1992 ucsc-crl-91-02.ps.Z

% 1s UWashington
cs cse

%

% ls UWashington/cs

1991 INDEX PRE-1991

1992 OVERALL-INDEX README

% cd /papers

% 1s

authors conferences subjects
bibliographies journals technical-reports

% ls journals
acm-sigcomm-ccr ieee-tcos-nl
% 1ls journals/ieee-tcos-nl

app-form.ps.Z vbnl v5n3

cfp v5n2 v5n4

% 1ls journals/acm-sigcomm-ccr

application.ps jan89 jul9o sigcomm90-reg.ps
apr89 jan90 oct88

apr90 jan91 oct89

apr91 juls9 sigcomm90-prog.ps

% 1s /archie/neuman

neumann.Z prospero-neuman-thesis.ps.Z

neumann.cf
% vls /archie/neuman

neumann.Z src.doc.ic.ac.uk /published/use. ..
neumann.cf ucdavis.ucdavis.edu /sendmail.file...
prospers-neuman-thesis.ps.Z prospero.isi.edu /pub/prospero/...

%

Figure 5 (continued)

424 B. Clifford Neuman

The user then checks the archie directory for files whose names in-
clude the string “neuman”. This demonstrates several important fea-
tures of Prospero. First, the archie directory is a local customization;
in the virtual systems of most users the directory would have the name
/databases/archie/mcgill/substring. Second, the archie directory
demonstrates the use of filters; the directory is defined by a filter that
queries the archie database at McGill University [6]. Finally, the sub-
sequent vls shows where the files are physically stored, demonstrating
that the files in a single directory can be scattered across the Internet
{SRC.DOC.IC.AC.UK, UCDAVIS.UCDAVIS.EDU, and PROSPERO.ISI.EDU).

According to statistics gathered to date, roughly 80 percent of
Prospero queries are to directories derived from the archie database.
The archie directory supports virtual subdirectories organizing files
according to the last components of file names. In the example, the
neuman subdirectory contains references to the files available by
Anonymous FTP whose names include the string “neuman”. The
contents of each subdirectory are equivalent to what would result from
running the Unix find command with appropriate arguments over all
the major archive sites on the Internet (if it were even possible to do
so). The subdirectories do not exist individually but are instead created
when referenced by querying the archie database. The use of archie
through Prospero has been so successful that the archie group has
adopted Prospero as the preferred method for remote access to the
archie database.

It is important to note that the example shows only part of the in-
formation available through Prospero, and that it shows a typical way
that the information is organized. Individuals can organize their own
virtual systems differently.

To provide the benefits of Prospero to users who have not installed
it on their systems, Steve Cliffe of the Australian Academic and Re-
search Network (AARNet) Archive Working Group has added Pros-
pero support to one of their FTP servers. As well as making files
available from the physical file system, the modified FTP server makes
files available from a virtual file system. When a retrieval request is
received, the FTP server locates the file using Prospero and checks to
see if a copy of the file is available locally. Using Prospero to check
the last modified time of the authoritative copy, the FTP server checks

The Prospero File System 425

that the local copy is current. If a current copy does not exist locally,
the server retrieves and caches a copy of the file. The local copy is
then returned to the client.

6. Related Work

Allowing users to construct a view of a system by selecting compo-
nents that are available on the network is a goal that is shared by Plan
9. One of the key differences is that Plan 9 addresses the problems of
combining the components, not of finding them. The system compo-
nents in Plan 9 have global names. Plan 9 does not address the prob-
lem of how users identify the components that they want to include in
their system view. Prospero is concerned primarily with the mecha-
nisms needed to organize and identify the components of interest and
relies on system provided access methods to actually use them.

The functionality of filters in Prospero is similar to the domain-
switching portal mechanism found in the Universal Directory Service
[10]. A portal is a call to a separate name server that may have a non-
standard implementation, enabling it to resolve names in a manner dif-
ferent than that in a standard name server. A portal is implemented as
a separate server, while a filter is executed by the name resolver.
Though the result of resolving a name through a portal is a function of
the remaining components in the name, the result is not affected by
the point at which the portal is attached. This means that a new portal
(and hence new name server) must be run for each point of attach-
ment. The portal mechanism is much closer to the filter used to inte-
grate Prospero and archie than it is to most.

Attribute-based naming, supported by Profile [16], Univers [1],
and semantic file systems [7], provides an alternative mechanism for
finding information of interest. In attribute-based naming a database is
maintained of object attributes, and the user specifies the known at-
tributes of an object instead of its name. In the Semantic File System,
the result is a directory listing those objects matching the specified at-
tributes. In Profile, if enough attributes have been specified to uniquely
identify the object, the result is a reference to the object itself.

426 B. Clifford Neuman

For attribute-based naming to scale, directory information must be
distributed across multiple servers. Without a way to direct a query to
the right server, queries must be sent to all servers, an operation that
doesn’t scale. Profile restricts the set of servers that are queried and
relies on cross-references to direct queries to servers that were not in-
cluded in the original set, but doing so negates one of the advantages
of attribute based systems; the necessary cross-references must be in
place before a query is made.

When used together, attribute-based naming and Prospero could
be very powerful. The databases maintained by such systems could be
accessed through filters that could perform any desired pre- or post-
processing. Other features of the Virtual System Model could be used
to impose a structure that directs queries to the appropriate servers.
Such a combination of attribute- and link-based naming is similar to
recent work on multi-structured naming [24].

In an alternative approach to finding objects in large systems,
Schwartz proposes the use of resource discovery agents [23] that ac-
cept queries from users and use the information provided by the user
to find objects in which the user is interested. In Schwartz’s design,
the information needed to direct a query to the appropriate agent
evolves over time. A query is directed to the nearest agent, and agents
learn how to direct queries based on the results of previous queries.
The problem with this approach is that it gives the agents too much of
the responsibility for building the resource discovery graph. However,
a combined approach where agents make use of the organization im-
posed by individuals (e.g., as encoded in the Prospero naming net-
work) might yield better results.

7. The Future of Prospero

Prospero is an evolving system. We continue to collaborate with other
groups to extend it. We are adding support to incorporate document
indices maintained by the the Wide Area Information Service (WAIS)
[9] and menus maintained by Gopher [11]. We plan to add filters that
access directory information maintained by semantic file systems [7]
and distributed indices [S] when those systems are available.

The Prospero File System

427

We plan to implement new application interfaces for Prospero. One
will be based on Gopher, providing greater support for users less fa-
miliar with the Unix operating system. The second interface will allow
existing applications to use Prospero without relinking. This will be
accomplished by adding Prospero support to an NFS server [22], the
same approach taken by semantic file systems [7] and Alex [3]. We
hope to benefit from changes already made in those systems.

The Prospero protocol provides a lightweight protocol for querying
directories and obtaining file attributes. We encourage its use as a base
upon which other systems can be built. Archie and AARNet are two
examples. It is being considered for use by Alex [3] to improve the
performance of queries to directories on hosts that run Prospero
servers.

8. Conclusions

This paper discussed several problems that arise in the organization of
a global file system. It demonstrated the importance of customization
and presented two mechanisms, the filter and the union link, that al-
low views of the global name space to be defined in terms of other
views. The lack of name transparency across customized name spaces
has the potential to cause confusion, but this problem is addressed by
supporting closure.

The prototype file system and directory service described in this
paper is used from more than 10,000 systems worldwide. The use of
the prototype to solve real problems was discussed; its acceptance
demonstrates the benefits of the organizational flexibility provided by
the Virtual System Model.

Availability

To find out more about Prospero, or for directions on retrieving the
latest distribution, please send a message to info-prospero@isi.edu.

428 B. Clifford Neuman

Acknowledgments

Ed Lazowska provided valuable guidance throughout this work. Dis-
cussions with John Zahorjan, Hank Levy, and Alfred Spector helped
to refine the ideas that ultimately led to the development of Prospero.
Steven Augart, Ben Britt, Steve Cliffe, Alan Emtage, George Fergu-
son, Bill Griswold, Brendan Kehoe, and Prasad Upasani helped with
the implementation of Prospero and Prospero-based applications. Ce-
leste Anderson, Vincent Cate, Peter Danzig, Peter Deutsch, Deborah

Estrin, and Dennis Hollingworth provided comments on drafts of this
paper.

The Prospero File System 429

References

[1] Mic Bowman, Larry L. Peterson, and Andrey Yeatts. Univers: An
attribute-based name server. Software Practice and Experience,
20(4):403-424, April 1990.

[2] Luis-Felipe Cabrera and Jim Wyllie. QuickSilver distributed file ser-
vices: An architecture for horizontal growth. In Proceedings of the
2nd IEEE Conference on Computer Workstations, pages 23-27, March
1988. Also IBM Research Report RJ 5578, April 1987.

[3] Vincent Cate. Alex: A global file system. In Proceedings of the Work-
shop on File Systems, May 1992.

[4] Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh. An experi-
mental implementation of the Tilde naming system. Computing Sys-
tems, 4(3):487-515, Fall 1990.

[5] Peter B. Danzig, Shih-Hao Li, and Katia Obraczka. Distributed index-
ing of Autonomous Internet Services. In this issue of Computing
Systems.

[6] Alan Emtage and Peter Deutsch. archie: An electronic directory service
for the Internet. In Proceedings of the Winter 1992 Usenix Confer-
ence, pages 93—110, January 1992.

[7]1 David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W.
O’Toole Jr. Semantic file systems. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pages 16—25, October
1991.

[8] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A.
Nichols, M. Satyanarayanan, Robert N. Sidebotham, and Michael J.
West. Scale and performance in a distributed file system. ACM Trans-
actions on Computer Systems, 6(1):51-81, February 1988.

[9] Brewster Kahle and Art Medlar. An information system for corporate
users: Wide area information systems. Technical Report TCM-199,
Thinking Machines Corporation, April 1991.

[10] Keith A. Lantz, Judy L. Edighoffer, and Bruce L. Hitson. Towards a
universal directory service. In Proceedings of the 4th ACM Symposium
on Principles of Distributed Computing, August 1985.

[11] Mark McCabhill. The internet gopher: A distributed server information
system. ConneXions - The Interoperability Report, 6(7):10-14, July
1992.

430 B. Clifford Neuman

[12] B. Clifford Neuman. The need for closure in large distributed systems.
Operating Systems Review, 23(4):28-30, October 1989.

[13] B. Clifford Neuman. Workstations and the Virtual System Model. In
Proceedings of the 2nd IEEE Workshop on Workstation Operating Sys-
tems, pages 91-95, September 1989. Also appears in the Newsletter
of the IEEE Technical Committee on Operating Systems, Yolume 3,
Number 3, Fall 1988.

[14] B. Clifford Neuman. The Virtual System Model: A Scalable Approach to
Organizing Large Systems. PhD thesis, University of Washington,
June 1992. Department of Computer Science and Engineering Techni-
cal Report 92-06-04.

[15] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael
N. Nelson, and Brent B. Welch. The Sprite network operating system.
Computer, 21(2):23-35, February 1988.

[16] Larry L. Peterson. The Profile naming service. ACM Transactions on
Computer Systems, 6(4):341-364, November 1988.

[17] Larry L. Peterson and Herman C. Rao. Accessing files in an internet:
The Jade file system. Technical Report TR 90-30, University of
Arizona, 1990.

[18] Jon B. Postel. User datagram protocol. DARPA Internet RFC 768,
August 1980.

[19] Jon B. Postel and J. K. Reynolds. File transfer protocol. DARPA Inter-
net RFC 959, October 1985.

[20] D. Presotto, R. Pike, K. Thompson, and H. Trickey. Plan 9: A dis-
tributed system. In Proceedings of Spring 1991 EurOpen, May 1991.

[21] Jerome H. Saltzer. Operating Systems: an advanced course, volume 60
of Lecture Notes in Computer Science, chapter 3, pages 99-208.
Springer-Verlag, 1978.

[22] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design
and implementation of the Sun Network File System. In Proceedings
of the Summer 1985 Usenix Conference, pages 119—-130, June 1985.

[23] M. F. Schwartz. Resource discovery and related research at the Univer-
sity of Colorado. Technical Report CU-CS-508-91, Department of
Computer Science University of Colorado, Boulder, January 1991.

[24] Stuart Sechrest and Michael McClennen. Blending hierarchical and
attribute-based file naming. In Proceedings of the 12th International
Conference on Distributed Computer Systems, June 1992.

The Prospero File System

431

[25] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authenti-
cation service for open network systems. In Proceedings of the Winter
1988 Usenix Conference, pages 191-201, February 1988.

[26] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren,
Gregory J. Sharp, Sape J. Mullender, Jack Jansen, and Guido van
Rossum. Experience with the Amoeba distributed operating system.
Communications of the ACM, 33(12):47-63, December 1990.

[27] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The Locus
distributed operating system. In Proceedings of the 9th ACM Sympo-
sium on Operating Systems Principles, pages 49—70, October 1983.

[submitted June 23, 1992; accepted Aug. 18, 1992]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

432 B. Clifford Neuman

