
Measured Performance of
Caching in the Sprite Network
File System

Brent B. V/elch Xerox PARC

ABSTRACT This paper reports on the effectiveness of
the caching strategy used in the Sprite network file
system based on data taken over several weeks of
day{o-day usage by a variety of users. Measurements
include cache consistency activity, long term I/O traffic
rates, long term cache hit rates, and the averages and
variations in the size of the variable-sized caches.

Network traffic is compared with traffic to the local
cache, and the effects of paging traffic are considered.
The overall conclusion is that the caching system is
quite effective and poses a low overhead. Using a
delayed write strategy, 4OVo to 507o of the data written
to client caches is never written through to a server,
and less than lVo of the open operations by clients
resulted in cache consistency actions by a server.t

Part of this work was done while the author was at the University of California, Berke-
ley, and was supported in part by the Defense Advanced Research Projects Agency un-
der contract N00039-85-C-0269, in part by the National Science Foundation under grant
ECS835l96l, and in part by General Motors Corporation.

@ Computing Systems, Vol. 3 ' No. 4 ' Summer 1991 315

1. Introduction

This paper presents performance measurements of the caching subsys-

tem of the Sprite distributed file system [OusterhoutSS]. In a Sprite

network, client workstations are usually diskless, and the file servers

implement different parts of a uniformly shared file qystem that pro-

vides the semantics of a 4.3 BSD UNIX timesharing system. Both

clients and servers cache file data in their main memories to optimize

I/O operations [NelsonSSb]. Cache consistency is provided so that a

read returns the most recently written data regardless of the way files

are shared. A delayed write policy is used on the clients and servers,

and it provides two benefits. First, applications do not have to wait for
the relatively slow network and disk operations because writes occur in

the background. Second, the delay period means that data written by
applications can be deleted or overwritten without being written
through to the file servers.

The main results presented in this paper are summarized in Tâble

I and Table 2. They were obtained by monitoring the Sprite network

for a period of several months. Less than l7o of the files opened trig-
gered server consistency actions, which indicates that the consistency

scheme imposes low overhead. Concurrent read sharing is quite com-

mon, mainly due to executable files. The variable-sized caches adapt

to the different needs of clients and servers, with servers using more

memory for their file cache than clients. The read miss rate for client

caches is good, but the low client write traffic ratio is even more

significant. 40Vo to 5OVo of the data written by applications is never

written through to the file servers. This data is deleted or overwritten
within the 3O-second delay period.

These results are based on statistics taken from our Sprite network

from July through December, 1989, and a follow up study made in
March and April 1991. At the time of the original study, the Sprite

316 Brent Welch

Summary of Caching Measurements (Fall '89)

Files requiring consistency callbacks
Files uncachable due to sharing
Files concurrently read shared

(17o opens

7.57o opens
37Vo opens

Average client cache srzes

Average server cache sizes

lTVo-35Vo memory
25%o-6l%o memory

Average client read miss ratios
Average client write traffic ratios

35Vo bytes
52Vo bytes

Table l. Summary of results from the initial study made during
the fall of 1989. The first part of the table contains cache
consistency related figures based on open operations. The
second part contains gives average cache sizes. The third part
gives cache effectiveness figures based on I/O rates.

Summary of Caching Measurements (March-April '91)

Files requiring consistency callbacks

Files uncachable due to sharing

Files concurrently read shared

(17o opens
(17o opens

517o opens

Average client cache sizes

Average server cache sizes

7Vo-337o memory
407o-73%o memory

Average client read miss ratios

Average client write traffic ratios

Table 2. Summary of results from a follow-up study made in
the Spring of 1991. The most dramatic change is the reduction
in the number of uncachable files due to the replacement of a
network-wide shared database file with a server-based
implementation.

network was composed of four file servers (one Sun-41280,2 Sun-3s,
and 1 DEcstation 3100) and about 30 client workstations (11 Sun3s,

4 Sun-4s, and 15 DECstation 3100s). One year later the network had

around 36 clients (6 Sun-3s, 13 Sun-4s, and 17 DECstation 3100s),
the two Sun-3 servers were retired and another Sun-4 server was

added for experiments. Täble 3 lists the characteristics of the file serv-

ers measured in the study. The results were obtained from raw data in
the form of about 450 different statistics that were maintained in the
kernel and periodically sampled. File servers were sampled hourþ,

397o bytes
627o bytes

Measured Performance of Caching in the Sprite Network File System 317

CPU
File Server Profiles

Memory Files

Root, commands, libraries
/tmp, commands, sources, users

Root, commands, swap, sources, users

Users

Experimental

Täble 3. A profile of the file servers measured in the two studies. The
memory size is the total physical memory, not the cache size. Mint
was the root server in the first study. By the time of the second study,
Mint and Oregano had been retired and Allspice was the server for
most files. Assault continued to service a few user directories, and
Anise was used for experments and scratch space.

and clients were sampled 5 times each day (at 8am, llam, 2pm, 5pm,
and 8pm). Some changes were made to the system after the original
study, and a second set of measurements was taken to determine the
effects of the changes on the system's behavior. (A 6th sample taken
at llpm was also added during the second study period.)

Sprite is 4.3 BSD UNIX compatible, although the operating system

kernel has been implemented from scratch. During the study, Sprite
was used for all the day-to-day computing needs of twenty or more
graduate students, a few professors, and a couple of staff members.
There were about a dozen more occasional users. The workload con-
sisted of large compilation jobs, word processing, electronic mail,
simulation studies, and other assorted programming tasks. Perhaps the
heaviest load on the system stemmed from development of Sprite it-
self. Especially during the initial study, Sprite was undergoing consid-
erable tuning, performance enhancements, and bug fixes. Process mi-
gration was used extensively to distribute large compilation jobs among
idle workstations. With migration, recompiling a large module of the
kernel (e.g., the VM system or the file system) was fast enough that it
was done rather frequently.

The remainder of this paper is organized as follows. Section 2 re-
views the Sprite caching system and the algorithm used to maintain
consistency of client caches. Section 3 presents results on the cache

consistency overhead. Section 4 presents measurements of the effec-
tiveness of the caching system during normal system activity. Section

Mint
Oregano
Allspice
Assault
Anise

Sun-3
Sun3

Sun4
DS3100
Sun-4

16 Meg
16 Meg

128 Meg
24IN.{eg
32IN4eg

318 Brent Welch

5 shows how variablesized caches dynamically adapt to clients and
servers of different memory sizes. Section 6 describes related work.
Section 7 concludes the paper.

2. The Sprite Caching System

This section reviews the Sprite caching system originally described in
[NelsonSSb]. The important properties of Sprite's caching system are:
l) diskless clients of the file system use their main memories to cache
data;2) clients use a delayed-writing policy so that temporary data
does not have to be written to the server; and 3) the servers guarantee
that clients always get data that is consistent with activity by other
clients, regardless of how ûles are being shared throughout the net-
work. Servers also cache data in their main memory and use delayed
writes, and the implementation of the client and server caches is basi-
cally the same.

The key characteristics of the Sprite consistency scheme are: l)
the server sees all open and close operations by clients;2) a version
number is associated with each file and incremented when a file is
opened for writing; and 3) a file is not cachable on clients when it is
concurrently open for writing on one client and for reading and/or
writing on another client. The last point is a key simplification in the
Sprite caching system: if a file is concurrently write-shared by differ-
ent clients, I/O operations on that file bypass the client caches and are
serialized in the server cache.

In order to provide a consistent view of file data, the file servers
track open and close operations and keep state about how their files are
being cached by clients. Servers issue cache control messages to
clients at open time, if needed, so that clients always get the most up-
to-date file system data. A file server issues a writeback command to
client-A if client-B opens a file and client-A has the most recent ver-
sion of the file still dirty in its cache. Because clients use a delayed
write policy, this can occur if a file is generated on one client and
used by another within the 3O-second aging period. A file server is-
sues a disable caching command to client-A if client-B opens a file for
writing and client-A still has the file open. The result of an open oper-
ation indicates to the opening client whether or not it can cache the

Measured Perform.ance of Cachíng in the Sprite Network File Systern 319

file. In addition, servers increment a per-file version number each time
the file is opened for writing, and clients use the version number to
detect stale data in their cache.

The caching scheme is based on the assumption that concurrent
writesharing is rare, although there was one heavily shared file in our
network. A host load database was maintained using a shared file for
the database. A daemon process on each host updated the database

once a minute with the host's weighted load average and the time

since last keyboard input. The database was consulted in order to

choose idle hosts for the targets of process migration. Because the

database was continuously open for writing by a daemon process on

every client, it was in an uncachable state. This was done by design to
prevent the database from moving among client caches in response to
updates and queries. The effects of this database will be described in
Sections 3 and 4.

The use of delayed writes reflects a tradeoff between reliability and

performance. Sprite has a recovery qystem that recovers from server

and client failures [Welch89]. A cooperative recovery protocol is used

after a server reboots in which clients help the server rebuild its state

about files cached on the clients. Under normal circumstances, pro-
cesses on clients can continue to use open files after the recovery pro-
tocol completes. Network partitions can lead to diabolical conflict
cases, but these are detected by the recovery protocol. V/ith delayed

write caching, however, a power failure on a client can result in the

loss of recently generated data. This is no worse than a timeshared

UNIX system because UNIX also uses a 30-second delay period before

writing data to the local disk. To guard against this, our editors and

source code control programs use a system call to force files through
to the server's disk. There is still alarge amount of temporary data

that is deleted before being written back to the server, as shown in
Section 4.

3 . Sharing and Consistency Overhead

Measurements

The amount of file sharing and the consistency-related traffic was mea-

sured on the file servers by instrumenting the procedure that checks

cache consistency and issues callbacks to clients. The results from the

320 Brent Vy'elch

Hour or
Server

File Sharing and Cache Consistency Actions (Nov-Dec '89)
Num Non- Can't Read Last Server Action
Opens File Cache Sharing riy'riter Write-back Invalidate

I
1t
I4
t7
20

6,932,578 35Vo

r,252,039 20Vo

r,8w,274 1770

2,857,620 t9Vo

1,940,819 1770

l2%o O.347o O.I Vo

9Vo 0.197o 0.l3%o
lïVo 0.357o 0.227o
lOVo 0,42Vo O.3lVo
l3%o O.267o O.20Vo

7.l\Vo
8.7lVo
7.867o
7.45Vo

7.85Vo

397o

34Vo

40Vo

34Vo

307o

Mint
Allspice
Oregano
Assault

6,976,180 IOVo 14.697o MVo l2%o

4,784,280 467o 0.04Vo 27Vo I2Vo

1,746,430 38Vo 0.98Vo 67Vo 9Vo

486,320 34Vo 0.337o l77o 37o

0.l7%o 0.07Vo

0.58Vo O.Ol7o

0.O37o 0.89Vo
l.52%o O.O\Vo

Combined 13,993,210 27Vo 7.47Vo 377o llVo 0.34Vo 0.l5%o

Täble 4. Cache consistency statistics including the number of files
opened, read sharing, reuse of dirty files, and cache consistency
actions. The top-half of the table gives an hourly breakdown of all the
servers combined. Each row summarizes the activity in the interval
before the time listed in the first column. The bottom half gives the
total breakdown for each server individually. The last row has the
totals for all the servers combined, which represents the total file
system traffic. The data was taken over a 36-day period in the fall of
1989.

initial 36-day study are given in Thble 4. The table is organized to
show both hourþ rates and per-server rates. The tables are broken
down into different time periods based on the time data was collected,
where each row indicates the activity over the preceding interval (e.g.
8pm to 8am, 8am to llam, and so on). The per-server and combined
rows shows the results averaged over the whole study period. The
large number of opens at night result from the nightly dumps. The var-
ious cases in the table are explained below. Note that the measure-
ments in this section are in terms of files opened, not bytes trans-
ferred. Measurements presented in the next section indicate how
much I/O traffic there is to uncachable files and what the cache hit
ratios are.

Non-File

This value indicates the number of directories, symbolic links, and
swap files that were opened. These files are not cached on the clients.
Swap files are not cached so that VM pages really leave the machine

Measured Performance of Caching in the Sprite Network File System 321

upon page-out. Directories and links are not cached on clients because

servers do all pathname evaluation [Welch86].

Can't Cache

This value indicates the percentage of files opened that could have

been cached on clients but were not cachable because of concurrent

write sharing. The large amount of sharing measured onMint, líVo,
is due to the shared host load database. The other servers see very few

concurrently write shared files.

Read Sharing

This value counts the number of files that were open for reading

by more than one process at a time, either on the same or different
clients. This case is relatively frequent because of shared executable

files; it happens in about 37Vo of the cases. It is more frequent on Mint
and Oregano, the servers for the commands directories.

Last Writer

This value counts the files that were written to a client's cache and

then re-read or re-written by the same client before the 30-second de-

layed write period expired. File servers do not issue write-back com-

mands in this case. Each of the servers, except Assault, sees a signifi-

cant amount of this case, about LITo overall. This percentage is quite

close to the percentage of files open for writing and suggests that most

data is re-read or re-written shortly after it is generated. (During this
period, 85.2Vo of all opens were readonly , 9.37o of all opens were

write-only, and 5.57o of all opens were for read-write access. See

[Welch9O] Appendix B, Table B-3.) Mint, for example, has log files

that can be repeatedly updated by the same client. Oregano serves

"ltmp", and compiler and editor temporaries account for the reuse of
dirty files. Allspice has the system source directories, and compiler

output usually gets re-read by the linker. Assault is too lightly loaded

to experience much of this behavior.

Server Action

This value indicates how often the servers had to issue cache con-

trol messages. "W'riteback" indicates how many times the last writer
of a file was told to write its version back to the file server.

"Invalidate" indicates how many clients had to stop caching a file they

were actively using because it became concurrently write-shared after

322 Brent lVelch

it was opened. V/rite-backs happen in less than IVo of the cases, which
indicates that sequential write-sharing (within the delay period) be-
tween clients is rather rare. Invalidations are also rare, except on
Oregano as described below. These measurements are consistent with
trace data studied by Thompson [ThompsonST] who found relatively
little write sharing among different users.

Two anomalies stand out in Tâble 4. The first is that almost l57o
of the files opened on Mint were uncachable files. After some

sleuthing, this value was traced to the host load database. While the
daemons that periodically update the database keep the file open, some
other process apparently opens the database periodically as part of a

query.
The second anomaly in Table 4 is the relatively large number of

invalidation commands issued by Oregano. These are due to a tempo-
rary file used by pmake, our parallel compilation tool that uses process

migration. Pmake generates a temporary file containing the commands
to be executed on the remote host. Initially, this file is cached on the
host running pmake. During migration it is open by both the parent
(pmake) and the child (a shell that will execute the commands on the
remote host). These processes share a read-write I/O stream that the
parent used to write the file and the child will use to read it. When
the child migrates to the remote host the file server detects this as a

case of concurrent write sharing and issues a write-back and invalidate
command to the host running pmake. If the parent closed the file be-
fore the migration this would appe¿u as sequential write sharing and

contribute to the "Write-back" column instead.
Since the first study was made, the function of the load average

database was reimplemented by an active server process, or pseudo-

device. A pseudo-device is a special file that represents a server pro-
cess; all file operations on the pseudo-device are forwarded to the
server process by the kernel [Welch88]. The server can make more in-
telligent choices for migration, plus its interface is more efficient

[Douglis90]. Previously a process had to fetch the whole database over
the network in order to select a host for migration (recall that the data-

base was uncachable). With a centralized server making host selec-

tions, host selection only requires a single query. Furthermore, the
server selects the same idle hosts again and again, and this tends to in-
crease the effectiveness of those clients' file caches. Thble 5 shows

Measured Performance of Caching in the Sprite Network Filc System 323

Hour or
Server

New File Sharing and Cache Consistency Actions (Mar-Apr '91)
Num Non- Can't Read Last Server Action
Opens File Cache Sharing Writer Write-back Invalidate

I
11

t4
t7
20
23

5,O7r,637
r,256,û6
2,209,775
2,200,846
1,9&,212
r,937,916

3OVo 0.1.37o

16%o 0.26Vo

I37o 0.43Vo

I47o 0,63Vo

IITo 0.44Vo

94o 0.337o

0.617o 0,07Vo

0.527o 0.08Vo

0.687o 0.23Vo

O.74Vo 0.28Vo

0.70Vo 0.25Vo

0.377o 0.187o

447o

547o

53Vo

467o

487o

54Vo

lVo

3Vo

67o

57o

57o

37o

Allspice
Anise
Assault

11,175,500 I3Vo 0.33Vo

896,419 37Vo 0.027o

1,004,500 49Vo 0.l4%o

0.427o O.l1Vo

I.78Vo 0.0IVo
l.43%o O.O37o

557o

4Vo

357o

2Vo

97o

97o

Combined 13,076,419 l87o 0.307o 5I7o 3Vo O.59Vo 0.l5%o

Table 5. Consistency data from Allspice, Assault, and Anise during a

36-day study in March and April 1991. Allspice is the primary server,
while Assault and Anise store user files. The top half of the table
summarizes the activity for all servers during the interval before the
time listed in the first column. The bottom half summarizes the
activity for each server individually. The last row has the totals for all
the servers combined.

consistency related statistics after this change. There is still a small

rate of opens to uncachable files. These are from other shared data-

bases such as the user login database, and from shared system log files

that occasionally get appended to by multiple clients simultaneously.

4. Measured Effectiveness of Sprite File
Caches

This section presents results on the I/O traffic of the clients and serv-

ers, and it shows how effective the caches are during normal system

use. Tiaffic between applications and the cache is compared with net-

work traffic, a breakdown of the network traffic is given, and the

traffic to the servers' caches is compared with the servers' traffic to
their disks.

324 Brent Welch

4.1 Client Read Trafrtc

This section compares I/O traffic from applications to the cache with
network traffic generated by the clients. The tables present I/O rates in
bytes per second, the miss ratio of the cache, and a breakdown of the
network traffic in terms of cache misses, uncachable data, and paging
data from the VM qystem. Regular files on the file server are used for
VM backing store, but paging traffic on the client bypasses the client's
ûle system cache so that data is not cached by both the VM system
and the file system. There are two percentages associated with cache
misses. The first percentage is the miss ratio, which is computed as

follows:

Miss Ratio : f++
Where M is the rate that data is fetched into the cache because of
misses, U is the rate that uncachable data is read, and C is the rate
that data is read from the cache by applications. The fact that C does
not include U is because uncachable traffic bypasses the cache and the
rates were monitored separately. In the tables below, the I/O rate in
the column labeled "Cache" is for C, not (C+U).

The second percentage associated with cache misses is its contri-
bution to the total network traffic:

Miss Trffic :
¡4 *-Lu * y

where V represents paging traffic from the VM system. The tables also
give the proportion of network traffic made up by uncachable data and
VM data, as well as the total network I/O rates.

Thbles 6 through 8 give the read traffic for the DECstation and
Sun-3 clients. The tables are broken down into different time periods
based on the time data was collected, where each row indicates the ac-
tivity over the preceding interval (e.g. 8pm to 8am, 8am to llam, and
so on). The bottom row shows the results averaged over the whole
study period. The "Cache" column gives the read rate from the cache
(not counting reads to uncachable data), and the "Misses" column
gives the rate at which the cache requested data from a server. The

Measured Perþrmance of Caching in the Sprite Network File System 325

DS3100 Client Read Traffic (Bytes/Seconds and ratios) (Nov-Dec '89)
Cache Misses Uncached Pageln Total

8

11

T4

17

20

2lVo
62Vo

377o

27Vo

47Vo

52
289
173
232
463

28Vo

65Vo

40Vo

587o

837o

t0
10

t6
26
t2

r24
r39
239
138

81

57o

27o

37o

6Vo

2Vo

286
469
490
897

988

66Vo 188

3lvo 439
55Vo 430

34Vo 398
l47o 557

TL 570 34Vo 188 62Vo t2 100 33Vo 302

Täble 6. Hourþ read traffic for DECstation 3100 clients, which have
24IÙleg main memories. The first column indicates the time of day
data was taken, and the other columns have I/O rates and relative
percentages. The last row averages the data over the whole trace
period. I/O rates are given in bytes/second. The first percentage in the
"Misses" column is the cache miss rate. The second percentage is the
relative proportion of cache miss traffic to other sources of network
traffic. The "Uncached" and "Pageln" columns gives rates for traffic to
uncachable files and traffic to swap files, respectively. The percentages
in these columns indicate their relative proportion of the total network
read traffic. The "Total" column gives the total network read traffic.

Sun-3 (12 Meg) Client Read Thafûc (Bytes/Seconds and ratios) (Nov-Dec '89)
Cache Misses Uncached Pageln

4Vo

8

11

l4
17

20

132
s66
887
969
678

217o

22Vo

32Vo

257o

23Vo

247o

24Vo

46Vo

56Vo

5IVo

6
29
30
20
t4

68Vo

687o

477o

37Vo

43Vo

94
425
584
405
288

6Vo &
6Vo 290
57o 280
5Vo 153

57o 126

23

r04
270
229
147

TL 434 357o t44 43Vo 15 4Vo 167 5I7o 328

Table 7. Hourly read traffic for Sun-3 clients with 12 Meg main memory.

Sun-3 (8 Meg) Client Read Traffic (Bytes/Seconds and ratios) (Nov-Dec '89)
Cache Uncached Pageln Total

8

11

I4
t7
20

145
205
485

725
522

457o

43Vo

40Vo

417o

42Vo

57
77

179
283
215

40Vo

217o

37Vo

36Vo

467o

15

23

25

25

I4

IOVo

6Vo

5Vo

3Vo

3Vo

68

249
262
4I0
228

477o 142
697o 360
557o 475
52Vo 778
49Vo 466

TL 322 40Vo 122 37Vo t4 r85 5SVo

Thble 8. Hourly read traffic for Sun-3 clients with 8 Meg main memory.

326 Brent rùy'elch

33047o

first percentage under "Misses" is the miss ratio defined above, while
the second percentage is the ratio of cache misses to all network read
traffic. The other two primary sources of network read traffic, un-
cachable files and page faults, are listed in the columns labeled
"Uncached" and "Pageln". The last column gives the total network
I/O traffic. Some of the network I/O traffic (up to l%o or 2Vo) is due to
remote device and remote window access, which is not shown in the
table.

The overall read miss rates are around 35Vo, with the 8 Meg Sun-
3s slightly worse at a 40Vo miss rate. The hourly average miss rates

range from abott 2O7o to 60Vo, with lower percentages indicating
more effective caches. Note that VM paging traffic accounts for
slightly more network read traff,c than cache misses. The VM traffic
includes page faults on program image files, as well as faults on swap

files. The DECstations, which all have 24 INfLeg of main memory, have
the lowest paging traffic. Note that the workstations with larger memo-
ries have larger read rates to their cache, but all the workstations have
about the same overall network read traffic. The larger memories re-
duce paging and allow for larger, more effective file caches.

Initial measurements of the read traffic highlighted a number of
clients with abnormally high traffic to uncachable data. The traffic for
these clients is given in Thble 9. Their poor miss rate, almost 60Vo,

was due to an X widget application that displayed the number of hosts
currently available for migration. Every 15 seconds the entire database
was scanned to count up the available hosts, and the effect on network
traffic was significant. The process migration system has been changed

Abnormal Client Read Traffic (Bytes/Seconds and ratios) (Nov-Dec '89)
Misses Uncached Pageln Total

I
ll
I4
t7
20

265
653
609

t625
980

62Vo

48Vo

52Vo

34Vo

49Vo

55 l37o
164 20Vo

l7O 237o

345 24Vo

332 42Vo

66
336
244
705
158

290
293
306
336
294

707o

36Vo

427o

247o

377o

l57o 414
42Vo 797
33Vo 725
50Vo l39I
20Vo 788

2O7oI2856Vo35822VoI43TL 516 57Vo 633

Täble 9. Hourly read traffic for.a collection of DS3100 and Sun-3
clients that have abnormally high read traffic to uncachable data. The
traffic stems from an application that periodically scans a heavily
shared (and therefore uncached) database.

Measured Performance of Caching in the Sprite Network File System 327

New Client Read Tiafûc (Bytes/Seconds and ratios) (Mar-Apr '91)
Cache Misses Uncached Pageln

8

11

l4
t7
20
23

115 40Vo 45

257 38Vo 93
593 40Vo 235

1093 457o 49O

695 4l%o 282
475 42Vo 198

1 0.77o

9 0.77o

12 0.8Vo

t5 0.87o

7 0.57o

8 0.5Vo

242 83Vo 290
1310 92Vo l4l3
I24I 83Vo 1489

1456 74Vo 1962
1165 80Vo 1455

1519 88Vo 1725

l57o
6lo

l5Vo

24Vo

19Vo

lIVo

TL 39Vo t17 1.4Vo 0.67o 673 84Vo 794

Table 10. Read traffic for a collection of DECstation and Sun-4 clients
after the shared database was replace by a server process. There is
almost no read traffic to uncachable data, and VM paging traffic
dominates the network traffic.

to use a server process to manage host selection instead of using a
shared file. The server can return the number of available hosts with a

single, small query. Thble 10 shows the read traffic for a collection of
DECstation and Sun-4 clients during the second study, after this
change was made. There is almost no read traffic to uncachable data,
and VM paging traffic dominates the network. The increase in page-in
traffic was traced to a change in the way initialized data pages of exe-
cutable programs are handled. These pages have to be reloaded each

time a program is executed. Previously they were copied into the file
system cache at the time they were first faulted into memory so that
future executions of the same program would find the initialized data
in the local cache. This feature was simplified away, but because it
causes a significant increase in page-in traffic it has since been reintro-
duced.

4.2 Client Write Trffic

Thbles 11 through 13 give the write traffic for the DECstation and
Sun3 clients. The format of the tables is similar to those for read
traffic. Hourly breakdowns are given, and remote traffic is divided
among cache misses, uncachable data, and writes due to page outs.

The effectiveness of the cache in trapping short lived data is given by
the traffic ratio:

w+u
Tiafrtc Ratio :

301

328 Brent Welch

C+U

DS3l00 Client Write Tlafñc (Bytes/Seconds and ratios) (Nov-Dec '89)
Cache 'ùy'riteBack Uncached PageOut

8

11

t4
I7
20

t46
174
270
530
333

48Vo

4IVo
557o

447o

47Vo

63

69
146
230
154

497o 14 ll%o
46Vo 5 3Vo

65Vo 5 2Vo

73Vo 6 ZVo

8O4o 5 37o

48
74
69
74
29

38Vo 127

49lo 150

3t7o 222
237s 3I4
ISVo 190

57244TL 5l%o 120 63Vo 10 5Vo 30Vo 189

Table 11. Hourþ write traffic for all the DECstation 3100 clients. The
format of the table is the same as Thble 6. An uncached database is
updated once a minute by each host, and this creates a small amount
of uncachable I/O traffic. Note that the overall write miss rate is 517o,
meaning that half the data written to the cache is not written out.

Sun-3 (12 Meg) Client Write Tiraffic (Bytes/Seconds and ratios) (Nov-Dec '89)
WriteBack Uncached PageOut Total

8

11

t4
I7
20

69
148

267
327
239

52Vo

50Vo

57Vo

53Vo

37Vo

30
7t

r50
t70
84

53lo
49Vo

547o

67Vo

557o

l1
7

8

7

7

2O7o

5Vo

3Vo

37o

4Vo

13 23Vo 57
61 437o 143
79 28Vo 273
70 287o 251
56 37Vo 151

r40451.48TL 52Vo 74 537o 67o 32lo

Table 12. Hourly write traffic for all the L2 Meg Sun-3 clients. The
write traffic is similar to that of the DECstation clients.

Sun-3 (8 Meg) Client Write Tiafñc (Bytes/Seconds and ratios) (Nov-Dec '89)
Cache WriteBack Uncached Pageout

8

ll
l4
T7

20

467o

467o

497o

677o

4LVo

l5
l1
l1
9
9

19Vo

67o

6Vo

2Vo

37o

86 53Vo

134 6l%o

186 537o

354 69Vo

172 597o

38

77
94

244
98

27 337o 83

77 46Vo 167

82 43Vo 190

I04 297o 360
125 53Vo 236

TL T2497o8559Vo154 7Vo 73 42Vo 173

Table 13. Hourly write traffic for all the 8 Meg Sun-3 clients. The
write miss rate is slightly worse (higher) in comparison with the
DECstation and 12 Meg Sun-3 clients.

Measured Performance of Caching in the Sprite Network File System 329

Where llz is the amount of data written out of the cache to a server, C
is the amount of data written into the cache by applications, and U is
the amount of data written to uncachable files.

The most notable result in the tables is that the writeback traffic ra-

tio ranges from about 4OVo to 60Vo, averaging 52Vo overall. This
means that about half the data written by applications was removed or
overwritten in the 30 second aging period. Traffic to uncachable data

accounts for only a few percent of the network traffic, although it does

increase the miss ratio by a couple percent. Page out traffic accounts

for less than half the network traffic, and it is as low as 30Vo of the

traffic from the DECstation 3100s. Thble 14 shows more recent data

for the Sprite network, after the uncachable host load database was re-
placed with a server. There is still evidence of some shared files that
are updated steadily, but the IIO rate is much smaller. Shared files are

still used to record user logins and to log system events. Note that the
write traffic ratio is 62Vo, which is worse than the 50Vo found in the

initial study. Note also that the I/O rates to the cache are lower during
this study, suggesting that the network was being used less intensively.

New Client Write Tiaffic (Bytes/Seconds and ratios) (Mar-Apr '91)
Cache Vy'riteBack Uncached PageOut

I
1

I
10

I
I

34
79

129
260
185

r45

8

11

t4
l7
20
23

36
160

t74
350
233
170

96Vo

SOVo

74Vo

747o

79Vo

857o

27o

42Vo

46Vo

52Vo

58Vo

54Vo

2.6Vo

0.8Vo

0.57o

2.ÙVo

0.47o

0.5Vo

l5
65

r07
178
104
95

287o 55

34Vo 188

38Vo 276
357o 497

32Vo 318

367o 264

TL t22 627o 75 557o l.4Vo 45 33Vo

Thble 14. Hourþ write traffic after the shared host load database was
replaced with a server process. The clients are a collection of Sun-4s
and DECstations. The rate of I/O to uncachable files has dropped
significantþ, but there is still evidence of uncachable files, most likely
system log files and the user login database. There are two anomalies
in this table. First, there was one spike of uncachable traffic on three
clients which shows up under hour 17 that may been an artificial test.
Second, the percentages only total approximatd 90Vo of the network
traffic. The missing data stems from remote access to devices and
user-level server processes. In particular, one user-level server acts as

a gateway to remote NFS servers, and a number of long-running
simulations directed their ouþut to NFS files.

330 Brent Welch

134

The initial study was made during an intense period of system devel-
opment, and large compilation jobs generated much of the I/O traffic.
Compiler temporary files are created and deleted before being written
out, so they contribute favorably to the write traffic ratio. Traffic ratios
as low as 307o have been observed during large compilations.

4.3 Server IIO Trffic

This section presents the I/O traffic from the standpoint of the file
servers. In the case of a file server it is interesting to compare the
traffic to its cache to the traffic to its disks. Two metrics are given, the
"File Tiaffic" and the "MetaData Tiaffic." Metadata is data on the disk
that describes a file and where it lives on disk. This includes the de-
scriptor that stores the file's attributes, and the index blocks used for
the file map. The "File Tlaffic" represents I/O to file data blocks as

opposed to the metadata information. The combination of file traffic
and metadata traffic gives the total disk traffic for the file server.
Three ratios are given that compare cache traffic to disk traffic:

File Trffic Ratio

Mendata Traffic Ratio

TotalTrffic Ratio:

Where F is the disk traffic from the cache to file data, M is the disk
traffic to metadata, and C is the traffic between applications and the
cache. There are no uncachable files on a file server. The file traffic
ratio ignores the effects of metadata, while the total traffic ratio in-
cludes it.

The server I/O traffic from a 2D-day study period, October 29
through November 19,1989, is given in Thbles 15 and 16. Figure 1

shows the server I/O traffic for a combination of all servers averaged
over a 6-month study period, from July to December 1989. Servers
were sampled every hour, 24 hours a day. The graphs indicate that the
server caches are effective for reads during peak usage hours. The
server caches are less effective for writes because client caches trap out
most of the short-lived data. The write graph highlights the large

F
C

M
C

M+F
C

Measured Performance of Caching in the Sprite Network File System 331

Server I/O Trafûc (Bytes/Second) (Fall '89)
Cache Tiraffic File Traffic MetaData Tiaffic

bytes/s (dev) bytes/s (dev) bytes/s (dev)
Total Disk

bytes/s

Mint r
w

8601 (9321) 3427

92r (640) 863

(7876) 283 (982) 37rO
(507) 4133 (1913) 4e96

Oregano r
w

42r (9129) 320r
932 (3163) 804

(8242) 4s3
(2994) t29s

(1101) 36s4
(r29s) 2099

Allspice r
w

rr478 (18313) 5970 (16398)

st74 (949s) 3838 (6142)
szo (2062) &9O

t692 (2013) ss30

Assault 1808

529
r
w

(7342) 1481 (7128)
(3081) 29r (1385)

(604) r66t
(676) &t

180

350

combined t 25946
w 7305

13932

5620

t433
748t

15515

13266

Täble 15. UO traffic on the file servers over a 20-day period from
October 29 through November 19, 1989. The upper row for each

server gives read I/O rates, the lower row gives write rates. The
average and standard deviation are given for the bytes/sec transferred
to and from the cache ("Cache"), file data blocks on disk ("File"),
from file descriptors and index blocks on disk ("MetaData"), and the
total traffic to the disk ("Total").

Server I/O Tlaffic (Megabytes and Ratios)
MetaData Total DiskHost

Mint 15172
1624

r
w

lOVo

667o
r
w

6046 407o

1523 94Vo

500 37o 6546 43Vo

7291 4497o 8814 542Vo

Allspice r
w

9811 527o

6307 747o

57o 10665 57Vo

33Vo 9088 IOTVo

18861

8503

854
278r

Oregano r
w

5937 72Vo

l49l 867o

8199
t729

839 lU%o 6776 837o

2402 I39Vo 3893 225Vo

Assault 313t
9t7

311

606
2565 82Vo

505 55Vo

2876 927o

1111 l2l7o

combined r
w

45364 24358 54Vo 2505
12772 9826 77Vo 13080

6Vo 26863 59Vo

lOZVo 22906 1797o

Table 16. This gives the total megabytes transferred for the results
given in Täble 14, and the percentage that this is of the megabytes

transferred to or from the cache. The total disk traffrc can be greater
than lÙOVo of the cache traffic because of metadata traffic.

332 Brent Welch

B

v

t

e

s

I
s

e

c

o

n

d

B

v

t

e

s

I
s

e

c

o

¡l

d

35000

20000

15000

100{n

5000

0

cacheBytes

t2 16 20

Hour ofDay

ReadTrdfic lileBytes

meteD&t¡Byt€s remot€Byt€s

30000

20000

15m0

10000

5000

0
12

Hour ofDay

Write Tr¡fnc

Figure 1. Server I/O traffic averaged from July I to December 22, 1989. The
left-hand graph has read traffic and the write-hand graph has write traffic.
"cacheBytes" are file data bytes fransferred between the cache and remote
clients or serverresident applications. "fileBytes" are file data bytes trans-
ferred between the disk and the cache. "remoteBytes" are file data bytes ac-
cessed remotely by server-resident applications. "metaDataBytes" are meta-
data bytes transferred to and from the disk. The total disk traffic is the sum
of "frleBytes" and o'metaDataBytes".

Measured Performance of Caching in the Sprite Network File System 333

amount of write traffic to metadata. File descriptors have to be up-

dated with access and modify times, so just reading a file ultimately
causes its descriptor to be written to disk. Furthermore, the 128-byte

descriptors are written 32 at time in 4K blocks so there is extra traffic

from unmodified descriptors. The large amount of metadata traffic at

2am is because the UNIX tar program is used for our nightly dumps,

and it changes the access time of every directory and any files that
were dumped. The effect of metadata changes has been noted by Hag-

mann [HagmannST], who converted the Cedar file system to log meta-

data changes, which reduced metadata traffic considerably. Current re-

search in the Sprite group involves a logstructured file system where

all data, file and metadata, is logged [OusterhoutS9] [Rosenblum9l].
The tables show that the cache on Mint, the root server, is effec-

tive in eliminating rcads (40Vo file traffic in the 20-day study), but not
as good at eliminating writes (94Vo traffic ratio in the 20-day study).
Its read hits occur on frequently-used program images and the load av-

erage database. The steady updates to this file and other logs trigger a
steady update of disk descriptors, which explains Mint's high metadata

traffic.
Preliminary server traffic data showed that Mint had a traffic ratio

of only 507o, while the other servers had write traffic ratios of 70Vo to
SOVo or more. Mint's low traffic ratio prompted a search for a bug in
the cache write-back code, and indeed it turned out that continuously
updated files were never being written out to disk! The 20-day study

reported in the tables was made after this bug was fixed. Mint's traffic
ratio changed from 507o to 94Vo, which indicates that almost half the

data written to it is to continuously updated files, i.e. the host load
database. The 6 month study graphed in Figure 1, however, includes

both versions of the system so there actually should have been slightly
more file write traffic to update the host load database.

Allspice and Oregano are directly comparable because they store

the same type of files (many files were shifted from Oregano to All-
spice during the 20-day study period). Allspice's cache is about 10

times the size of Oregano's and it is clearly more effective. This is to
be expected because the seryer's cache is a second-level cache, with
the clients' caches being the first level. The server's caches have to be

much larger than the client's caches because the locality of references

to their cache is not as good.
It is also interesting to see how the caches skew the disk traffic to-

334 Brent Welch

wards writes. During the 20-day study period, the traffic to the server

caches was about 22Vo writes. The traffic to the server disks was 267o

metadata writes and 207o data writes. If the metadata traffic is dis-

counted as an artifact, then the data writes accounted for 40Vo of the

disk traffic. The skew towards writes at the disk level should continue

as server caches get larger and more effective at trapping reads'

5. Variøble-Sized Caches

An important feature of Sprite caches is that they vary in size in order

to make use of all available memory. Nelson [NelsonSSa] explored

ways of trading memory between the Sprite file system and the virtual
memory system, which needs memory to run user programs. The basic

approach Nelson developed was to compare LRU times (estimated

ages) between the oldest page in the FS cache and the oldest VM page

and pick the oldest one for replacement. Thus the ûle system cache

size will grow or shrink depending on file system and viftual memory

activity.
Nelson found that it was better to bias in favor of the VM system

in order to reduce the page fault rate and provide a good interactive

environment. The bias is achieved by adding a bias to the LRU time

of the VM system so that its pages appear to be referenced more re-

cently than they really were. We have arbitrarily chosen a bias against

the file system of 20 minutes. Any VM page referenced within the last

20 minutes will ner'ç; be replaced by a FS cache page. This policy is

applied uniformly on all hosts, and it adapts naturally to both clients

and servers. Servers use most of their memory for a file cache, while

active clients use most of their memory to run user programs. Idle

clients become hosts for process migration, and large idle programs

(i.e. the window system) tend to get paged out and replaced by more

file cache as well as the migrating applications.

5.1 Measured Cache Sizes

Table 17 gives the average and maximum cache sizes as measured over

the 6-month study made in 1989. Table l8 gives the same measure-

ments taken during the second study. The file servers are listed indi-

vidually, and the clients are grouped according to the amount of phys-

Measured Performance of Caching in the Sprite Network File System 335

Cache Size (MegabyteÐ (Fall '89)
Average Std Dev Maximum

Allspice*
Assault**
Mint
Oregano

22.14
4.55
1.23
1.77

r28
24
16

I6

67.8
7.5
9.0
8.6

52Vo

3l%o

56Vo

54Vo

l77o
197o

ïVo

llVo

78.13 617o

16.50 697o

11.80 747o

12.06 75Vo

Sun3

Sun3

Sun3

8

t2
T6

t.4
3.2
5.5

lTVo

27Vo

347o

0.96
1.76
2.86

l27o
l57o
lSVo

4.42 55Vo

7.88 66Vo

12.22 767o

Sun4
Sun4

2.r
6.0

lTVo

25Vo

1.73
3.70

l47o
l57o

t2
24

6.87 577o

13.43 56Vo

DS3100 24 2.27 9Vo 10.36 437o

Table 17. Cache sizes as a function of main memory size and
processor type, averaged over the 6-month 1989 study period. The
average, standard deviation, and maximum values of the observed
cache sizes are given. The sizes are megabytes and percentage of
main memory size. The file servers are listed individually. The rest of
the clients :ìre averaged together based on CPU type and memory size.
* Allspice's cache was limited to at most 78.13 Mbytes.
** Assault's cache was limited to 8.7 Meg during most of the study.

Cache Size Megabytes) (March-April '91)
Mem Average Std Dev Maximum

26Vo6.3

Allspice
Anise
Assault

I28 93.8 73Vo

32 17.9 567o

24 9.5 407o

15.1 I2Vo

2.5 87o

2.3 lÙlo

106.4 83Vo

22.2 707o

I4.O 58Vo

Clients 0.5
1.7
4.8
6.8

10.5

77o

IlVo
20Vo

24Vo

33Vo

5Vo

lOTo

l2%o

I37o
l27o

I
16

24
28

32

o.4
1.5

3.0
3.6
3.7

I.6 2OVo

7.7 487o

12.7 53Vo

16.3 58Vo

15.2 48Vo

Table 18. Cache sizes as a function of main memory size and
processor type, averaged over the March-April '91 study period. The
average, standard deviation, and maximum values of the observed
cache sizes are given. The sizes are megabytes and percentage of
main memory size. The file servers are listed individually. The rest of
the clients Íue averaged together based on memory size. There were
no limits on cache sizes during this study.

336 Brent Welch

ical memory they have. The adaptive nature of the cache sizes is

evident when comparing clients and servers with the same memory

size; the file servers devote more of their memory to the file cache.

This difference is not achieved via any special cases in the implemen-

tation, but merely by the uniform application of the 2Q-minute bias

against the file system described above.

The cache occupies a larger percentage of main memory as the

memory size increases, indicating that the extra memory is being uti-

lized more by the file cache than by the VM system. Consider the

Sun3 clients in the first study. Doubling the physical memory on a

Sun3 client quadruples the average cache size on the client; it increases

from lTVo to 34Vo of the physical memory. In the second study the av-

erage cache size as a percentage of memory size increases with mem-

ory size.
The variability of the client caches is indicated by the standard de-

viation and the maximum observed values. The variability tends to in-

crease as the memory gets larger, indicating that the cache is trading

more memory with the VM system. The DECstations have lower vari-

ability in the initial study because their cache was limited to about 8.7

Meg. This limitation was a software limit that was removed before the

second study was made, and the variability was slightly higher during

the second study period.
The results from the servers show that Mint and Oregano could

only devote on average a little over half their memory to their file

cache, yet their maximum cache size was as much as 314 of theit

memory. Similarly, during the second study, Allspice's cache aver-

agedT3Vo of its memory, while its maximum was 83Vo.I The server

caches ramp up to a maximum shortly after booting, and then gradu-

ally decline in size as the kernel builds up state information about how

its files are being used. There are no fixed sized tables in the imple-

mentation, and the file system data structures have not been tuned to

reduce their space. The servers also grow the number of RPC server

threads they keep, and each thread has a significant amount of preallo-

cated buffer space as well as a kernel stack. Thus the file servers need

-l During the initial study Allspice's cache size was limited due to a poor interaction with
the mèmory mapping hardwãre on the Sun4. The file cache used up hardware page map

entries, aná if tñê cãche got too large it would cause extreme contention for the few re-
maining hardware map entries. The problem was fixed by the time the second study was

made b-y allowing thiMMU managei to steal hardware map entries associated with
cache blocks.

Measured Performance of Caching in the Sprite Network FiIe System 337

large memories, both to increase their cache sizes and to accommodate
the data structures they maintain in order to manage their cache and
those of their clients.

6. Related Work

The Sprite caching system was initially studied by Nelson for his thesis
work [NelsonSSa]. He compared 9 different client writing policies in
combination with 4 different server writing policies on a set of bench-
marks. He found that using a delay policy on both clients and servers
minimized I/O traffic and provided the best client response time. In
contrast, a "write through on close" policy, which is used in NFS, in-
creases network and disk traffic and causes clients to wait at close
time.

AFS uses a hybrid strategy of caching temporary files (those under
"/tmp") with a delay policy, but writing through other files at close.
Nelson found this to be almost as good as the Sprite policy in terms of
network bandwidth reduction, although significant delays can still oc-
cur when non-temporary data is written through to the server. AFS
caches remote files on the local disk, in contrast to Sprite's use of
main memory. Howard found a read miss rate of about 207o on the
AFS client caches [Howard88], which is better than the miss rates

found in this study. The better miss rate in AFS is because the disk-
based caches of AFS are larger than the main memory caches in
Sprite (AFS clients usually have 20 or 40 Meg caches). The response
time and server CPU utilization of NFS, AFS, and Sprite were com-
pared in [NelsonS8b]. Sprite provided the best response time (25Vo

faster than AFS and 35Vo fuster than NFS), while AFS had better (i.e.
lower) server utilization (16%o server CPU utilization under load for
AFS vs. 38Vo for Sprite and 80Vo for NFS). Another comparison be-
tween Sprite and NFS can be found in [SrinivasanS9], in which the
addition of the Sprite delayed-write policy and consistency mechan-
ism to an NFS system improved performance significantly.

Earlier studies of I/O traffic include Ousterhout's measurements of
timesharing VAXes running 4.2 BSD UNIX [OusterhoutS5], which re-
ported per-user I/O rates of 300600 bytes/sec when averaged over 10

minute intervals, and rates of 1400 to 1800 bytes/sec when averaged

338 Brent Welch

over 10 second intervals. These rates do not include paging traffic, and

they are for active users only. Rates are higher over shorter intervals

because there are fewer active users in a Shorter interval. The rates

obtained for Sprite clients, about 1500 bytes/sec for combined read

and write traffic in the mid-afternoon, are averaged over 180 minutes

and include periods of inactivity. Ousterhout and his students have re-

cently taken trace data from the Sprite network in order to make simi-

lar measurements as those of his original study, and these results

should be published this year [Baker9l].
Kent also took trace data from a timesharing UNIX system and

used the data to drive a simulation of a network file cache [Kent87].
Kent found per-user I/o rates of about 2 kbytes/sec, which is slightly

higher than the rates found by Ousterhout et a/ because Kent's mea-

surements included paging requests.

Floyd studied file and directory access patterns in the UNIX envi-

ronment [Floyd86]. His focus was not on I/O rates, but on the rate

that files were opened, file lifetimes, and the difference in use of dif-
ferent classes of files. Floyd found, for example, that most temporary

files live less than one minute. The faster workstations used today

should consume temporary files at a faster rate, suggesting that the 30

second delay period used in Sprite is appropriate.

One common difference between the trace driven studies described

above and the measurements presented here is that the trace driven

studies predicted lower cache miss ratios. Kent simulated combined

read-write iniss ratios that varied from 32Vo down to ll%o as the cache

size increased from 256 kbytes to 8 mbytes (see Table 5-1 in

[Kent87]). Ousterhout's simulations showed a combined read-write

miss ratio that varied from 497o to 257o as the cache size increased

from 390 kbytes to 16 mbytes. The combined miss ratios measured

here are about 4OVo. Part of the difference is probably due to the vari-

able sized caches, and part is probably due to changing workloads.

The bias against the file system in the variable sized cache mechanism

means that cache miss rates may increase while page fault rates are re-

duced. The file system cache may not perform as well, but the system

feels faster to to user. There is also a difference in workload between a

timeshared VAX 11-780 and a network of personal workstations that

are each l0 times as fast as a VAX. Window systems invite users to do

more things at once, and the guaranteed CPU power of a personal

workstation encourages large jobs such a system recompilation. As a

Measured Performance of Caching in the Sprite Network File System 339

result, the workload applied to the file system has scaled up consider-
ably.

7. Conclusion

This paper has reviewed the Sprite caching system and reported on its
performance when supporting day-to-day work in our user community.
Measurements from two study periods have been presented. The first
study was made in the fall of 1989, shortly after Sprite was made
available to users outside the development team, while the second
study was made 16 months later. There are a number of significant re-
sults. Client write traffic ratios averaged 52Vo and 62Vo in the two
studies, meaning that almost half the data generated by applications
was never written through to the server because it was deleted or over-
written before the 3O-second aging period expired. Client read miss
rates were 35Vo and39Vo in the two studies, indicating reasonable ef-
fectiveness. There was low overhead from consistency-related actions.
In less than l7o of open operations did the server have to issue cache
control messages. The most interesting negative result is that the
shared database used to record host load averages accounted for ap-
proximately l0%o of the network write traffic and up to ffi%o of the
network read traffic for some clients. This problem has been cured by
replacing this heavily shared ûle with a network server process and
tuning the interface to it. The result is that concurrent write sharing,
which causes files to be uncacheable on clients, occurs in less than LVo

of the files opened. There is very little consistency-related traffic be-
tween the servers and clients, and there is very little data traffic to un-
cachable data.

Acknowledgements

I would like to thank Prof. Ousterhout and the other members of the
Sprite team, Mary Baker, Fred Douglis, John Hartmann, Mendel
Rosenblum, and Ken Shirriff, for their help and cooperation as I con-
tinued this study after my graduation. I would also like to thank Gene

Spafford for this opportunity to publish this paper outside the initial
workshop it was originally targeted for, and to thank all the outside
reviewers for their feedback on initial versions of the paper.

340 Brent Welch

References

lBaker9ll

IDouglis90]

lFloyd86l

[HagmannST] R. Hagmann, "Reimplementing the cedar File system us-
ing Logging and Group Commit", Proc. of the llth Symp.

on Operating System Prin., Nov. t987, 155-162.

lHowardSSl

lKentS7l C. Kent, "Cache Coherence in Distributed Systems", PhD

Thesis, Dec. 1987. Purdue University.

M. N. Nelson, "Physical Memory Management in a Net-

work Operating System", PhD Thesis, Nov. 1988' Univer-

sity of California, BerkeleY.

lNelson8Sal

[Nelson 88b] M. Nelson, B. Welch and J. Ousterhout' "Caching in the

Sprite Network File System", Trans. Computer Systems 6, I
(Feb. 1988), 134-154.

[OusterhoutS5] J. Ousterhout, H. D. Costa, D. Harrison, J. Kunze, M'
Kupfer and J. Thompson, "A Tlace-Driven Analysis of the

UNIX 4.2 BSD File System", Proc. 10th Symp. on Operat-

ing System Prin., Operartng Systems Review 19, 5 (Decem-

ber 1985), 15-24'

[ousterhoutS8] J. Ousterhout, A. cherenson, F. Douglis, M. Nelson and B.

Welch, "The Sprite Network Operating System", IEEE Com-

puter 21,2 (Feb. 1988), 23-36'

[ousterhoutSg] J. Ousterhout and F. Douglis, "Beating the I/o bottleneck:

A Case for Log-Structured File Systems", Operating Systems

Review 23, | (Jan. 1989), IL-28.

[Rosenblumgl] M. Rosenblum and J. Ousterhout, "The Design and Imple-
mentation of a Log Structured File System" , Submitted for
publication, Feb. 1991.

M. Baker, J. Hartman, M. Kupfer, K. Shirriff and J.

Ousterhout, "Measurements of a Distributed File System,"

Submitted for publication, Feb. 1991.

F. Douglis, "Thansparent Process Migration for Personal

Workstations", PhD Thesis, Sep. 1990. University of Cali-
fornia, Berkeley.

R. Floyd, "ShortiTþrm File Reference Patterns in a UNIX
Environment", Technical Report Tech. Rep. 177, University

of Rochester, Mar. 1986.

Measured Performance of Caching in the Sprite Network FiIe System 341

[SrinivasanS9]

IThompsonST]

|Welch86l

lWelchSSl

lWelch89l

V. Srinivasan and J. Mogul, "Spritely NFS: Experiments
with Cache-Consistency Protocols," Proc. I2th Symp. on
Operating System Prin., Operating Systems Review 23, 5
(December 1989), 45-57.

J. Thompson, "Efficient Analysis of Caching Systems", PhD
Thesis. 1987. University of California, Berkeley.

B. B. Welch and J. K. Ousterhout, "Prefix Thbles: A Simple
Mechanism for Locating Files in a Distributed Filesystem",
Proc. of the 6th ICDCS, May 1986, 184-189.

B. B. Welch and J. K. Ousterhout, "Pseudo-Devices: User-
Iævel Extensions to the Sprite File System", Proc. of the
1988 Summer USENIX Conf., June 1988, 184-189.

B. B. Welch, F. Douglis, J. Hartmann, M. Rosenblum and
J. Ousterhout, "Sprite Position Statement: Use Distributed
State for Failure Recovery", Proc. of the Second Workshop
on Workstation Operating Systems (WWOS4I). Sep. 1989,
130-133.

B. B. Welch, "Naming, State Management, and User-Level
Extensions in the Sprite Distributed File System," PhD The-
sis, 1990. University of California, Berkeley.

lWelch90l

Permission to copy without fee all or part of this material is granûed provided that the copies

are not made or distributed for direct commerical advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

342 Brent Welch

