
Guest Editorial
Eugene Spafford Purdue University

" Dirrributed systems (loosely-coupled) are simply multipro-
cessors with greater latency than parallel (tightly-coupled) qystems."

Consider that statement carefully before you read further. How
strongly do you agree or disagree?

During the last Symposium on Experiences with Distributed and

Multiprocessor Systems (March I99l),I presented that notion to a
number of participants. Most thought about it a moment and then
agreed. Since that time, I've proposed it to a number of other com-
puting professionals, and many concur that it represents distrib-
uted systems as they know them.

It is, however, false.

I believe that the reasons some researchers view it as true underlie
why there has been more progress made in parallel computing than in
distributed computing over the past few years.

Certainly, there is some truth in the statement. Distributed systems

present some problems of task partitioning, multþocessor synchro-
nization, appropriate choice of data structures, communication, and

user interface that are similar to parallel systems-except for latency
issues. They are not simple problems: for instance, knowing how to
partition a job into appropriate-sized and sequenced pieces is a difficult
task, whether those parts are to be run on processors sharing the same

bus and memory, or whether they are to be run on processors con-
nected by T3 links spanning a continent.

However, the two kinds of computing systems are most definitely
not the same in practice. There are many practical issues that make
distributed systems more difficult to administer and use-whether they
are distributed throughout a building or across continents.

179



For instance, consider the problems of authentication. Tightly-
coupled parallel systems are always housed in the same room, if not
within the same cabinet, and the processors usually do not have com-
pletely autonomous modes of operation. Distributed systems, however,
often have components residing far away from their peers; physical se-

curity and proximity cannot be used to verify identity and authenticity
of messages in distributed systems.

As another example, consider fault tolerance. Keeping single
copies of critical data may cause single-point failures to cripple hun-
dreds of machines, but keeping multiple copies consistent is difficult to
do efficiently. On a tightly-coupled qystem, failure of one component
can often be compensated for without undue difficulty, or may result in
a complete, observable failure of the system. In a loosely-coupled dis-
tributed system, a component failure, such as a network partition, may
not be distinguishable as a failure. The result may be inconsistent data,

cascading failures, and eventual chaos.

Consider tasks of simple system administration. On a tightly-
coupled system, installing a new software release or adding a new user

account requires modifying files at a single location. In a distributed
environment, it potentially involves updating all the locations where
the system connects-and perhaps doing so synchronously and with
extended privilege. Of course, it is possible to devise a protocol for
managing administration and distribution tasks from a few centrally-lo-
cated sites (e.g., NFS and NIS), but this creates yet a new potential
avenue for compromise of system security as well as introducing single
points of failure.

There are other problems, too, but they usually become apparent
once you begin to think about how you would actually administer and

use a system on a day-to-day basis-assuming you have some experi-
ence to guide your imagination. It requires something other than a
simplified theoretical view where machines never fail, users are trust-
worthy, and software never changes.

The low-level technical tasks of distributed programming and

efûcient communication are difficult, but even if they are solved it
does not mean that the resulting systems will be usable. To achieve the
potential benefits of distributed processing-greater computational
power, failure isolation, load balancing, specialized resources, etc.-
will require devising answers to some seemingly more mundane but
critical questions.

180



These are not new observations. In the late 1970s, Philip Enslow
at Georgia Tech described something he called "Fully Distributed Pro-
cessing Systems" (cf. "Vy'hat is a 'Distributed' Processing System?,"
IEEE Computer, 11(1), Ian. 1978, 13-21). He defined these as systems

that had multiple computers with distinct capabilities, no shared data
(memory), and autonomous individual control. If we understand that
'ocontrol" includes administrative control as well as low-level device
and processor control, we have a definition that is still interesting-
and unmet by any existing system, although some have attempted ex-

tremes of a pair of these properties.
I too see a major challenge to researchers in distributed systems is

to design their systems explicitly-from the very beginning-to near
extremes of all three properties. Adding network layers to single-
qystem operating systems, as many efforts have done in the recent
past, seems unlikely to produce the kind of system many of us will
find trustworthy, easy to use, and easy to administer. Neither does
simply structuring a system around micro-kernels, threads, or objects
automatically achieve such a goal.

I find it interesting to note the number of bright and informed
people who think that solving the challenge of multicomputer systems

requires only the solution of communication and memory questions.

Perhaps that is why we continue to have so many machines with mul-
tiple processors in the same box on the same bus, and why we con-
tinue to have such problems managing systems that are geographically
separated (e.g., workstations on LANs). This is why experiences with
multiprocessor systems are so important-they illustrate areas of
difficulty that conceptual models and designs might never consider.

In this special issue of Computing Systems we present the revisions
or extended versions of five papers drawn from SEDMS II, held in
Atlanta in March of 1991. As with all the papers at a SEDMS sym-
posium, each of these represents real experiences with innovative
approaches to solving problems in multiprocessor systems. These arti-
cles, however, are not merd reprints of SEDMS presentations. The
authors involved rewrote their papers, and the papers underwent addi-
tional review; not every article invited for this issue was accepted. The
editors, authors, reviewers, and I all hope you find the results of our
efforts rewarding and enlightening.

My special thanks to the referees who read papers submitted for
this special issue, and whose thoughtful comments aided both the au-

18r



thors and me in our efforts: William Appelbe, Bharat Bhargava, Ken-
neth Birman, Anita Borg, Roger C. Campo Roy H. Campbell, David
Cheriton, David L. Cohn, Raphael A. Finkel, Rob Fowler, James

Griffioen, J. Robert Horgan, Christopher Kent, Yousef Khalidi, John

T. Korb, Richard læBlanc, George Leach, Darrell D. E. t ong James

E. Lumpp, Charles McDowell, Tlevor N. Mudge, Bodhi Mukherjee,
John Nicol, Michael O'Dell, David Patterson, Sharon Perl, David V.
Pitts, Daniel A. Reed, Michael L. Scott, Satish K. Tlipathi, and
Jonathan \{hlpole.

182


