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ABSTRACT This paper identifies the basic services
required from a communication subsystem to support
transaction processing in a distributed, reliable,
reconfigurable, and replicated database environment.
These services include multicasting, remote procedure
calls (RPC), inexpensive datagram services, and
efficient local interprocess communication (IPC). We
show the evolution of the various versions of Raid
communication software and our experience with them.
rile show how several ideas such as lightweight
protocols, simple naming, memory mapping and shared
memory, physical multicasting, direct control passing,

and adaptability fulfill the needs for transaction
processing. rüe present performance data on these ideas
and study their impact on transaction processing. We
also use the results of these studies to design and
implement a new communication scheme. This scheme
has reduced the overhead of communication in Raid
distributed database system by up to 70.
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I. Introduction

Many applications consider the transaction as a unit of work. Tiansac-
tion processing systems must manage such functions as concurrency,
recovery, and replication. One way to increase the software modular-
ity is to have the separate components of such a complex system exe-
cute in separate address spaces [Ber90, MB9la]. Enforced by hard-
ware, this structuring paradigm increases the reliability, failure
isolation, extensibility, interoperability, and parallelism of the soft-
ware. However, applications that require transaction processing in dis-
tributed database systems demand high performance. Performance re-
quirements cannot be satisfied without efficient interprocess
communication (IPC) services provided by the operating system. Sys-
tems with poor IPC are forced to sacrifice either structure or perfor-
mance [vRvST88, BALL9O].

The micro-kernel or backplane paradigm for structuring distributed
systems offers several advantages. Efficiency in local interprocess
communication can be achieved by moving some critical kernel ser-
vices to the user level. On the other hand, specialized kernel-level
communication facilities can improve the performance of remote com-
munication by eliminating many unnecessary layers. Local area net-
work (LAN) differs from wide area network (ÌWAN) in many aspects.
Some are fast and reliable, such as Ethernet and Fiber Distributed Data
Interface [Ros89], others are often slow and unreliable, such as the In-
ternet. One way to take full advantage of the local networks is to use
different mechanisms for different environment. By integrating differ-
ent mechanisms in adaptable approach, we can build a communication
system that is able to self-adjust to many different environments.
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l.I Objectives of our Research

The objective of this paper is to present a synopsis of the many ideas

used in the design and development of an efficient communication sup-

port for distributed transaction processing systems in conventional ar-
chitecturesr. Vy'e present the problems encountered, the overhead of
schemes available to us, the benefits drawn from the related research

efforts, the performance improvement in the new implementations, the
experiences from our research, and finally the effects on the transac-

tion processing in the context of an experimental distributed database

system [8R89].
We observed that the address space paradigm can provide a natural

platform for the support of extensibility, modularity, and interoperabil-
ity. It can also increase opportunities for parallelism, which improves
the concurrency, reliability, and adaptability. The complete system
(including the kernel, operating system services, and applications) can

be decomposed into a set of smaller and simpler modules. These mod-
ules are self-contained and interact with each other via well-defined
interfaces. First, the concurrency is enhanced because the processes

are the schedulable units of the system. The input/output will not block
the whole system, but only the module that handles the interaction
(e.g. the disk manager, or the communication manager). The other
modules of the qystem can still run concurrently. Second, reliability
improves because of the hardware-enforced failure isolation of the log-
ical modules of the system. Finally, it is easier to implement short and

long term adaptability in a dynamically reconfigurable system.

Our observation are summarized as follows: Some generic abstrac-

tions (e.g. the Unix socket abstraction) which feature transparency are

expensive. Many improvements can be made to decrease communica-
tion costs: memory mapping can reduce kernel interactions and copy-
ing, physical multicasting can be efficiently implemented, a lightweight
protocol for LAN can improve the communication performance, direct
control passing and shared memory can be useful in transmitting com-

1. By conventional architectures, we mean virtual-memory, single-processor machines with
no special hardware support for interprocess communication. (Some main frame comput-
ers have hardware assidtãnce for IPC where more than one address space can be accessed

at the same time.)
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plex data structures. Our implementation shows that different commu-
nication models can be integrated under a unified interface to support
many types of communication media.

1.2 The Raid Distributed Database System

Raid is a distributed transaction processing system specifically designed
for conducting experiments [BR89] on transaction management
schemes. Distributed transaction processing involves following func-
tions:

. Tlansparent access to distributed and replicated data.

. Concurrency control.

. Atomic commitment control.

. Consistency control of replicated copies.

. Tiansparency to site/network failures (reconfiguration capabili-
ties).

In Raid, each of these functions is implemented as a server. Each
server is a process in a separate address space. Servers interact with
each other through a high-level communication subsystem. They can
be arbitrarily distributed over the underþing network to form logical
database sites. Currently there are four subsystems for each site: an
atomicity controller (AC), a concurrency controller (CC), an access

manager (AM), and a replication controller (RC). For each user in the
system there is an action driver server (AD), which parses and exe-
cutes transactions. The AC coordinates the global commitment/abor-
tion of a transaction. The CC enforces the local serializability. The
AM controls the access to the physical database. The RC ensures the
consistency of replicated copies. The processing of a transaction in the
system is described in detail in [8R89, BFH+90].

The experimentation with transaction processing algorithms re-
quires a clear assignment of the functionality to each server, a flexible
and well-defined way to describe the interfaces among different serv-
ers, and efficient communication support. Raid is designed to meet
these requirements. Logically, each Raid server is uniquely identified
with the 4-tuple: Raid instance number, Raid virtual site number,
server type, server instance. Abstractions such as multicasting and
RPC can be used. The communication between the servers is inten-
sive. For example, a five operation (read or write) transaction in Raid
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requires over thirty local messages in the coordinating site, eight local

messages in other participating sites, and four remote messages per

site.

1.3' Experimental Studies and the Benchmark

The experiments described in this paper were conducted in the Raid
laboratory, which is equipped with five Sun 3/50s and four Sun Sparc-

Stations connected to a l0 Mbps Ethernet. The Raid Ethernet is shared

with other departmental machines and has connections to other local
area networks and to the Internet. All Raid machines have local disks

and are also served by departmental file servers. They run the SUnOS

4.0 operating system. Most of the experiments were done on Sun 3/
50s, one of which is configured with a special microsecond resolution
clock2 that is used to measure elapsed times.

The details of the experimental infrastructure of Raid can be found
in [BFHR9Oa, BFHRg0b]. Here we briefly describe the benchmark

that we used throughout our experimental studies.
We used the DebitCredit benchmark [A+85] for our experiments.

Known as TPl or ETl, it is a simple yet realistic transaction process-

ing benchmark that is well-accepted. This benchmark uses a small

banking database, which consists of three relations: the teller relation,
the branch relation, and the account relation. The tuples in these rela-
tions are 100 bytes long and contain an integer key and a fixed-point
dollar value. In addition, there is a sequential history relation, which
records one tuple per transaction. Its tuples are 50 bytes long and con-

tain the attributes with id's of a teller, a branch, and an account, and

the relative dollar value specified in the transaction. In its original
form, the DebitCredit benchmark defines only one type of transaction.

This transaction updates one tuple from each of the three relations and

appends a logging tuple to a special sequential history relation.
To obtain a greater variety of transaction streams, we extended the

benchmark. In our experiments, we used the following parameters:

. Relation size: 100 tuples.

. Hot-spot size:20Vo of the tuples.

2. This timer has a resolution of up to four ticks per microsecond. The overhead to read a

timestamp is approximately 20 s.
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. Hot-spot access: 807o of the actions access hot-spot tuples. (That
is, 80 of the access focuses on 20Vo of the data items.)

. Type of experiment: closed. (In a closed experiment the multi-
programming level is fixed.When one transaction completes an-
other one is started. The opposite is an open experiment, in
which the transaction inter-arrival gap can be varied to control
the system load.)

. Number of transactions: 250.

. Thansaction length: the average number of the read/write opera-
tions per transaction is 6. The variance is 4.

. Timeout: one second per action.

. Updates: lÙVo of the operations are updates. (However, it is
much higher in terms of transaction, since one transaction may
consist of several read and write operations.)

. Restart policy: rolling restart backoff. (A transaction that is
aborted in the processing must be restarted sometime later. In
rolling restart backoff, the delay of restart is set to the average
response time of the last few transactions.)

We used the following algorithms to implement the Raid transaction
processing:

. Concurrency controller: two phase locking protocol.

. Atomicity controller: two phase commit protocol.

. Replication controller: ROWA (Read One Write All) protocol.

. Concurrency level: one transaction at a time.

This paper is organized as follows. The next section (2) introduces
the details of the version 1 of the communication software. Section (3)
discusses the evolution of the version 2 of the software and identifies
the problems and suggests several guidelines for possible improve-
ments. The design and the performance of the version 2 software and
its impact on Raid transaction processing are also presented. Section
(4) lists our experiences with the version 2 and suggests several steps

towards the evolution of the version 3 of the communication software.
Section (5) presents an adaptable approach to the software and demon-
strates how different mechanisms can be used for different environ-
ments. The three versions of the software are compared. Section (6)
discusses other work in related areas. Finally section (7) presents our
conclusions and experiences.
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2. The Raid Communication Subsystem

Version l
The development of Raid emphasizes on the structural construction of
Raid servers. The main purpose of the communication subsystem ver-
sion I was to provide a clean, location independent interface between
the servers tBMRgll.

2.1 Structure

The Raidcomm V.l was implemented on the top of the SunOS socket-

based IPC mechanism using UDPiIP (User Datagram Protocol/Internet
Protocol). To permit the server interfaces to be defined in terms of ar-
bitrary data structures, XDR (Sun's eXternal Data Representation stan-

dard) is used. A high-level naming service called the oracle was

added. The oracle is a global server and is not attached to any particu-
lar Raid site. The oracle responds to a request for the address of a
server by returning the UDP/IP address. The oracle also provides a

notification service that sends a message to all interested servers when
another server enters or leaves the system. All these messages are han-
dled automatically by the communication software at each server,
which also automatically caches the addresses of other servers as they
are received from the oracle. Facilities for high-level multicasting,
messages of arbitrary length, etc. were added later.

Figure 1 shows the layering of the RaidcommV.l package.

Raid servers communicate with each other using high-level opera-
tions such as AD_startcomrnit_Ac O , which is used by the AD to
start commitment processing. At this level, servers pass to each other
the machine dependent data structures. XDR marshals those data

High-leve ðòmrnunication (e.g., AD-StartComrnit-RC)
External Data Representation (XDR)
Raid datagranrs (e.g., SendPacket)
Long datagranrs (e.g., sendtoJdg)

Datagram sockets (e.g., sendto)

Figure l. Layers of the Raid communication package version 1.
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structures into a buffer, using a machine independent data representa-
tion. Raid datagrams are similar to UDP datagrams, but specify their
destination with a Raid address. LDG (Long Datagram) has the same
syntax and semantics as uDP, but has no restriction on packet length.
The fragment size is an important parameter to LDG. Normally we
use fragments of 8 Kbytes size, which is the largest possible on our
Suns. Since IP gateways usually fragment messages into 512 byte
packets, we have developed a version of LDG with 512 byte frag-
ments. This allows us to compare the kernel-level fragmentation in Ip
(Internet Protocol) (if LDG fragments are larger than 512 bytes) with
the user-level fragmentation in LDG (if LDG fragments are smaller
than 512 bytes).

Røidcomm V.1 used a conventional approach to employ the exist-
ing communication facilities. As has been presented in [MB91a] and
discussed in the next section, the conventional scheme provides unac-
ceptable overhead.

2.2 Performance of Raidcomm V.I

We evaluated the performance characteristics of the transaction pro-
cessing in the Raid system by running transactions based on the bench-
mark described in section 1.3. The objective was to study the impact
of Raidcomm V.I on the performance of the system. We measured the
times spent by Raid servers at the user level and the system level.

Vy'e ran this benchmark on both a five-site DebitCredit database
and a single-site DebitCredit database. We generated the workload
with the transaction generator and repeated the experiment 30 times.
The 95 confidence intervals for this sample of observations was less
than 5 of the observed mean values.

The system ran well in the five-site database case. However, there
are performance problems in the single-site case. Figure 2 gives a
graphical representation of the average user times and the average sys-
tem times to process a transaction in each Raid servers in the single-
site case. The user and system times are given in milliseconds. The
user time is the time spent by the cPU while processing the user level
code. The system time is the time that the CPU spends while execut-
ing kernel code. We recorded the average number of messages sent
and received for each transaction to be 168.
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Tirne
(ms)

At) RC AC CC

Legend: AC : atomicity controller
CC : concurrency controller
AM : access manager
RC : replication controller
AD : action driver

Figure 2. Raid servers' times (in milliseconds).

Communication related processing takes place at both the user and

system levels. Most of the system time is spent in the interprocess

communication. Raid servers make two types of system calls: syn-

chronous disk I/O (for logging) and interprocess communication. For

each transaction, we can assume that qynchronous disk I/O consumes

less than 22 milliseconds, since AC is the only server that invokes this

kind of system call and its system time is 22 milliseconds (this in-

cludes the time necessary to process AC's 6 interprocess communica-

tion system calls). We have a total of 168 interprocess communication

system calls (send and receive) and the total system times for each
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transaction is 267 .4 milliseconds. This implies that more than 92Vo of
system times are spent on communication, and each message-sending
and message-receiving system call takes an average of 1.5 millisec-
onds.

3. Evolution of the Raid Communication
Subsystem Version 2

The performance analysis in the previous section confirms that the dis-
tributed transaction processing system is communication intensive and
the message processing is expensive. We have reported a series of ex-
periments and observations [BMR91, MB91a] on the facilities avail-
able to us for the design of Version 1 of the software. These experi-
ments helped us in understanding the weaknesses of these facilities and
guided us towards the development of the new communication ser-
vices. We briefly identify the issues of IPC, multicasting, and naming.

3.1 Problems with the Interprocess
Communication

We have measured the overhead introduced by the layers of the
socket-based interprocess communication model for datagram commu-
nication (UDP). These layers include the system call mechanism, the
socket abstraction, the communication protocols (UDP, IP, and Ether-
net), and the interrupt processing. We measured the round-trip perfor-
mance of several local interprocess communication facilities available
on SunOS. We investigated several mechanisms including the double
message queue, the single message queue3, the named pipe, the shared
memory with semaphore, and the UDP sockets in both the Internet
and UNIX domains [MB91b, MB91a].

We observed that the conventional communication schemes, such
as UDP that are used in Raídcomm V.l , are not suitable for complex

3. The message queue is a S system V Unix interprocess communication scheme. Two pro-
cesses in the same machine can communication by sending and receiving messages
through a shared message queue. The double message queue model uses two message
queues between every two local processes, one for each direction. The single message
queue model uses only one message queue for both directions.
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distributed transaction processing systems. Even though many abstrac-

tions and mechanisms are useful to support a variety of applications

and users, messages have to pass through several unnecessary layers of
the communication subsystem. For example, the socket abstraction and

mbuf memory management mechanisms are irrelevant layers for the

transaction processing [MB91b, MB91a]. To overcome these prob-

lems, a simple IPC memory management mechanism should be used.

Both virtual/layered protocols in.r-kernel [PHOR90] and VMTP

tCheS6l provide support to avoid such an overhead (see section 6).

We observed that the benefits of using special-purpose methods for
the local interprocess communication are significant. We measured the

round trip time for a null message for message queues at I.7 millisec-

onds. But for the Internet domain UDP socket, it took 4.4 millisec-

onds. It still took 3.6 milliseconds by the UNIX domain UDP socket

[MB91a]. By using the memory mapping to reduce the kernel interac-

tion and copying, we can provide more efficient transaction-oriented

local interprocess communication.
We also found that the name resolution can become an expensive

and complicated process. In general, we can have three different name

spaces: the application name space, the interprocess communication

name space, and the network name space. We use a special protocol to

map Raid names into interprocess communication addresses (UDP/IP

addresses). These addresses have to be mapped into the network ad-

dresses (e.g. Ethernet addresses) via a second address resolution pro-

tocot [MB91b]. However, one way to break down the layers in a LAN
environment is to establish a straightforward correspondence between

logical and physical communication addresses.

3.2 Strategies for Implementing Multicast
Communícation

The replication and commitment protocols require a mechanism for

multicast messages. Many operating systems do not provide any multi-
casting facility. Applications simulate the multicasting at the user-

level. In Raidcomm v.I , the multicasting was simulated in the high-

level communication package [BMR91]. The CPU cost for the

message processing is paid several times in order to send the same

message to various sites.
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We studied several alternatives to alleviate this problem tBMRgll.
The first one was called physical multicasting. Physical multicasting is
attractive since it minimizes the network bandwidth requirement.
However, it demands that the multicast address be known to all mem-
bers of the group, which can incur extra messages. In addition, it has
to be extended to function in the interconnected networks, or networks
that do not support physical multicasting. This implies the use of spe-
cial algorithms for the routing and maintenance of group addresses

[CD85]. A second mechanism that is more flexible is to build multi-
casting at the user level. It is implemented so as to call the device
driver for each member in the multicast group. The third method is to
provide multicasting support inside the kernel. one system call allows
the sending of the same message to a group of destinations (on the
Ethernet). Therefore it is much more efficient than the user-level mul-
ticasting. Finally, the fourth alternative is to use the Pusha facility to
add multicasting routine into the kernel dynamically.

We built a Simple Ethernet (SE)5 device driver to provide a point-
to-point Ethernet communication. The user-level multicasting utility is
implemented on top of the SE device driver. We implemented the ker-
nel-level multicasting as the multisÛ device driver. we measured the
performance of the four multicasting methods by sending a 2}-byte
message to a set of destinations in the multicast group. The results are
shown in Figure 3.

The user-level multicasting is slower than the kernel multicasting
because it invokes a systern call for each destination. Although push

multicasting eliminates the system call overhead, the interpretive exe-
cution of Push code by the Push machine makes it even slower than
the user-level multicasting when the number of the destinations is
small.

The simulation of multicasting inside the kernel is an important
service for short-lived multicast groups. Short-lived multicast groups
are frequently used in the distributed transaction processing systems.
Each transaction involves a different subset of sites, based on the dis-

4.

5.

Push is an experimental facility developed in the Raid laboratory tBMRBgl. It provides a
software mechanism to add kernel-level services dynamically, and an interpretor inside
the kernel to execute user-level code.

SE (Simple Ethernet) is a suite of protocols that provide lowlevel access to the ethernet
lBMRgll.
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Nurnber of destinations
Figure 3. Multicasting cost

tribution of replicas of items read or written. Multicasting to the sub-

set of sites is needed (to read/write or to form quorums) and during

the transaction commitment. In general, there are too many such sub-

sets to define one multicast group for each of them' Also, the groups

change so quickly that the use of any multicast mechanism that re-

quires expensive group management is unacceptable. Thus the physical

multicasting for such short-lived multicast gloups is not easily possible.

3.3 Guidelines for Improvements

The following ideas and guidelines \ryere used to implement the second

version of the communication software.

1. Avoid the use of heavy-overhead communication protocols and

abstractions. The socket abstraction and general purpose

communication protocols unnecessarily increase communication

delay. This is true for both local and remote communication.

20
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2. Reduce the kernel interaction. Tþansaction processing is kernel
intensive [Duc89]. our measurements show not only the large
number of system calls necessary to process a transaction, but
also the large amount of time that servers spend at the kernel
level. Kernel operations can become the bottleneck, especially
in a multiprocessor environment. Efficient communication
facilities will reduce the system time and the context switching
activity (more messages processed during a time slice).

3. Minimize the number of times a message has to be copied. This
is especially important for local IPC because of the intense local
communication activity in a highly-structured system like Raid.
Shared memory can be used for that purpose, especially for
intra- machine coÍlmunication.

4. use a simple IPC memory management mechanism. Most of the
inter-server communication consists of short and simple control
messages. Although the rnbuf approach in Unix is flexible, it
has negative effects on the IPC performance.

5. Exploit the characteristics of the transaction processing system
in the design of its underlying communication subqystem. For a
LAN, a straightforward correspondence between logical and
physical communication addresses can be established. we do not
need special protocols to map between these addresses. Group
(multicasting) addresses used during the commitment time can
be determined as a function of the unique transaction ID. This
eliminates the need for extra messages to set up the group
addresses.

our implementation of Raidcomm v.2 is appropriate for the local
area network environments. It is based on the memory mapping6, a
simple naming mechanism, and a transaction-oriented multicasting
scheme.

3.4 Implementation of RaídComm Version 2

The development of Raidcomm v.2 is done on the platform of Sunos.
we modified the sunos kernel and added several new modules. Here
we briefly describe the most important ideas in our implementation.

6. A segment of kernel address space is mapped into the address space of a user process.
This allows the user process and the kernel to share the same sêgment of the ihysicalmemory.
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Communication ports are uniquely identified based on the Raid ad-

dresses of the corresponding servers. The site number maps to the host

address and the triplet Raid instance number, server type, server in-
stance maps to a port within the given host. Both mappings are one

to one.
For multicasting, we use the fact that multicasting groups are

formed by the servers of the same type. For instance in Raid, we have

two types of multicast groups. One type of the multicast group is used

for the replication control and is formed by RC servers only. The
other type supports atomicity control and includes only AC servers.

The difference between monocast and multicast addresses is in the sec-

ond component of the addresses. For monocast, we use site numbers,

while for multicast, we use the transaction identifiers. A transaction id
uniquely determines the members of the multicasting group for a given
transaction. Figure 4 shows the architecture of the Raidcomm V.2

package.

Ports reside in a memory segment accessible by both the process

and the kernel address spaces. Thus, data can be communicated be-

tween them without copying. This reduces the amount of copying by
5OVo compared to other kernel-based IPC methods. Figure 5 shows

the structure of a communication port.
Within a given node, ports are uniquely identified by the triplet

Raid instance number, server type, server instance. The other compo-
nent of a Raid address determines the address of the physical node if

righlevel Raid comrnunicatiol righlevel Raid communica(ior

xDR I
XDR 

^

Y

PoRTI--=--l
tl

I

PORTr--------------l
^l

I(ERNEL
Ethernet i¡rterface

Figure 4. The structure of Raidcomm V.2

Evolution of a Communication System for Distributed Transactíon Processing in Røid 291



l,r'nrlen Trausrnission Buffer
Active
Buffers

lenl Receive Buffer I

len2 Receive Buffer 2

len3 Receive Buffer 3

lenN Receive Buffer N

Figure 5. The structure of a communication port

it is a site number, or the multicast addresses of the group of nodes if
it is a transaction ID. For the Ethernet, we use only multicast ad-
dresses for link-level communication. Site numbers or transaction id's
are used to build multicast addresses by copying them into the four
more-significant bytes of the Ethernet address.

During transaction processing, physical multicasting is used. While
processing the requests for a given transaction, each participating site
sets a multicast address using the transaction ID as its four more-
significant bytes. When commitment is to be done, the coordinator
uses that address to multicast messages to all participant sites. This
approach takes full advantage of physical multicast, without incurring
the overhead of other multicasting methods.

System calls are provided to open and close a port, to send a mes-
sage and to add or delete a multicast address. There is no need for an
explicit receive system call. If idle, a receiving process must wait for a
signal (and the corresponding message) to arrive.

To send a message, a process writes it into the transmission buffer
and passes control to the kernel. If the message is local, the kernel
copies it to a receiving buffer of the target port and the owner of the
port is signaledT. Vy'e use the Unix srcro signal for this purpose. Oth-

7. The process ID of the process that owns a port is stored in the port's data structure.
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erwise, one of the existing network device drivers is used to send the

message to its destination. The destination address is constructed as

described above and the message is enqueued into the device's ouþut
queue. If the receiving port is full, or network is congested, the send

operation will abort and return error to the sender.

When a message arrives over the network, it is demultiplexed to

its corresponding port. Again, a signal alerts the receiving process

about the incoming message. All this is done at interrupt time and

there is no need to schedule further software interrupts.

3.5 Performance of the Communication
Primitives

The basic communication primitives used in Raidcomm V.2 have a bet-

ter performance than those in RaidcommV.l for both the local and the

remote round trip times. Figure 6 presents our measurement for both

the local and remote round trip times. For comparison, we have added

Tirne
(p') 4000

0 200 400 600 800

Packet length (bytes)

Figure 6. Round trip times (in

1000
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the corresponding times for the communication primitives used in
Raidcomm V.I 

-the 
SunOS socket-based IpC mechanism using

UDPiIP.
Both socket-based IPC and the new communication primitives

used in Raidcomm v.2 provide the same functionality in a LAN envi-
ronment, and both are equally affected by the significant network
device driver overhead. Despite this fact, this new communication fa-
cility achieves improvements of up to 50vo. For multicasting, the per-
formance advantages of these new primitives become even more
significant. sending time does not depend on the number of destina-
tions. on the other hand, multicasting time for the socket Ipc method
will grow linearþ with the number of destinations.

Socket-based IPC does not optimize for the local case. Local
round trips costs are close to remote ones (68-88vo). rn Raidcomm
v.2,local round trip times are only 35-50vo of the corresponding re-
mote round trips.

3.6 Impact of RaidComm V.2 on Raid

we carried out two experiments to test the impact of Raidcomm v.2 on
the performance of the Raid system. we wanted to see the effects on
both local and remote communication. For these experiments, we used
the benchmark described in section . we ran the transactions on a sin-
gle-site and a five-site DebitCredit database. For the five-site database,
we used the RowA (Read once vy'rite All) replication method, which
means that remote communication was limited to only the AC server.
In addition, the benchmark contained 115 transactions that had write
operations. Only those transactions needed to involve remote sites in
the commit protocol.

As we discussed in section 2.2, most of the system time is caused
by communication activity (above 92Vo). By using memory mapping to
reduce the copying, using simple naming schemes to reduce the name
resolution overhead, and using transaction-oriented multicasting
scheme to reduce extra messages, the system time used in Raidcomm
V.2 was significantly reduced. Figure 7 shows the saving in the sys-
tem times for each transaction in the single site case. (c.f. Figure 2.)

However, when we examine the user times spent in both Raid-
comm V.l and Raidcomm V.2, we find that the savings in the user
times are less significant (Figure 8 vs. Figure 2). This is because our
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Evolution of a Communication System for Distributed Transaction Processing in Raid 295



ideas were initially focused only on the communication delays that
contribute to the system time.

A closer look at the user-level of the communication subsystem re-
veals that XDR is responsible for approximately ll3 of the user-level
time. In the Raidcomm V.2, while the system time is reduced by an av-
erage of 62Vo for the whole Raid system, the user-level time does not
drop significantly [MB91b]. XDR has become a new bottleneck in the
system.

4. Problems, Improvements and Evolution
of Raid Communication Subsystem

Version 3

Our experiences with Raidcomm V.2 were gained while conducting the
experiments in Raid. This communication facility solves several prob-
lems in several conventional sche'mes that were mentioned in section
3.1. It provides better performance and fits the requirement of dis-
tributed transaction processing. However, it provides a new inspection
point for us to understand and further examine the requirements of a
distributed transaction processing system for advanced applications.
Some problems that were hidden behind the ones that have been re-
solved are now exposed. In this section, we focus on these problems.

4.1 Problems with XDR

XDR is a widely used external data representation standard, which is
used to format data between the application data structures and the
transportation data structures. In future applications, several types of
complex data objects will be manipulated [DVB89]. In such systems,
the servers will interact with each other through complex data struc-
tures in the highest level. This requires the underlying communication
subsystem to provide a cheap transportation mechanism for these struc-
tures. The Raidcomm V.I and Raidcomm V.2 did not take into account
such high-level communication demands. The transportation data struc-
tures are usually bounded linear buffers. Data must be coded into the
sending buffers before transfer, and must be decoded from the receiv-
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ing buffers to application data space. Such formatting can become a

major bottleneck in the system.

Although the physical media of inter-machine communication en-

forces such formatting, it is never a necessity in local communication
between two processes in the same machine. For example, we can

build a local communication channel without such multiple encoding/

decoding, if we make full use of the shared memory. Unlike lower-
level buffer-based communication resources, which are one-dimen-
sional, and can usually be only accessed as a whole, the shared

memory segments are multi-dimensional randomly addressed storage

resources just like the main memory. Moreover, because the transfer
of large complex data object is often limited to the servers in the same

site, we can expect better performance if we eliminate XDR in the lo-
cal communication.

4.2 Problems with Context Switch

and Scheduling

Scheduling policies in the conventional operating systems do not con-

sider high level relationships that may exist among a group of pro-
cesses. Optimization for response time or throughput at the operating

system level is the driving force in such scheduling policies. This opti-
mization may not be reflected at higher levels. In other words,

conflicts may exist between the optimization criteria at the operating

system and at the application levels. For example, we observed the fol-
lowing scenario in Raid: Since the concurrency controller (CC) is
CPU-intensive, Unix will decrease its scheduling priority after some

time. This forces CC to give up the CPU after processing only one

message, even though its time slice has not expired yet. This reduces

the performance of the whole system. In transaction processing sys-

tems, we are interested in the response time and throughput not for in-
dividual processes but for the whole system of processes. The underþ-
ing operating system should provide some way for the application to

negotiate the CPU allocation.
Few operating systems can let the high-level application share this

monopolized power. Context switches are often caused by preemptive

events. The sender and the receiver process have to collaborate under

some high-level mechanism provided by the operating system to have
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the control transferred. In Unix, for example, the receiver process of-
ten goes to sleep to lower its priority. It is then put in a list and wait
for the event that will cause the CPU to be granted to it. Samples of
such events areIlO, signals, etc. However, these kinds of control
passing facilities are expensive.

The use of shared resources (such as shared memory segment)
raises the issue of synchronization. The synchronization is enforced by
operating systems in the form of entities such as critical resources,
semaphores, etc. However, the context switching caused by such types
of synchronization is expensive.

We conducted a series of experiments on context switches. We
used the idea of direct control passing in the experiments. It is a sys-
tem call that allows to specify the CPU explicitly the name of the pro-
cess that should run next. This special kind of scheduling is very simi-
lar to the hand-off scheduling in Mach [Bla90], except that we have
extended it to schedule the ordinary processes in Unix. Figure 9 shows
the results of our experiments. The measurements are for the round
trip context switch times between two processes. The round trip of
context switch is formed in the following way: process A makes a sys-
tem call to relinquish the CPU and to cause process B to run, then
process B does nothing but invokes a corresponding system call that
gives up the CPU immediately and causes the control to be switched
back to process A. V/e measured the real time of such a round trip in
the enhanced SunOS caused by the original semaphore P-V operation
(a system V Unix IPC facility), the original signal (srcro) passing,
and the newly added direct control passing mechanism. We note from

0 500 1000 1500 2000 2500 3000
Context switch round trip time (¡rs)

Figure 9. The performance of context switch
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the figure that the context switch overhead can be reduced if we adopt

a light-weight scheduling scheme, such as the direct control passing

mechanism.

4.3 Desígn of RaidComm Version 3

The basic design behind Raidcomm V.3 is a direct result of the prob-

lems we experienced with Raidcomm V.2, and the observations we

made during the evaluation of its performance. The implementation of
this version of the Raid communication subsystem is for the communi-

cation local to one machine. It is based on a combination of the direct

control passing mechanism and the shared memory. The implementa-

tion is also based on SunOS. New communication modules will be

added to the kernel.

4.3.1 Structure

Communication takes place in a shared-memory segment between two
servers. Many systems use the shared memory to reduce message

copying, and hence result in a higher data-coupling between two pro-

cesses. However, we use shared memory to eliminate the unnecessary

data conversion.
Figure 10 shows the structure of the design of Raidcomm V.3.

To avoid the unnecessary data coupling, every pair of processes

that communicate has a dedicated segment. rilhen two processes set up

the communication, a memory segment is allocated by the kernel and

attached to the address spaces of both processes.

4.3 .2 Communication Primitives

System calls are provided to open and close a communication channel

between two processes, to send and to receive a message, and to pass

control to a specified process. The send system call writes the message

into the shared communication segment, and passes the control di-
rectly to the receiving process. The receive system call puts the calling
process into a special sleep-for-message state if there is no outstanding
message. The control-passing system call bypasses the Unix scheduling

by putting the specified process into the beginning of the run queue,

even if it has much lower priority. This system call provides a way for
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Figure 10. Local communication based on shared memory

the application processes to balance its needs with the needs of the
rest of the system. In Raidcomm V.3, most of the kernel services in-
volved in sending and receiving a message are either moved to the
user level or bypassed.

4.3 .3 Multicast in a Local Host

When a process sends a message to several processes at the same
time, the message will be copied to the corresponding shared memory
segments, and the control is passed one by one to all the destinations
explicitly, before the sender regains control of the CPU.

4.3.4 Performance

Vy'e conducted a series of experiments to compare the processing costs
for the same set of high-level Raid messages in three different versions
of the Raid Communication software. We measured the CPU times
spent in sending various messages in each version. The messages are
restricted to local communication only. The results of the measure-
ments are shown in Figure 11.

Vy'e can see that the improvement achieved by eliminating data
copying and XDR is remarkable, and the performance is roughly uni-
form for all Raid messages. This is the best that can be expected for a
kernel-based cross-address- space communication facility.

Figure 12 shows that the combination of the shared-memory and
the explicit context switch provides shorter message round trip times.
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For comparison, measurement of UDP sockets and sunos interprocess
communication are included. The peaks of UDP sockets reflect the
special memory allocation policy used by SunOS [MB91b].

4.3.5 Impact of Raidcornm V.3 on Raid

While the system time was reduced in Raidcomm V.2, the user time is
reduced significantly in Raidcomm V.3. We ran the same benchmark
(see section 1.3) in one-site DebitCredit databases. Figure shows the
saving in the user time caused by the further reduction in data copying
and the efimination of XDR.
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5. Adapnble Approach
to C ommunic ation Soft ware

While we used the Raidcomm V.2 in the local area environment and

reduced the overhead in the system time by up to 7OVo, we can adopt
Raidcomm V.3 in a single-site configuration, which can reduce the
overhead in the user time by up to 30Vo. One way to support the dif-
ferent kinds of underþing communication media and benefit from their
characteristics is to integrate different communication models adopted

in different versions of Raid communication subsystems under a

unified interface. We are trying to build a new communication subsys-

tem in our adaptable approach that can adjust itself based on the needs

of the application.

5.1 Structural Details

The integrated communication facility takes into account the commu-
nication via various channels, including the communication through
the main memory, through the local area network, and through the
wide area networks (the Internet). It is based on the shared memory
(among the processes and the kernel), an address-to-channel resolution
mechanism, and a lazy data conversion strategy. We optimize the most

common cases.

Processes communicate through channels. A channel is a logic
abstraction of a lower level communication scheme. There can be

more than one channel in the whole system. A message will be sent

through one of them, based on the result of the (destination) address-

to-channel resolution. There are three kinds of mechanisms used in
Raid communication subsystems. Raidcomm V.1 uses the general

INET (Unix communication facility based on Internet protocol family)
model, Raidcomm V.3 adopts the SE protocol, and Raidcomm V.3 em-
ploys the SM (shared memory local IPC) facilities. Each of them
forms a channel in the integrated system.

In the SM scheme, the communication activity is local (inside the
machine). To send a message through an SM channel, the sender

writes the message in the shared memory segment and lets the kernel
pass the control to the receiver process directly. In the SE scheme, the
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data transmission involves the Ethernet. The sender puts the messages
in a local port and invokes a system call to send the messages directly
to the Ethernet using the SE protocol. The kernel on the receiving site
gets the Ethernet packet, places the message in the destination port in
the receiver host, and activates the receiver process. So the channel in
this scheme can be considered as from one kernel to another kernel
via the Ethernet. In the INET scheme, the messages can go to any-
where in the Internet. A special INET daemon is used to send and re-
ceived the Internet datagrams carrying Raid messages. The communi-
cation between the local INET daemon and the sender/receiver process
is through shared memory. V/hen sending a message, the sender puts
it in the port, and passes the control to the daemon. The daemon will
send the message to its remote counterpart using the UDPiIP protocol.
After the receipt of the message by the destination INET daemon, it
will be placed into a port for the receiver to process. In this scheme
the channel can be considered from one INET daemon to another
INET daemon via the Internet.

5.2 Data Formatting

When high-level complex data objects are sent as messages, they are
formatted only if the underþing communication medium cannot pass

them directly. Different channels have different capabilities to transmit
data in different data format. For example, SM is a two-dimensional
random addressed storage just like the main memory. A complex data
structure can be transmitted in SM without any conversion. To send a

message through a SM channel, the sender process simply puts the
data object there and passes the pointer to the receiver. The receiver
gets the message as it is sent. However, data formatting is unavoidable
in other channels. The SE channel is based on the low level ethernet
packet, and the INET channel is based on the Internet datagram. Both
of them can be viewed as one-dimension linear buffers. A complex
data structure must be formatted first into the lower level buffers be-
fore transmitting, and must be converted back after it arrives in the
receiving port. Both the SE channel and the INET channel use XDR.
One more level LDG (long datagram) is placed in the INET channel
below the XDR level (see section 2.1).
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5.3 Address Resolution and Adaptability

The address resolution in the adaptable communication system is criti-
cal. The format of a Raid address has been given in section 1.2. There

are two naming translation schemes. One is the Raid address to chan-

nel (and network address) translation, and the other is the Raid ad-

dress to server (process id) translation. Both translations are performed

with table look-up. The tables are stored in the shared memory.

Since Raid is an adaptable distributed system [8R89], it will re-

structure itself in response to failures or changing performance re-

quirements. To support such adaptability in Raid, the new communi-

cation subsystem is reconfigurable. When adding, removing, or
migrating a Raid server or a whole Raid site to meet the changes in
the communication needs or the performance requirements, the com-

munication subsystem can adjust itself.

6. Related Work

The requirements of a communication subqystem to support a dis-

tributed transaction processing system have been studied in [Spe86,

Duc89, MB9lal. Many ongoing research paradigms that have con-

tributed to this f,eld are surveyed in [MB9la]. Eff,cient local and re-

mote IPC has been investigated in various distributed computing sys-

tems such as V [Che88], Mach [Ras86], Amoeba [TvRvS+9O], Sprite

[OCD+88], ¡-kernel IPHOR9O], Chorus [RAA+88] among many oth-

ers. We have studied the performance implications of many of these

ideas in the development of the various versions of the Raid system.

Local IPC. The interprocess communication confined inside one ma-

chine is a significant activity in the transaction processing of a local

area network based or a wide area network based distributed system

tMBglbl. Cross-address space communication has been proposed to

increase system modularity, and extensibility. Kernel-level communi-

cation support has been discussed and evaluated in [Ber90]. It pro-

poses a Ligþtweigþt Remote Procedure call (LRPC) that is a kernel-

based communication facility designed and optimized for the

communication between address Spaces on the same machine. It com-
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bines the control transfer and the communication model of capability-
based systems with the programming semantics and the large-grained
protection model of RPC, to provide better performance [Ber90].
URPC (User-level Remote Procedure Call) moves thread management
and the communication out of the kernel into each application's ad-
dress space, eliminating the role of the kernel as an interprocess com-
munication intermediary. It reduces the communication cost to 93 mi-
croseconds, which is nearly the lower bound [Ber90].

Remote communication. Recent development in distributed operating
systems provides more efficient remote communication techniques for
transaction processing. Many message-based operating systems provide
the capability to send messages reliably to processes executing on any
host in the network [MB91a]. Under the argument that the kernel
should be simple to be efficient, many systems use the "micro-kernel"
approach and implement many communication facilities outside kernel.
Others believe that the high-level functionality can be pushed into the
kernel to improve the performance at the cost of reduced flexibility. In
the V system, a simple and fast message passing facility has been used
as one of its fundamental building blocks. Interprocess communication
in Mach is optimized for local case inside the same host by virtual
memory techniques. Most of the key features in Amoeba are imple-
mented as user processes; its remote communication is extremely
efficient. In network operating system Sprite, the interprocess commu-
nication is implemented through the pseudo-device mechanism. RPC
in ¡-kernel is implemented at the kernel level and high performance is
achieved.

Communication protocol. Communication protocols address the im-
portant issues involved in the distributed processing of transactions,
such as routing a message through the interconnected networks, and
the reliable transmission of messages over unreliable networks. A
range of protocols exists that vary in their reliability and efficiency.
Cheap but unreliable datagram protocols such as IP are used to build
up more reliable (and more expensive) protocols such as virtual circuit
and the request-response protocols. Communication measurements are
proposed and conducted in [PKL90].

The Versatile Message Tiansaction Protocol (VMTP) is a transport
level protocol intended to support the intra-system model of distributed
processing, where page-level file access, remote procedure calls, real-
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time datagrams, and multicasting dominate the communication activi-
ties [Che86]. In order to support the conversations at the user level,

VMTP does not implement virtual circuits. Instead, it provides two fa-

cilities, stable addressing and message transactions, which can be used

to implement the conversations at higher levels. A stable address can

be used in multiple message transactions, as long as it remains valid.

A message transaction is a reliable request-response interaction be-

tween addressable network entities (ports, processes, procedure invo-

cations). Multicasting, datagrams, and forwarding services are pro-

vided as variants of the message transaction mechanism.

The overhead of standard protocols cancels the high communica-

tion speed offered by modern local area network technology. Special-

ized communication protocols for LAN provide the opportunities for
further optimization. Efficient streamlined protocols for high-speed

bulk-data transfer and reliable multicasting schemes for the local area

networks can optimize the resource utilization and reduce the commu-

nication delay. Virtual protocols and layered protocols have been used

in the x-kernel to implement general-purpose yet efficient remote pro-

cedure call protocols [HPAO89]. Virtual protocols are demultiplexers

that route the messages to appropriate lower-level protocols. For ex-

ample, in the Internet environment, a virtual protocol will bypass the

IP protocol for messages originating and ending in the same network.

Layered protocols favor the reuse of the code through the mapping of
a protocol's functional layers into the self-contained software mod-

ules. Communication protocols are implemented by assembling those

modules in a given order. Similar ideas are also used in System V
Unix streams [Rit84].

Broadcast and multicast. Broadcast and multicast are two important

communication activities in the distributed database systems. Chang

[Cha84] introduced a two-phase non-blocking commit protocol using

an atomic broadcast. The support of the atomic broadcasting and the

failure detection within the communication subsystem simplifies data-

base protocols and optimizes the use of the network broadcasting ca-

pabilities. Birman tBJ87l uses a family of reliable multicasting proto-

cols to support the concept offault-tolerant process groups in a
distributed environment. Agreement protocols are used to guarantee

the consistency of the distributed data. These protocols demand expen-

sive exchange of messages among data server processes. The broad-
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casting capabilities of local area networks can be used to avoid unnec-
essary message exchanges [MSM89, KTHB89].

7. Conclusions and Experiences

Communication software is critical in the transaction processing sys-
tems. New applications require that up to more than one thousand
transactions per second must be processed. In some financial institu-
tions, this limit has already been exceeded. The response time for
database transactions used in banks and air-line reservation systems are
expected to be in the order of a hundred milliseconds. The speed of
the CPU alone would not enable us to reach this objective. Communi-
cation time for round trips in the order of several milliseconds with lit-
tle support for multicasting is not acceptable. In addition, the overhead
due to extensive layering, generalizations, and the kernel involvement
can be avoided to streamline IPC. We have identified several commu-
nication services and mechanisms that can make the system efficient.
Separated address spaces can be used to structure a complex transac-
tion processing system. However, such a structuring approach in-
creases cross-address space communication activity in the system.
When using the conventional kernel-based communication channels,
the result is a communication-intensive system. Not only is the number
of messages high but the messages are expensive to process. High in-
teraction among servers also triggers costly context switching activity
in the system, and the underlying operating system should provide spe-
cial scheduling policy that reflects the high-level relationship among
servers. The transfer of a complex data object needs sophisticated com-
munication facilities that take into account the high-level demands. In-
creasing availability through the distribution and the replication of data
demands specialized multicasting mechanisms.

We have shown that the main concern of communication in local
networks is the performance of the local cross-address space commu-
nication mechanism. For a typical transaction, about 90Vo of the com-
munication activity is local. In conventional IPC facilities that feature
the remote/local transparency, the overhead due to the qystem calls
and the context switch is expensive. We addressed this problem in the
design of our new communication facilities. Our first prototype pro-
vides a streamlined interprocess communication service. It uses
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mapped memory between the kernel and the server processes. This al-

leviates in part the demands imposed on the kernel. The use of our

Raidcomm V.2 in Raid results in a reduction of 60-7OVo of the system

time. Context switching activity also diminishes because more mes-

sages can be processed during the same time slice. Raidcomm V.2 has

a straightforward mapping between server addresses and network ad-

dresses. It also exploits the semantics of transaction processing to

provide an efficient multicasting support. Our second prototype com-

bines the shared memory and direct control passing mechanism to

support efficient interprocess communication. By eliminating XDR,

and moving the communication and scheduling out of kernel, the use

of our Raidcomm V.3 in Raid results in a reduction of in the user time

by ll3- Adaptability can be achieved by integrating different schemes

for different environments and changes in the performance require-

ments.
This research has been conducted in the unix operating system en-

vironment. we believe that unix does provide a good benchmark for
experimental study of new ideas in an academic setting. \ù/e believe

the communication technology in the hardware/media is advancing at a

rapid pace. This research along with the related work in industry and

academia contributes to the advances in the software.

In our current model of Raid, multicast addresses are added/

deleted by Raid servers. The RC adds a new multicast address for a

transaction, when it receives the first operation request for that transac-

tion. In normal conditions, the AC deletes the multicast address once

the transaction is committed or aborted. In the presence of failures,

the cc does this job as part of its cleanup procedure. In the future,

we plan to manage the multicasting addresses in the communication

subsystem. This will improve the performance and the transparency in
Raid.

Our work has been conducted in a local area network environ-

ment. \ilide area network transaction processing systems increase the

demands on efficient remote communication. Internetwork-based sys-

tems will require more complex communication support. The multi-
casting scheme of our prototype cannot be used in those cases. Nam-

ing and addressing become more elaborate because of the presence of
different network technologies. Finally, if the system consists of a
large number of nodes, we will need to look for alternative control

flows for the transaction processing. A major objective should be the
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reduction of the number of remote messages that are needed for the
transaction processing. All these are questions that we plan to answer
in the future.

Scheduling policies in conventional operating systems usually do
not consider high level relationships that may exist among a group of
processes. Although direct control passing has been used in our com-
munication model to bypass the kernel scheduling, it was not a clean
solution. \ile find the need to introduce the concept of a system of pro-
cesses as a new operating system abstraction. In the new model, the
scheduling can be done at two levels. At the higher level, the kernel
would schedule systems of processes as atomic entities. Internally, the
scheduling could be done based on internal requirements of each sys-
tem. In particular, it could be based on its communication patterns.
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