
Controversy: The Case For
Multiple Inheritance in C++

Jim Waldo, Hewlett-Packard Co.

ABSTRACT Multiple inheritance is a difficult and com-
plex feature added to C# at release 2.0. Cargill ar-
gues that the addition was a step backward in that the
feature adds complexity to the language without adding
functionality. His basis for the latter half of this claim
is that no example of multiple inheritance has been
given which cannot be rewritten into a functionally
equivalent example which uses single inheritance and
aggregation instead of multiple inheritance.

I examine Cargill's arguments, and then sketch an
example which uses multiple inheritance but which
cannot be rewritten to be functionally equivalent by
using single inheritance and aggregation. I then
distinguish among three forms of inheritance, and
argue that most attempts to give an example of multiple
inheritance have attempted to use the one form which
is the least likely to need that feature.

@ Computing Systems, Vol. 4 . No. 2 . Spring 1991 157



0. Introduction

Cargill has argued [1991] that multiple inheritance in C** compli-
cates the language without adding anything that can be shown to be of
use. He backs up his claim by showing that all existing examples of
the use of multiple inheritance in the current literature can be executed
just as well without using multiple inheritance. His conclusion is that

the evidence to date is that multiple inheritance is not useful in writing
C*i programs. It should not become part of the ANSI C** snndard
before convincing examples of its use are published...

This is not the first time that Cargill has argued that multiple inheri-
tance is not a useful addition to the C# programming language
(other examples of the argument can be found in Cargill 1990a and

Cargill 1990b).
The purpose of this article is threefold. First, I will attempt to

clarify what the argument is by restating what I take Cargill to be say-

ing. I will then sketch an example of a use of multiple inheritance
that I believe does show that the feature is needed in the language to
solve a certain set of problems. Finally, I will try to explain why con-

vincing examples of multiple inheritance have not appeared before.

I . Cargill's Argument

Before attempting to sketch an example of a use of multiple inheri-
tance in C# that could not be programmed in some other way, I
think it would be useful to look at just exactly what Cargill's argument

is. The main argument is basically laid out as having three premises

that lead to the conclusion quoted above. These premises are

l. Multiple inheritance in C# is complicated. It is complicated

to learn, write, and read;

158 Jim waldo



2. Multiple inheritance is not (strictly) needed in C**, i.e., there
is nothing that can be done with the feature that cannot be done
without it;

3. If a feature is complicated and not needed in a language, it
should not be apart ofthat language;

Therefore

4. Multiple inheritance should be removed from C**.
The first of these is stated overtly and is backed up in a section of
Cargill's paper. The second is not stated but is the obvious conclusion
of the other sections of Cargill's paper. The third premise of the ar-
gument is a general principle that is never overtly stated but is clearþ
argued for in the section of Cargill's paper on Programming Language
Design.

Certainly, the main argument is valid; that is, if (1) through (3)

are true, we must accept the conclusion. V/hile the position that mul-
tiple inheritance is complicated to learn, write, and read could be dis-
puted, I believe that if that were the only weakness of the argument I
would probably side with Cargill. I will, therefore, accept (1) as true,
and turn my attention to (2) and (3).

The second premise is itself the conclusion of an argument that has

the form

5. No one has given a good reason for multiple inheritance in
c**;

6. If no one has shown a reason to include a feature in a
programming language, then that feature is not needed by the
language;

Therefore,

7. Multiple inheritance is not needed in C**;
Statement (5) is proved by exhaustion. Cargill goes through the

various examples and arguments given for including multiple inheri-
tance in C# and shows that the arguments are either flawed or the
examples could be accomplished more easily using single inheritance
and aggregation. (6) is again not explicitly stated, but seems to be one
allied with (3) as a general principle of programming language design
that Cargill tries to express in his section on that activity.

Having misspent my youth as a logician, I feel compelled to point
out that the arguments that Cargill is putting forward are perilously

Controversy: The Case for Muttipte Inheritance in C# 159



close to having the form of the ad ignoratium, or appeal to ignorance,
fallacy, in which one concludes that a proposition is false because no
one has shown it to be true. However, I take Cargill to be making a
more interesting claim. Rather than claiming that multiple inheritance
is not and never could be useful in writing a C# program, he has

made the weaker claim that no one has shown it to be useful. The in-
teresting part of his claim is that he moves from that proposition to the
claim that the feature should not be part of the language.

The real unstated principle behind Cargill's attacks on multiple in-
heritance in C# appears to be a sort of Occam's razor applied to
programming languages. Occam's tazor, applied to metaphysics,
states that one should not multiply entities needlessly, and is generally
interpreted as holding that simpler systems are to be preferred to more
complex ones. Applied to programming languages, this interpretation
would hold that less is more, and that languages should only be made

more complex if the added complexity allows one to do something
with the language that could not be done without the feature being
added.

While this principle sounds like one that we would all accept with-
out question, I believe that it is far less absolute than most of us would
like to admit. For example, I have seen introductory programming
students struggle with the for loop construction in C. The construc-
tion is actually quite complex, having non-trivial entry and exit condi-
tions, variable scoping conditions, and genuinely complex rules for
determining the state of variables when the loop is terminated in some

irregular fashion. Further, anything that can be done with a for loop
can be done with a while loop. Therefore, by the principle of sim-
plicity that I am ascribing to Cargill, the for loop is a genuine candi-
date for being banished from the ANSI C# standard for exactly the
same reasons as multiple inheritance. I take this to be an argument
that is more damaging to the principle stated in (6) than to the for
loop construction.

\ilhether Cargill's argument carries the logical weight it should,
the fact remains that it is somewhat pluzzling that no one seems to be

able to give an example that uses multiple inheritance in C# that is
both convincing and understandable. One reason for this might well be

that multiple inheritance is not the sort of thing that lends itself to ex-

amples. The real use of multiple inheritance is found in large systems,

not small examples.

160 Jim waldo



However, in the next section I will attempt to sketch an example

that does require the use of multiple inheritance. The example will not

be a full, compilable chunk of C# but rather a part of a much larger

system. It will also appear to be a rather odd use of inheritance, hav-

ing little to do with the inheritance most C# programmers are used

to. The reasons for this will be discussed in the last section of this
paper.

2. An Example of Multiple Inheritance

Before laying out some class definitions, let me begin by giving a brief
explanation of the purpose of the example. In what follows, I will
sketch a system with three sorts of objects. One is the usual C# ob-
ject, which exists when it is created and ceases to exist when it is freed
(if it was created by a call to new) or when it goes out of scope (if it
was created by entry into a scope).

The second sort of object is like the first but exists from one run
of a program to another; it is a persistent object. In this design, persis-

tence is treated as a type.r The notion of persistence being talked
about is not terribly sophisticated, only allowing the saving of state

into some entity in a file system. Indeed, we will not really talk about

how the persistence works, appealing to magic in the details of the ac-

tual mechanism for saving and restoring the state.

The third sort of object can be thought of as a remote pointer to
the first or second sort of object; it is what I will refer to as a surro-
gate for an object that exists in a different address space (perhaps on a
different machine). The purpose of this object is to cloak the differ-
ence between local and remote objects. In the discussion of remote-
ness, I will assume that there is some underþing RPC mechanism that
allows the sending of a message to an object in a different address

space. While this is an interesting subject, it is not the subject of this
paper, and so the details of how this is done will not be discussed

here.2

1. I realize that this is not the only way to deal with persistence. Others, such as Atwood

[private discussion], argue that the best approach to persistence is to consider it a storage

Class, analogous to automatic. This debate is only slightly relevant to the current debate,

and would require a change in the language. The example outlined¿bove may take the
wrong approaõh, but can be implemented within the current deñnition ofthe language.

2. This is not a particularþ novel approach to remote objects. See, for example, [Tiemann
19881, lSeligèr 1990], or [Martin l99l].

Controversy: The Case for Muttipte Inheritance in C# 161



The purpose of this system is to isolate the programmer from hav-
ing to distinguish between purely local objects, persistent objects, and
remote objects. Such isolation is not always possible; there will be
times that the programmer will need to know what kind of object is
being manþlated. But the overall goal is to allow the same code to
manþlate all three.

We start, then, with a class definition for a persistent object, which
will look something like the following:

class persist
t
protected:

char *where,

p.rlt i" 
'virtual saveO : 0;

virtual restoreO :0;
Ì

This is, admittedly, a rather odd class definition, consisting of a string
(which we can assume is the name of the file in which the persistent
state is stored) and two virtual functions, which are not implemented
at this level. There might be other data (offsets into the persistent file,
whatever) that are used to help in the implementation, but exactly
what such data would be is not of interest to this example. This class
doesn't look particularþ useful, and indeed in its current state it is
not. But bear with me.

Equally useless looking is the second class I will define, which is
the base class for surrogates to remote objects:

class remote
{
protected:

obj id_t obj ect,

ì
J¡

This class contains an objid-t, which is used to locate and identify
the object for which this is a surrogate. The exact nature of this type

162 Jim rù/aldo



would depend on the underlying RPC system used. Note that the class

contains no public data or function members. By itself, this is not a

very interesting class.
To get something that is of some interest, we need a class that

does something. For the purpose of this example, even this class will
not be very interesting-I will use the old standard of an employee
class. Employees will be cbaracterized by an employee name and an
employee number. Again, remember that all I am trying to do is to
sketch an example of multiple inheritance, not an interesting or useful
example.

While the employee class may not be very interesting, the way I
get to the definition of the class is not the standard way. I begin by
defining what I will call the employee interface class, which looks like:

class enployee_if
{

publ ie:
virtual
char*

get_nane O - 0;
virtual
void

set_name (

char *new_name

):0;
virtual
int

get_numo - 0;
virtual
void

set_nun (

int new_num
) : 0;

ì.
J,

The reason for calling this the employee interface class is now clear.
All this class does is define the set of calls that can be made on classes

that derive from it-it establishes an interface between the rest of the
world and objects that are of this class. However, there is no data as-

sociated with instances of this class, and there is no implementation of
any of the functions in the interface supplied by this class.

Now I can define some classes that actually do some work. As
might be expected, I will define three classes of employee objects. The

Controversy: The Case for Muttiple Inheritance in C# 163



first will be just like a standard C** object, in that it will be within a

particular address space and will not persist beyond the time the pro-
gram is running. I will call this class the temporary employee (in all
senses of the term):

class enployee_t :

public ernployee_if
{

char *name;
int number;

public:
employee_if O ;
'employee_if O ;

ì..
l¡

This class contains only two functions in addition to those that were
declared in the employee-if class; a constructor and a destructor for
the instances of the class3. The implementation of the class will, of
course, have to supply code for all of the virtual functions in the

employee-if class.

The second class we will define is our first use of multiple inheri-
tance. This class defines the set of persistent instances of employees.

These are instances that can be written to long term storage and read

back from that store. The idea for such objects is that they are only re-
stored when needed; if they are never accessed they are never re-
stored. Such a class would be defined as

class employee_persist :

public employee_if,
public persist

{
employee_t *local_inst;

public:
employee_t (

ehar *in_store
);-enployee_t O ;ì.

l¡

3. Of course, if this were a real chunk of code rather than an example, there would be
other functions declared, such as a copy constructor and assignment function. While such
calls would be needed, they are not needed to show the requirement for multiple inheri-
tance. Making this into a genuinely useful C# class is an exercise left to the reader.

164 Jim v/aldo



The persistent employee class contains all of the functions in the em-
ployee interface class and the save and restore functions of the per-
sistent class. It also contains its own constructor and destructor.
Implementations of all of these functions will need to be supplied; no
implementation is or can be inherited.

The idea behind the employee-persist class is that the implemen-
tation of all of the functions inherited from the employee-if class

will first look at the localinst pointer. If that pointer is non-null, no
restoration from persistent store is needed, and the function simply
calls the same function in the local instance. If the pointer is null, the
restore function is called. This function will bring in the employee
data from the appropriate file and construct a local instance, with a

pointer to that instance put into the localinst private data member.
V/hen this restoration is complete, the implementation of the function
on the local instance is called.

The destructor for the persistent version of the employee should
call the save function that will pickle the current state of the
localinst and save it to persistent storage. Other functions might also

call the save function; for example, if the class is being used in a situ-
ation where it would be bad to lose any changes, the save function
could be called as part of the implementation of the set functions that
change the data.

The final part of the example constructs a class of employees that
live, potentially, outside of the address space of the current application
(and perhaps on another machine). The idea for this class is much like
that found in the persistent class; the class structure looks like

class employee_remote :

public employee_if,
public remote

{
public:

employee_remote (

obj id_t far_emp
);

-employee_remote O ;ì.
lt

Note that this class adds no new functions to the employee interface
class other than a constructor and a destructor (like the local employee
case) and adds no new data members.

Controversy: The Case for Muttiple Inheritance in C# 165



The virtual functions inherited from the employee-if class would
be implemented in the employee--remote class as RPC calls to some

actual employee object. That object would receive the RPC call would
be determined by the object identifier that is the only data member of
instances of this class, that was assigned as part of the constructor for
the object.

One of the ways in which this example differs from others given of
multiple inheritance in C# is that none of the derived classes listed
above inherit any code from a base class. Indeed, the functions in the
base classes are all explicitly defined as empty.

This is not an artifact of the example being merely sketched. No
code can be given to implement the persistent base class, as the two
functions that constitute that class are dependent on the data that is
added by the derivation. There are no functions to implement in the
remote class; that class simply provides a way of storing the data

needed to give the underlying RPC a handle to contact a remote ob-
ject. The employerif class implements no functions, since that class

has no data associated with it.
Sharing code among these classes was not the reason for construct-

ing this particular class hierarchy. The reason for this hierarchy is to
share code that manipul.ates instances of these classes. With the above

hierarchy, for example, I can write a single prinLernployee-rtame
function, that will work on all three kinds of employee objects: local,
persistent, and remote. In the same way, we can pass lists of pointers
to employee-if objects to functions that sort by name or employee
number and then list the names of the employees in that order. In
short, we have provided a way of writing code that handles three
kinds of employees at the same time when the differences between

those employees are hidden (as it should be) by the encapsulation of-
fered by the employerif abstraction.

In the same way, I could write routines that work on all persistent

objects, whether they be employee objects or, say, inventory objects.
These could be ways to force save the objects, or ways or doing batch
restores. The main point is that whatever else these objects are, there
are certain functions that require only that they be persistent. For
those functions, being derived from the persist class is enough to al-
low the object to be passed into and be manþlated by them.

It is this reuse of code that manþlates the objects that keeps the
example from being reducible by the Cargillian technique of aggrega-

166 Jim waldo



tion to an equivalent example that uses single inheritance. The signa-
ture of a function that prints all employee names would be

void
print_emp_name (

enployee_if *tol¡rint
);

to allow the printing of names of local,
ployees. The signature of a routine that
tent object would be something like

void
force_save (

persist *to_save
);

persistent, and remote em-
forced the saving of a persis-

To allow a single object to have its address passed into either routine
requires that we use multiple inheritance.

3. Multiple Inheritance for Multiple
Inheritances

What is really going on in this example is that we are using differ-
ent kinds of inheritance for different purposes. The C# language
doesn't help us here, for all inheritance in C# appears to be of a
single kind-a derived class inherits from its base class, and that's all
there is to it. Unfortunately, this hides a distinction between at least
three different kinds of inheritance, all of which look like they are
simple cases of a class deriving from another class.

In the C# literature, most examples of inheritance are examples
of what I will call implementation inheritance. Implementation inheri-
tance is chancterized as the relationship a derived class has with its
base class when some of the functions of the derived class are dele-
gated to functions that have been implemented in the base class. The
derived class inherits code from the base class.

This sort of inheritance is one that most programmers from outside
the object-oriented paradigm can immediately appreciate. It's easy to
see the advantages implementation inheritance gives you, because you
can produce a new object without writing very much code. So it isn't

Controversy: The Case for Multiple Inheritance in C# 167



surprising that most of the books that attempt to teach C# center on

this sort of inheritance.
Unfortunately, implementation inheritance is probably the most

difficult kind of inheritance to use if one wishes to give an example in
which multiple inheritance is needed. The actual implementation of
some code is tied rather closely to the particulars of some class, and

can usually only be reused if the class derived from the base class dif-
fers only in a fairly small way from the original class. Put another

way, implementation inheritance works well only in cases when the

derived class is a subset of the base class, i.e., it differs from the base

class only by being more restrictive. The implementation of functions
in the base class that are irrelevant to the restriction can then be

reused (inherited), because the things that make the derived class dif-
ferent from the base are irrelevant to those implementations.

The subset relation holding between a derived class and its base

class is a characteristic of single inheritance. Multiple inheritance al-
lows (and, in fact, generally requires) that the derived class be a su-

perset of any of its base classes. In a single inheritance system, if A is
derived from B you can be sure that A is just a more restrictive kind
of B. In a multiple inheritance system, if A is derived from B and C
you cannot be sure that A is just a more restrictive kind of B. In fact,

you know that it isn't-it is both a B and a C. So it is not surprising
that any code implemented for something that is only a B would not
work well for something that is both a B and a C.

A second sort of inheritance is the reason for the employee-if
class in the example. This sort of inheritance is often called interface

inheritancea, because the reason for using this sort of inheritance is to
allow the same functional interface to be presented by all objects that
are members of classes that derive from that class.

The employee-if class can be thought of as a class that exists
purely for the purpose of interface inheritance. It has no data associ-

ated with it, and there is no implementation of any of the functions
that are the only real meat of the class. In effect, the class is a contract
between any class that derives off of it and the rest of the world, say-

ing that since the class derives off of the employee-if class, it thereby

contracts to allow the calling of any and all of those functions.

4. There are a number of authors who identify this sort of inheritance with this name; see,

for example, Dewhurst and Stark [1989].

168 Jim waldo



The final kind of inheritance is what I will label data inheritance;
it is the kind of inheritance used in the remote class in the example.
This is sort of the flip-side of interface inheritance-while the latter
gives functional interfaces without any data or implementation, the
pure case of data inheritance allows the derivation of a new class that
shares only data members with no implication that the functions that
can be called on instances of such a derived class or the behavior of
those instances will have anything in common with the base. In our
example, the remote class was defined only so that all remote objects,
no matter what their behavior or interface, could inherit the same data
layout, that in turn would allow the RPC mechanism to work.

These last two sorts of inheritance, interface inheritance and data
inheritance, are far more likely than implementation inheritance to re-
quire support for multiple inheritance in the language. Each of these is
of limited use by itself, but gains power when allowed to be part of an
inheritance graph. These other sorts of inheritance allow the
specification of relationships between classes of objects that are more
subtle than those that are given by the use of implementation inheri-
tance, and allow the same code to use different sorts of objects based
on their similarities.

The reason that no examples of multiple inheritance have been
given thus far has much to do with the obvious power of implementa-
tion inheritance. Implementation inheritance is an obvious win, for it
allows new classes of objects to be created that only need to have code
written for a small part of their functionality. Showing examples of
implementation inheritance is a good way to win over programmers
who are unfamiliar with object oriented programming to the paradigm,
for they see that they can do more with less code.

No such obvious savings are seen when interface or data inheri-
tance is used. It is only when looking at the larger system, the part of
the system that uses the objects of the classes that are created, that the
payoff of these other kinds of inheritance become obvious. Since this
payoff requires seeing the use of multiple inheritance within the con-
text of a full system, and since the gains in such systems come about
only when the systems themselves become large or complex, it is dif-
ficult to give examples that are both easily understood and obviously
useful that use these other forms of inheritance.

Once we understand this, it is not surprising that no simple exam-
ple of multiple inheritance has been given showing a need for the fea-

Controversy: The Case for Multipte Inheritance in C# 169



ture. Howevero to argue that because an example is lacking the feature
should not be put into the language misses the distinction between the
various forms of inheritance. Accepting such an argument is tanta-
mount to saying that the language should contain only implementation
inheritance. This would weaken the language significantþ.

To say that a language feature should be taken out if no one can
provide a simple example of the feature's use is justified if the lan-
guage is being designed to support the construction of examples.
However, for a language like C#, which has been designed for pro-
duction work, the lack of a simple example does not show that the fea-
ture is not needed. It only shows that the feature may not be simple.

170 Jim waldo



References

T.A. Cargill, Does C** Really Need Multiple Inheritance, proceedings of
the USENIX C# Conference, San Francisco, April 1990. (A)

T.A. Cargill, We Must Debate Multiple Inheritance, CI* Journnl, l(2),Fall
leeO. (B)

T.A. Cargill, Controversy: The Case Against Multiple Inheritance in C**,
Computing Systems 4.1 (I99I)

S.C. Dewhurst, K.T. Stark, Programming in C**, prentice Hall, 19g9.

Bruce Martin, The Separation of Interface and Implementation in C#, pro-
ceedings of the USENIX Ci* Conference, Washington, D.C., April
199t.

Robert Seliger, Extended C#, Proceedings of the USENIX C# Confer-
ence, San Francisco, April 1990.

.Michael D. Tiemann, Wrappers: Solving the RPC problem in GNU C#,
Proceedings of the USENIX c# conference, Denver. october l9gg.

freceived Mar. 13, 1991; accepted Mar. 29,lggl]
Permission to copy without fee all or part of this material is granæd provided that the copies are not
made or distributed for direct commercial advantage, the Computing Systems copyright notice and its
date-appear, and notice is given that copying is by permission of the Regents of the University of
California. To copy otherwise, or to republish, rcquires a fee and/or specific permission. See-inside
front cover for details.

Controversy: The Cøse for Multiple Inheritance in C# 17l


