Guest Editorial

Eugene H. Spafford Purdue University

Introduction

Consider some of the qualities we would like our computer sys-
tems to have. We would like them to be fast, have great capacity,
be highly available, resist failures, have good security, be easy to
program, be simple to upgrade and scale, accommodate hetero-
geneity, have good real-time performance, and be easy to operate.
At the same time, we want all these qualities at the lowest possible
cost.

One approach to having a system embodying some of these
qualities is to build larger, faster machines with components of
greater tolerance and massive amounts of support software.
Unfortunately, these approaches have technological limits — they
also tend to be very expensive.

Another approach is to employ more than one processor. It
seems obvious that using five or ten or 100 processors on a prob-
lem (if used appropriately) should solve it faster and provide
greater capacity for load than a single processor would. Having
multiple systems means that we can replicate data and services,
and thus continue our work if some of them fail or become una-
vailable. We can firewall security and failure problems at machine
boundaries and can add more processors whenever we need to
expand or upgrade the overall system. What is perhaps most
important is that we can use many inexpensive processors con-
nected together by low-cost technology — rather than spending mil-
lions of dollars on the latest turbocharged, liquid helium cooled,
super-mega-VLSI nanotechnology single-processor machine that
may be obsolete within a year of its installation.

© Computing Systems, Vol. 3 « No. 1 » Winter 1990



Well, if the solution is so simple, why are most systems single-
processor models with minimal connectivity, or multiprocessor
systems that act like uniprocessors? It is because this approach
raises a new set of challenging problems: consistency of distri-
buted and replicated data, synchronization, load balancing, data
and protocol heterogeneity, user interface complexities, and more.
These are difficult not only because they admit no ready solutions,
but because some of them have such subtle and far-reaching
implications it is not even clear what the exact nature of the prob-
lems may be.

For the past two decades, researchers in academia and indus-
try have tried to solve these problems. Progress has been made in
some areas, but problems remain. Sometimes, solutions to one
problem lead to a new set of difficulties that need to be addressed.
For instance, availability can be enhanced by replicating data at
multiple sites in a distributed system, but this introduces prob-
lems in maintaining the consistency of that data.

Still, despite the setbacks, researchers continue to try to build
systems of multiple processors, whether tightly coupled across a
high-speed bus or loosely connected over transcontinental network
links. The interest persists because we still want those fast,
powerful, flexible, reliable computer systems. If such a system is
ever made practical and effective, many people will be willing to
part with large sums of money to have one of their own.

Thus, there has been considerable research on multiprocessor
systems over the past 20 years, and especially in the last decade.
Yet, despite the efforts in these areas by hundreds of researchers,
we have seen only a few dozen operational research or commercial
systems based on cooperating processors; the problems involved
in building practical systems are formidable.

Contributing to the difficulty of building distributed and mul-
tiprocessor systems is the lack of information. There is no lack of
information on theory or design ideas, as can be seen by reading
the journals and conference proceedings that cover the area.

There is, unfortunately, very little published about the underlying
experiences and design decisions that go into building these sys-
tems. As someone who designed and built an experimental distri-
buted system, I can think of many complex decisions and prob-
lems encountered during the process that must be common to

Eugene H. Spafford



similar efforts, but that have not appeared in sources accessible to
the community.

How do you debug an experimental distributed system? What
language is best to use? How do you manage revision control for
multiple architectures? What do you do to observe and manage
messages between processes? How do you optimize performance?
How do you define performance in such a system? How do you
compare designs? What tools are available to aid in the construc-
tion and evaluation of such systems? Do you build on top of an
existing system and inherit some of its difficulties, or do you go to
the trouble of building on the bare machine? All these questions,
and more, face those who design and implement distributed and
multiprocessor systems. Without archival material to reference,
each new project has to address many of the same questions
again.

About this Issue

In late 1988, George Leach of AT&T Paradyne approached the
USENIX Association with the idea of having a workshop devoted
to exchange of information based on experiences with distributed
systems. He also contacted me, and together we organized the
first Workshop on Experiences with Distributed and Multiproces-
sor Systems. The workshop was sponsored by USENIX, and by
the Software Engineering Research Center, an NSF university and
industry cooperative research center co-located at Purdue Univer-
sity and the University of Florida. George also handled the
paperwork to get cooperating sponsorship with the ACM and the
Computer Society of the IEEE.

The workshop was held October 5-6, 1989, in Ft. Lauderdale.
It attracted almost 60 submissions, of which 25 were selected for
presentation. Over 120 people attended the workshop, and their
comments were so positive that we decided to share some of the
material with a wider audience - thus, this special issue of Com-
puting Systems. We also will hold the event again, in symposium
format, in Atlanta, Georgia in March 1991,

Of the eight articles receiving the highest evaluations by the
program committee and the most comments from the attendees,

Guest Editorial



one was about material already described in a Computing Systems
article (““Chorus Distributed Operating Systems,” 1(4), Fall 1988),
one had already been submitted to Computing Systems (“SOS: An
Object-Oriented Operating System,” 2(4), Fall 1989), and one had
been submitted to another journal. The remaining five were
revised and appear in this issue.

The Papers

The papers are presented in alphabetical order, by name of the
system. The first is on the Clouds distributed system. In it, Par-
tha Dasgupta, Ray Chen, and others in the Clouds group at Geor-
gia Tech describe experiences with the first Clouds prototype that
influenced the design of the second-generation kernel, Ra.

The second paper, by James Alberi and Marc Pucci, describes
some of the unique features of the Dune experimental distributed
system built at Bell Communications Research (Bellcore). They
describe how they have designed interprocessor communication to
be efficient over a wide range of interconnection technologies.

The third paper is by Joseph Boykin and Alan Langerman at
Encore Computer Corporation. It describes how they went about
parallelizing parts of the Mach operating system without having to
reimplement major portions of code. They describe the philoso-
phy behind their changes as well as analyze the parallelized
system’s performance.

The fourth paper, by Michael Scott, Tom LeBlanc, Brian
Marsh, and others at the University of Rochester, describes some
of the decisions and constraints affecting implementation of the
Psyche parallel system. Their paper provides some insights into
the issues that must be addressed when developing an operating
system for large, shared memory multiprocessors.

In the final paper, Henry Massalin and Calton Pu of Columbia
University describe a scheduling mechanism they have developed
for their Synthesis experimental system (cf. Computing Systems,
1(1), Winter 1988, “The Synthesis Kernel””). Although not
specifically about a multiprocessor system, the paper provides
some insight into alternative scheduling methods that could be
used with such systems.

Eugene H. Spafford



Acknowledgments

My thanks to the members of the workshop program committee.
The task of reviewing the papers was complicated by the unex-
pectedly large number of submissions, but the committee’s efforts
ensured an interesting workshop, excerpts of which appear in this
special issue. The program committee consisted of: Bharat Bhar-
gava, Joseph Boykin, Rob Kolstad, George Leach, Darrell Long,
James Mankovich, Eugene Miya, David Pitts, and myself. Thanks
also to Peter Salus, Ellie Young, Judy DesHarnais, and everyone
at USENIX, and to Elizabeth Northern and Shirley Shrum at the
SERC for their assistance in making the workshop a reality.

Journals are only as good as both the authors and reviewers
involved. Even if we can start from the most exceptional papers,
it requires patient, detailed examination by reviewers to help
shape an issue. The reviewers for this special issue contributed
many insightful comments about the submitted papers. Their
feedback was helpful to the authors (and to me), and all the
papers appearing here include some changes suggested by them.
Each paper was examined by at least three people, and I am grate-
ful for all the time and effort they put into their reviews:

Brian Bershad (University of Washington),

Bharat Bhargava (Purdue University),

Kenneth Birman (Cornell University),

Raphael Finkel (University of Kentucky),

James Griffeon (Purdue University),

Kurt Holmquist (AT&T Paradyne),

Chris Kent (Digital Equipment Corporation),

Rob Kolstad (Sun Microsystems),

Hugh Lauer (Kodak Boston Technology Center),
George Leach (AT&T Paradyne),

Darrell Long (University of CA at Santa Cruz),
Enrique Mafla (Purdue University),

Sape Mullender (Centrum voor Wiskunde en Informatica (CWI)),
Mike O’Dell (Bellcore),

Larry Peterson (University of Arizona),

David Pitts (University of Lowell),

Rick Rashid (Carnegie-Mellon University),
Karsten Schwan (Georgia Institute of Technology),
and Michal Young (Purdue University).

Guest Editorial 9



