
Keynote -
A Language and Extensible
Graphic Editor for Music

Tim Thompson AT&T Bell Laboratories

ABSTRACT: Keynote is a programming language
for manipulating and generating music with MIDI-
compatible equipment. It was designed for and in
the style of the UNIX software system, as an
application-specifrc "little language" and interactive
shell. Most obviously used for algorithmic music
composition, Keynote also serves as a more general
utility for non-realtime and realtime MIDI data
manipulation. By adding only a few functions to
the language, a graphic interface was recently
added. This built-in graphic interface did not, how-
ever, build-in any particular user interface. All the
nested pop-up menus and operations of a graphical
music editor have been implemented in the Key-
note language itself. The result is an extensible tool,
similar in spirit to the Lisp-based extensibility of
emacs, easily modified and enhanced by end users.

An early version of this paper was delivered at the USENIX Technical Conference,
Washington, D.C., January 1990.

@ Computing Systems, Vol. 3 . No. 2 . Spring 1990 331

1. Introduction

Most professional and amateur musicians use MIDI (Musical
Instrument Digital Interface) equipment with personal computers
such as the Macintosh and MS-DOS-compatible pCs. MIDI inter-
faces are rarely seen on UNIX systems, but it seems inevitable that
these two disjoint worlds, separately based on wildly successful
standardizations, will soon come together. Already, UNIX systems
with MIDI can be easily and cheaply built with off-the-shelf
hardware (i.e. 803S6-based computers and MpU-compatible inter-
faces). The music software for these systems should not be lim-
ited to a porting of existing PC software - doing so would ignore
the UNIX software tool philosophy and its benefits. Some UNIX
software tools for MIDI have been developed, as specific algo-
rithmic programs ILangston 1986] and small tools IHawley 1986].
Howover, there have been no reports of a power tool that has the
straightforward flexibility of awk and the extensibility of emacs -
Keynote frlls that void.

2. Background and History

A large variety of music software is available for personal comput-
ers, and is often well-written and well-featured. Those features,
however, are usually frxed, and active users of a software package
will inevitably find a need for features that are not already pro-
vided. The editing operations of sequencers (software that allows
the entry, editing, and playback of music) are notorious for this
kind of limitation - there are typically dozens of editing com-
mands, yet a user will easily encounter situations in which a

332 Tim Thompson

desired operation is awkward, difficult, or impossible. Music
software marketed as "algorithmic composition" is, somewhat
ironically, also limited - the algorithms are those of the original
developer, not the user, and although many algorithmic parame-
ters can be changed, the fundamental algorithms are frxed (and
sometimes secret). Of course, all these built-in limitations guaran-
tee a perpetual market for software upgrades - the next version
always has more features and will be available Real Soon Now.

Keynote is designed to avoid such limitations. The UNIX sys-
tem deserves more flexible music software, and one of the best
routes to flexibility is through programmability. Application-
specific "little languages" as championed by Jon Bentley I lgBS]
are a time-honored tradition in UNIX software tools - squeak

[Cardelli & Pike 1985] and pico [Holzmann 1988] are interesting
examples. So, Keynote was originally designed as a musical "little
language" speciflcally tailored for use with MIDI equipment. The
frrst version was quite primitive, but several years of development
(with three iterations in design and implementation) produced a
mature and expressive language. However, it was a language only,
and lacked the graphical interface that makes most commercial
products appealing and convenient to use. The last year has been
spent designing and implementing graphical additions to the
language, and then using those additions to build a user-extensible
music editor. This development path has been extremely
effective; the new graphical interface has been able to leverage its
underlying programmability in numerous and surprising ways, as
examples will show.

3. Related Work

The concept of a programming language specialized for music is
not in itself innovative or unusual. There are many examples in
computer music research ISchottstaedt 1983; Fry 1984; Rodet
19891, but those languages are usually intended for generation of
audio waveforms directly and are not useful for MIDI work. Also,
most of those languages are far from conventional, and although
this is probably a purposeful trait of adventurous research efforts,
it limits their applicability for day-to-day use by normal users.

Keynote - A Language and Extensible Graphic Editor for Music 333

Imagine if awk were patterned after APL instead of C - would it
be anywhere near as popular? The UNIX system itself would not
be as popular if it were not as conventional as it is elegant and
flexible. So, perhaps the most unusual aspect of Keynote as a
music language is its conventionality. That does not belittle its
other unique features, but emphasizes that they are accessible
within a framework that is immediately familiar.

Several languages intended for use with MIDI on personal

computers are being sold commercially [Scholz 1988], and again
they are often unconventional. Some of them [Stokes 1988; Dunn
19881 have interfaces in which the programming language itself is
graphical - the user creates a flow chart of modules and data
paths between them. Although interesting and useful for smaller
applications, these non-textual programming languages quickly
become a limitation when doing larger projects. The language
most similar to Keynote is Ravel [Binkley 1988], a marginally C-
like language whose most distinctive feature is the ability to have
concurrently-executing functions that can interact with each other.
Ravel has many built-in functions for musical manipulation such
as inversion and crescendo. In contrast, the equivalent functions
in Keynote are all implemented as user-defrned functions - the
language is fast and expressive enough to make that practical and
easy.

The graphical editor built out of Keynote is comparable in
editing capability to a typical PC music sequencer. The difference
is that it is completely user-defrned. Every operation can be cus-
tomized to suit individual tastes, and new editing operations are
easily added. Of the many commercial sequencer/editor packages,

only one is currently prog¡ammable - Personal Composer [Miller
l9S9l. Though it has a reputation for being buggy, Personal Com-
poser is also admired for its concept and potential; it is pro-
grammable via macros and a built-in Lisp interpreter. Since Per-
sonal Composer has been available for many years, it is somewhat
surprising that no other extensible products have appeared in that
time. However, people in the industry still realize the power that
user-extensibility holds [Scholz 1989], and are looking forward to
such products. Indeed, music languages are being introduced in
the newest versions of the Cakewalk [Twelve Tone 1989] and Dr.
T's KCS [Dr. T 1989] software. Such "add-on" languages are not

334 Tim Thompson

likely to work as well or be as useful as a language designed into a
product from the beginning. For example, they have lost the
advantage of having the language available as a tool during their
own development. Keynote was a mature language before the
graphic interface was even considered, and the subsequent imple-
mentation of the g¡aphic interface was considerably easier because
so much of its functionality could be done with Keynote code.

The most recent example of similar work is Dmix [Oppenheim
1989], an object-oriented graphical framework for music manipu-
lation. Like Keynote, Dmix has a piano-roll editor with pop-up
menus that allow invocation of user-defined functions, except that
the functions are implemented with precompiled Smalltalk code
blocks called CodeDictionaries. As in Keynote, these functions
are easily modified and extended by the user, and such changes
are immediately available for use without interrupting the current
editing session. Based on Smalltalk, Dmix is less portable than
Keynote, which is written entirely in C.

4. The Language

The Keynote language is designed for convenient and straightfor-
ward expression of musical algorithms. It will be immediately
familiar to users of the UNIX system - it is very similar in style
and features to awk [Aho et al. 1988]. The following is a terse
overview of the "normal" features, to convey some sense of the
language's breadth. Variables need not be declared, and their
types are determined by their use. Data types include integers,
floats, strings, and arrays. There is a full set of control constructs
(except for switch) and operators, including operator-
assignments (+=, *=, etc.) and pre and post forms of the incre-
ment and decrement operators (**, --). Arrays are associative
(i.e. their index values can be strings), and can be passed by refer-
ence to functions. A f or loop can iterate through the index
values of an associative array, and conditional expressions can test
for the inclusion of index values within associative arrays.
#include and #def ine work as in the C pre-processor. The
eval statement allows the language interpreter to be invoked
recursively on string values; this is a particularly powerful feature.

Keynote - A Language and Extensible Graphic Editor for Music 335

User-defrned functions can have arguments and return values of
any type. All variables are global by default, but local variables
can be provided in a function by including them in its defrnition
as extra parameters. When frrst referenced, user-defrned functions
are automatically loaded from library files, with path searching.
Functions can be redefined on-the-fly, a feature that becomes a
great convenience during interactive development.

Naturally, the language has features designed specifically for
manipulation of MIDI data. One of the fundamental data types is

a musical phrase, which can contain isolated note-ons, isolated
note-offs, complete notes (implying a note-on, a note-off, and a
duration), and arbitrary MIDI bytes. The isolated note-ons and
note-offs are only occasionally needed for realtime applications;
most programs manipulate complete notes. Operators work on
musical phrases in a natural fashion:

chord = 'c' | 'e' | 'g'
arPeg='c'+'e'+'g'

The I operator combines phrases in parallel, in this example form-
ing a C major chord, and the + operator combines phrases in
series, in this example forming an arpeggio. The syntax of C
structure elements is used to refer to the attributes (pitch, starting
time, volume,r duration, and channel) of a musical phrase:

chord.pitch += L2
arpeg.tine = 0

Operations are applied independently to all notes in a phrase, so

in this example the pitch of each note in chord would be incre-
mented by 12, transposing the entire phrase up an octave. The
starting time of all notes in arpeg would be set to 0, turning it
into a chord. One of the more expressive phrase operations is
called the select - a phrase followed by a conditional expression
enclosed in braces:

loud = ph { ?.vol) 100 }

l. Keynote mistakenly refers to it as "volume," but it's realþ the MIDI "velocity"
value, which can control more than just volume.

336 Tim Thompson

The conditional expression is evaluated once for each note in the
phrase, using the special token ? to represent the note. The
result is all notes for which the condition is true, so in this exam-
ple the loud phrase would contain all notes in phrase ph whose
volume was greater than 100. To reduce the volume of those
notes within phrase ph:

ph -= Ioud
loud.vo1 -= 10

Ph l= loud

When two phrases are subtracted, the result is all notes from the
first phrase that do not match notes in the second. So, the state-
ments above would remove the loud notes from ph, decrease
their volume, and add them back to ph. This sequence - select-
ing notes, removing them, modifying them, and putting them
back - is a common idiom. The next example shows a special
form of the for loop:

result = " # initialize an enpty phrase
for(ntinph){

nt.tine = ph.length - nt.tine - nt.dur
result l= nt

)
The nt variable in this example would be assigned the value of
each note in phrase ph, one note per loop iteration. The frnal
result would contain the retrograde (time reversal) of the origi-
nal ph phrase. The example below shows how an associative
array can be used as a look-up table, with musical phrases used as
index values:

table['c'1=1.9 ; table['c+']=0.0 # c+ is C sharp
table['d'1=9.U ; table['e-']=0.3 # e- is E flat

strength = 0.0
for(ntinph)

strength += table [nt]
This example builds a table of note strengths, and computes the
total strength ofa phrase by looking up the strength ofeach note.

Keynote - A Language and Extensible Graphic Editor þr Music 337

5. Text Notes

Since a phrase variable can contain arbitrary MIDI data, Keynote
has no problem manipulating system exclusive and other non-note
data. There is also a convention for embedding "text" notes

within a phrase. These special notes can be used as a hook for
embedding Keynote statements within musical phrases, a feature

that has immense potential. For example, here it is used in a
phrase constant to embed a tempo change:

' c, d, e, rrTempo=400000tr, f , g, â'

The user-defrned function that normally plays phrases can
automatically scan for such text notes and schedule appropriate
actions to control the tempo. Text notes have also been used for
embedding phrase expressions within phrases:

' c, d, e, "{reverse (ph)}tt, f , B, â'

Again, the function that plays phrases can automatically scan for
such notes (the initial '{' in their values is a cheap way of distin-
guishing them from other commands), evaluate the expressions
they contain, and incorporate the results into the final phrase

before actually playing it. This is essentially a way of delaying the
evaluation of statements, and forcing them to be evaluated on
demand. Nesting is possible, for example phrase ph in the exam-
ple above could itself contain text notes with phrase expressions.

Text notes are a powerful feature, and will likely frnd other uses.

6. Phrase I/O

In addition to attributes like pitch and channel, phrase variables
have attributes that control I/O of their values:

phl.input = rtjsbach.k't
ph2.output = rrresult.krl

These statements would read the contents of ûle jsbach.k into
phrase phl and write the value of phrase ph2 into frIe result.k.
Normally, I/O such as this is done only once, when the assignment

338 Tim Thompson

statement is executed. However, a feature called "automatic I/O"
can be enabled to trigger I/O whenever a change is detected. For
example, if automatic I/O were active, any subsequent change to
phrase ph2 would cause its value to be immediately re-written to
frle result.k And, any subsequent modifrcation to file jsbach.k
would force it to be re-read into phrase phl. This is an experi-
mental feature - one intended use is to allow concurrent processes
to share a common set of phrases.

The . input and . output attributes are not restricted to file
I/O; if their value begins with | (the pipe symbol), it is interpreted
as a command to which output is written or from which input is
read. A value of " | ,' by itself represents standard input or out-
put. This mechanism is convenient for conversions to and from
other formats:

phS.input = ill nidifiletokey < phS.nidifile'r
ph4.output = rrl keytonidifile > Ph4.nidifile'r

Normally, realtime MIDI output is generated directly by the Key-
note interpreter. Some environments, though, hây require a
separate process to control MIDI I/O. The . output attribute can
be used to control that process:

phS.outpu! = rrl keytonidi > /dev/nidi"
A statement such as this could be put into the user-deûned func-
tion that is used to play phrases interactively, making it work as
conveniently as if MIDI output were built into Keynote.

7. Algorithmic Examples

The specialization of the language allows straightforward and
often concise expression of algorithmic transformations - scaling,
reversing, flipping, merging, frltering, etc. This then makes it
easier to build larger, more complex operations. It also makes it
easier to experiment, prototype, and get results quickly - an
important advantage for algorithmic composition, where hearing
the results of an algorithm is an intimate part of the design
process.

Keynote - A Language and Extensible Graphic Editor for Musíc 339

Keynote's simplest uses are one-liners. The following is a
"limiter" that transposes down all notes whose pitch is higher
than some limit:

key -c'p.input=" ¡ u' a=p{?.pitch>99};
p-=a; a.pitch-=I2i print pla'

The -c option of key (the Keynote interpreter) allows small pro-
grams to be put on the command line. This program reads a
phrase from standard input, picks out all notes whose pitch is
greater than 99, removes those notes from the original phrase,

transposes them, and merges them back into the final result which
is sent to standard output. The next example merges several
scaled copies of a phrase, as illustrated here:

This transformation is implemented by the following code:

scaleng(ph, tn) - scale phrase Ph
to fill tm tine
function scaleng(ph, tm) {

factor = float(tn) /ph.Iength
ph.time {.= factor
ph.dur *= factor
ph.length = tn
return (ph)

)
scamerge(ph, n) - scale ph and merge n times,
see picture
function scanerge(ph, tì., r, k, st, t) {

r = tt

for (k=0; k(n; k++) {
st = (k*ph.tength)/n
t = scaleng(ph, ph.length-st)
t.time += st
r l= t

)

340 Tim Thompson

return (r)
)

Keynote supplies a large library of user-defined functions for fairþ
standard transformations, including the scaleng function above.
This library also serves to provide examples for learning the
language.

Markov chains [Jones 1981] are often used in algorithmic com-
position. One application of this technique uses an existing piece
of music to initialize a transition table, which is then used to gen-

erate a new piece of music that sounds "similar" to the original.
The similarity is dependent on the order of the chain - each event
in an N-th order Markov chain depends on the N-l previous
events. A Keynote program to generate N-th order Markov chains
can be written in only a few dozen lines of code, shown in the
appendix of this paper. This example is greatly simplified by the
use of associative arrays in which the indices are musical phrases.

8. Realtime Use

When Keynote is used as an interactive shell, phrase expressions
are immediately evaluated and played in realtime via MIDI out-
put, allowing convenient experimentation and immediate feedback
of algorithmic results. The realtime capabilities are fairly gen-

eral - whenever MIDI output is being generated, Keynote enters a
mode during which:

. Phrases can be scheduled to be played at specific times.

. User-defined functions can be scheduled for execution at
specifrc times.

. Interrupts can trigger the invocation of user-defrned func-
tions. Interrupts can be generated by the pressing of a con-
sole key, mouse activity, or the arrival of a MIDI input mes-
sage (e.g. the note-on message when a key is depressed).

. Scheduled phrases and functions can have an associated lag,
allowing them to be de-scheduled.

¡ MIDI input can be recorded and assigned to a phrase
variable.

Keynote - A Language and Extensible Graphic Editor for Music 34I

. MIDI input can be merged into the MIDI output.

Mentioned previously, the function that normally "plays"
phrases is user-defined. Some of the actions this function typi-
cally performs are:

. scheduling metronomes, tempo changes, and lvtlpl clocks;

. establishing internrpt actions for controlling playback tempo
from the console keyboard;

. stopping the realtime loop at the end of the played phrase;

. sending an all-notes-off message to prevent "hanging" notes;

o âûd saving the last-played phrase in a global variable for
convenient retrieval.

9. Realtime Examples

An "echo" program - for each note received on MIDI input, echo
it some time later to MIDI output - was the first test for the real-
time capabilities. It was important that something simple to
explain be simple to express. Among other things, this introduced
the requirement that Keynote be able to treat note-ons and note-
offs independently. Here is the complete source for an echo
program:

function echoit(a) {
sched(a,lb) # hard-coded echo tine of 1 beat

)
function echoO {

interrupt (echoit,
realtineo

)

NOTEON I NOTEOFF)

Calling this echo function begins the effect, which continues until
a console key is pressed (the default way in which the realtine
mode is terminated). The echoit function is called whenever a

MIDI note-on or note-off is received. The argument passed to
echoit is the value of the received note, which is then scheduled
for playing one beat later. A more elaborate version allows the

342 Tim Thompson

echo time to be varied and interactively requests the user to
specify (by pressing notes on the MIDI input controller) the region
of notes to be echoed:

function getanoteO {
interrupt (gotanot e, NOTE0FF)

realtimeo
return (Got)

)
function gotanote(a) {

Got = a.pitch
sropo

)
function echoit(a) {

if (a)= Echolow && a (= Echohigh)
sched (a, Echotime) ;

)
function echo(tn) {

if(nargsO!=1){
print "usage : echo (echo-time) It

return
)
print rrPress the 2 notes of the echo range. .rt
Echolow = getanoteo
Echohigh = getanoteo
Echotine = tm
interrupt(echoit,NOTEON I NOTEOFF)

realtine o
)

The getanote function iñ this example shows another (essen-

tially non-realtime) use of the realtime mode - it waits for the
user to press a note on the MIDI keyboard and returns the value.
The gotanote function is called when the first MIDI note is
received, the stop function terminates the realtime mode, and
getanote returns the note's value.

The realtime aspects of Keynote are flexible enough to be used
to build a variety of interactive toys - echo effects, o'auto-

chording," even the trading of improvised riffs between human
and computer. MIDI I/O is interleaved at a low level with the

Keynote - A Language and Extensible Graphic Editor for Music 343

execution of Keynote functions. So, computations can be done in
parallel with and do not disturb the recording of MIDI input and
the playback of previously scheduled phrases. However, since

Keynote is an interpreted language, there is a limit to the amount
of processing that can be done in a given amount of time. For
some realtime applications this limit is not a problem, and for the
others Keynote remains a convenient prototyping tool.

10. The Graphical Interface

Keynote originally had only a textual interface - a programming
language and interactive shell. Musical aþorithms were easily
expressed, but it lacked a convenient graphical interface for
interactive editing. Such an interface could have been added as a

separate process, with Keynote serving in parallel as a programm-
able utility. However, a programmable graphical interface is as

useful and interesting as a programmable music processor, and
there is considerable synergy when combining them. So, graphical
extensions were added to the Keynote language itself.

The frrst step was choosing a style for displaying the music.
The two common alternatives are standard music notation (the

style used in conventional sheet music) and "piano-roll" style (the

horizontal axis is time, the vertical axis is pitch, and notes are

displayed as boxes whose length shows the duration of the note).
Standard music notation is extremely difficult to do well, is sub-
jective and ambiguous, and introduces too many representational
problems unrelated to MIDI data, so Keynote uses the easier and
more straightforward piano-roll style. Standard MIDI Files (an

industry-wide standard) can be used to transfer music from Key-
note to other software packages that can generate standard music
notation.

The new graphical interface looks every bit like a "graphical
editor," but that impression is due as much to the default user-

level customization as it is to the newly added features in the
language itself. The purpose of the language extensions was to
add only: the ability to display musical phrases in piano-roll style,

the ability to manage nested pop-up menus that invoke user-

defined functions, and the ability for mouse activity to trigger the

344 Tim Thompson

invocation of user-defrned functions. The extensions required 15

new built-in functions, falling into three categories:

Display. These functions control the graphics display and the
drawing of phrases and lines.

Mouse. These functions establish the contents of pop-up menus,
and allow mouse actions to trigger the execution of user-
defrned functions.

Efficiency. These functions were actually implemented with user-
level Keynote code when frrst prototyped, but have been
converted to built-in functions to improve interactive per-
formance. Almost half of the new functions are in this
category.

The extensions also include several dozen special global vari-
ables, used to control options and allow access to things like the
current mouse position. These additions to the language were
easily used to build a graphical editor, but they are not restricted
to it. So, the term "graphical interface" is often purposely used to
emphasize the more general nature of the extensions.

1 1. The Graphical Editor

The entire user interface of a graphical music editor has been
implemented with Keynote code. This includes all pop-up menus
and the several dozen editing operations they invoke. The user
interface is centered around the display and editing of a musical
phrase - the Grid variable. The screen is split into two windows:
a textual window in which the normal interactive command inter-
preter is run, and a graphical window in which the Grid phrase is
displayed and edited. The following is an example of the screen
display, with a deeply nested menu item about to be selected.

Keynote - A Language and Extensible Graphic Editor þr Music 345

sheììtoûl - ,/bin/ksh

¡¡tt

nt
TI
ITI

r¡rl
llodeðdj ust

Aeo I ian

Þrlnt Eizõof(Grid)

The left mouse button is used to sweep out groups of notes, select-

ing them for editing; the currently-selected notes are called the
Pick phrase. The right mouse button is used to access nested
pop-up menus of editing operations that transform the notes of
the current Pick. The transformed notes become the new Pick,
so that a sequence of operations can be done quickly without hav-
ing to reselect the notes. The pop-up menus also control window-
ing, confrguration settings, and other activities not related to the
current Pick.

Some of the more interesting operations in the editor show the
flexibility of Keynote's user-programmable graphical interface- A
good example is the "flashing" of notes. When a group of notes is

selected and the PIay menu item is invoked, the notes will flash

off and on as they are played via MIDI output. This could easily

have been built into the language, just as real-time MIDI output is

built into the language. However, recall that Keynote can

schedule the invocation of user-defined functions. So, to proto-
type the flashing notes it was easy to schedule the erasing and

redrawing of individual notes at the appropriate times. Surpris-
ingly, the performance of this prototype (using less than 50 lines
of Keynote code) was perfectly acceptable, eliminating the need to
change the language. More surprisingly, its behavior is even

346 Tim Thompson

better than a built-in solution. Since user-scheduled actions are
interleaved with and give priority to MIDI output, the flashing of
notes in a busy musical passage canlagbehind the MIDI output -
the result is accurate output timing in spite of the flashing notes.
A user-level solution is also more flexíble. One user didn't like
having the notes erased for the entire duration ofeach note - he
wanted just a quick flash. A one-line change gave him the desired
behavior.

Another interesting example is the Step-and-Edit menu
item that lets a user step through the notes of the current pick,
interactively changing their pitch and time. It is a convenient
mechanism because everything is controlled from the mouse; the
right button plays (via MIDI output) the next note, and the left
button plays the previous note. While a note is playing, i.e. while
a mouse button is depressed, the mouse can be moved up and
down, dragging with it the pitch of the note. Each time the pitch
changes, it is reflected both on the graphic display and in the
MIDI output. So, you can go back and forth from note to note
trying different pitch intervals, using only the tnouse. Several con-
sole keys can be pressed for special operations: 'c'will make a
copy of the current note, and 'd' will delete the current note.
Pressing any other console key terminates the effect, so the mouse
can again be used for the normal pop-up menus. This editor-
within-an-editor is not an admirable user interface, but the exam-
ple shows that it is easy to write Keynote code that freely mixes
mouse actions, graphics, console input, and MIDI I/O. With only
a little programming effort, any user can create new editing opera-
tions as complex as the Step-and-Edit; its implementation is
under 100 lines of Keynote code.

Some editing operations can be added with only a single line
of Keynote code. For example, the following statement adds a
menu item to the main pop-up menu that will transpose the
current Pick up an octave:

menu(ilmainu , ttUp an Octavett,
"{MoDIFY(Pick. pitch+=l2)}")

The MODIFY macro hides code that erases the current pick and
redraws the modifred notes.

Keynote - A Language and Extensible Graphic Editor for Music 347

An undo command allows the last ll editing operations to be

undone, where N is a user-definable limit (the default is 8). The

undo feature is completely implemented by user-level Keynote

code, and was done largely by adding code to the M0DIFY macro.

Any operation that uses MODIFY (including the example above)

can be undone.

12. Menus

All pop-up menus are user-defined. Keynote has no built-in
defaults, but of course the implementation of the graphical editor
defines a fairþ large menu structure, all built with the nenu func-

tion. V/hen called, the nenu function defines a single menu item,

and its arguments specify the name of the menu in which the item
is placed, the on-screen label of the item, the name of any sub-

menu attached to the item, and actions to be performed when the

item is selected. The following creates a nested menu:

menu(rrmaintt, trPrint the # of notes in -)tt,
"pickorgrid")

menu(I'pickorgridtr , rrGridrr,

"{print sizeof (Grid)}")
menu(ilpickorgri-drt, rrPickrr,

"{print sizeof(Pick)}")

The frrst item (with the verbose label) is placed in the nain
menu, and leads to the nested menu pickorgrid. That menu

then contains two items whose labels are Grid and Pick. If a

user selected the Grid item, the Keynote statement print
sizeof (Grid) would be executed, printing the number of notes

in the current Grid Phrase.
An executable statement given as an argument to the nenu

function is merely a string whose value begins with '{' (which dis-

tinguishes it from the name of a nested menu). This provides the

ability to dynamically construct the actions of a menu. Additional
flexibility is provided by the ability to execute multiple state-

ments, at different levels in the menu hierarchy. The following
example illustrates both of these features:

348 Tim Thompson

menu(ilnainil , rrAdd l/F Noise -)tr, rrnoiserr,

"{MODIFY(Pick=noise (Pick, Nun, Ntype))}")

nenu(trnoiseil , rrPitch -)rr,
"{Ntype=PtrTCH}r', rr1to32'r)

nenu(trnoiseil , rrVolume -)rr,
"{Ntype=V0LUME}n , il lto32rt)

for (n=1; n1=32; n++)
nenu(rt 1to32rt , string(n) ,

| {Nun=rr +string (n) + u } u)

Understanding this example is best done by starting at the bot-
tom. The f or loop creates a menu named 1to32. Both the
labels and executable statements of this menu are constructed
dynamically. The string function provides type conversion in
C++ style, and strings are concatenated with the + operator. For
example, the second time through the for loop would be
equivalent to:

menu(il1to32rt , t'2tt, rr{Nun=l}tt)

When complete, the loop will have created a menu containing 32

items. Such a menu is manageable because Keynote automatically
scrolls large menus, where "latge" is a user-defrned value. Here is
the end result of this example - the nain menu leading to the
noise menu leading to the 1to32 menu:

The executable statements attached to a menu are only invoked
when the menu item is actually selected, and they are executed via
an in-order traversal of the nested menu hierarchy. So, if "16"
were selected as shown above, the following statements would be
executed:

Keynote - A Language and Extensible Graphic Editor for Music 349

Ntype=VOLUME
Num=16

MODIFY(Pick=noise (Pick, Nun, Ntype))

The 1to32 menu shown above is an example of a "menu subrou-
tine" - it assigns a value to the global Nun variable, and could be
used by other upper-level menus besides the noise menu shown
here.

Although the menu mechanism allows flexible construction
and execution, it is not flexible enough. Currently, menus must be
completely constructed before they can be used. Ideally, it should
be possible to build a menu on-the-fly, when it is initially selected.
This feature will probably be implemented by providing a way to
specify actions that are executed when a menu is first displayed.

13. Pick Filtering

In a music editor, flexibility in selecting the notes to be
transformed is as important as the transformations themselves.
So, Keynote provides a flexible mechanism for controlling and
altering the current Pick. When initially selected, the pick
includes all notes within the area swept out by the mouse. It is
then immediately filtered by applying the Pickf ilter, a string
whose value is a Keynote statement defining the frlter operation.
An example:

Pickfilter = f'Pick{?. chan<lO}"

Every time a new Pick is selected, the Pickfilter is immedi-
ately applied by executing the following statement:

eval |tPick=tr * Pickfilter
With the value of Pickf ilter shown above, the pick would
then contain only those notes whose MIDI channel was less than
10. Pop-up menus allow the selection of some fairþ standard
Pickf itter values (e.g. selecting notes on a given channel), and
the command interpreter can be used to assign more complex
values:

350 Tim Thompson

Pickfilter = ItPick{inscale (?,' c,d, ê,f , g, a,b')}n
This would cause all future Picks to contain only notes in the C
major scale (inscate is one of the standard user-defined library
functions). Another useful example:

Pickfilter = rrPick{ rand(2) }"
The rand(z) function returns random values from 0 through
n- l, so this would randomly leave about half of the notes in the
original Pick.

It is also possible to modify the Pick value explicitly, after
the Pickf ilter has been applied. For example, new groups of
notes can be swept out and added to the current Pick. So, the
Pick is not restricted to a single area - it can be arbitrarily
complex.

14. Color

When a color display is available, Keynote can take advantage of
it by drawing notes in different colors. By default, the MIDI chan-
nel of a note determines its color; that is the most common need.
However, that can be overridden by allowing a user-defrned func-
tion to determine the color of each note. That function is called
once for each displayed note, with the note value passed as an
argument, and its return value is the index of the desired color for
that note. So, anything can be used to control the color - the
note's volume is a useful example.

15. Non-Editor Applications

Although Keynote's graphic interface was directed toward the con-
struction of a music editor, it is certainly not restricted to that
application. One example is called Mouse Matrix, an interactive
music-playing toy in which the mouse is used to play chords. An
invisible matrix is imposed on the display, and each cell contains
two different chords, one for each mouse button. Pressing the
buttons and dragging the mouse produces interesting results. This

Keynote - A Language and Extensible Graphic Editor for Music 351

is only a small example of the non-editor applications that might
be constructed.

16. Portability

Keynote is highly portable. Proper realtime operation requires:
. The ability to quickly get and put single MIDI bytes.
. The ability to quickly poll for pending MIDI and console

input.

. A clock accurate to five milliseconds or less.

The graphic features require:

. The ability to poll the current mouse position and button
status.

. The ability to draw a line on the screen.

. The ability to copy a raster from the screen into memory,
and back. The raster data can be machine-dependent; Key-
note makes no assumptions about its format.

Everything is derived from these basic functions. Raster
operations are used wherever possible to improve interactive per-
formance. For example, the rasters for pop-up menus are saved
so they can be redisplayed quickly - an important feature for con-
venient use of pop-up menus. Text is also displayed with raster
operations; the font is defined by a human-readable (and hence
editable) ASCII frle, and the characters are initially constructed
on-screen in order to create the machine-dependent rasters. Key-
note has been ported to: the AT&T 6386 (using the X Window
System with a device driver that supports MpU-compatible MIDI
interfaces), the Macintosh, the Amiga, MS-DOS-compatible pCs,

Sun workstations (using SunView with an RS232-to-MIDI inter-
face), and the AT&T UNIX pC. This list is sorted, from best to
worst, according to how well each system supports Keynote - each
one has different strengths and weaknesses. For example, the MS-
DOS system has frustratingly small memory limitations. At least
one megabyte of memory is required for typical use, not including
memory needed by the graphics or window system.

352 Tim Thompson

17. Final Comments

The intention of this paper has been to convey a sense of
Keynote's expressiveness, flexibility, and conûgurability. It must
be admitted that Keynote is no longer a "little language" - it is
now far too large and complex to deserve that label. Still, it
retains some of the appropriate attributes (being application-
specialized, easy to learn), and every opportunity has been taken
to keep the language from growing unnecessarily. For example,
the frrst version of Keynote had a large number of built-in func-
tions that were happily removed and replaced with user-defined
functions as the language grew in expressiveness and speed.

The graphical editor was built with remarkable ease, a testa-
ment to the value of embedded programmability within an appli-
cation. As new editing operations have been continually added, it
has been satisfying to frnd that the language itself has rarely
changed. And this in spite of the fact that changes are a strong
temptation for someone who is both user and designer of a
language. When a desired new feature can't be implemented as a
user-defined function, the language is usually supplemented in
some small and generalized way so that the new feature canbe
implemented (or at the very least, controlled) by a user-defrned
function.

Keynote is by design a very open-ended system. This allows it
to be used in a wide variety of ways, but requires that each user
be responsible for determining exactly which way. For example,
although the graphical editor resembles a conventional sequencer
environment, it does not provide (or impose) the notion of
"tracks" that most commercial sequencers use. One way of deter-
mining the structure of a musical piece is by writing a program, or
simply a long expression, that combines all the component
phrases. Of course, the concept of tracks could easily be added to
the editor by any motivated user.

In isolation, algorithmic composition often suffers from a

sense of "sameness" - it is a challenge to write algorithms that
produce consistently interesting music. Keynote's graphical
environment provides a way to merge algorithmic composition
with more conventional techniques. For example, an algorithm

Keynote - A Language ønd Extensible Graphic Editor þr Music 353

may produce one measure of interesting music amidst l0 meas-
ures of garbage. That one measure can be simply be Picked out
and used as a seed for further transformations or human embell-
ishment. Human-composed melodies and rhythms can be entered
in realtime and then transformed algorithmically. Each transfor-
mation can be quickly applied, heard, and (more often than not)
discarded, in search of those transformations that convert some-
thing interesting into something fascinating. Computer composi-
tion always involves human guidance, and Keynote provides a
framework for conveniently integrating the two.

18. Summary

Keynote is a language designed specifrcally for MIDI music genera-
tion and manipulation. Realtime and non-realtime algorithms are
easily expressed. A new graphic interface has been added, allow-
ing the entire user interface of a graphical music editor to be
implemented with Keynote code. Since the editor is completely
user-defined, it can easily be modified and enhanced by end users.
Inquiries about obtaining this software should be directed to
tjt@twitch.att.com.

Acknowledgments

Steve Falco ported Keynote to the Macintosh, and helped in the
design of the language. Alan Bland ported Keynote to the Amiga.
Dave Favin improved the quality of this paper with his
comments.

354 Tim Thompson

Appendix:
Generating Markov Chains

usage: narkov(ph, order, cnt)
ph - the phrase used to initialize
the transition table
order - the order of the Markov chain
cnt - number of chain links to put in
the generated phrase

function narkov(ph, order, cnt) {
Prepare transition table

narkovprep(ph, order)
return (narkovnake(cnt)) # Use it

)
function markovprep(ph, order, chunk, n, nextnt)
{

Stores chunks-versus-possible-nextnotes
arrayinit (After)

To sinplify, all notes are sane duration
ph = step(ph)

Starting chunk is the first order-l notes
chunk = "
for (n=1; n(order; n++)

ph%n is the n'th note of phrase ph
chunk l= ph%n

for (; n (= sizeof(ph) ; n++) {
stripO removes surrounding space

nextnt = strip(ph%n)
Add the next note to the list of notes
that can follow the current chunk

if (I chunk in After)
After[chunk] = "

After[chunk] l= nextnt
Advance the chunk, by renoving the first note
and adding the new note to the end.

chunk'/o{=" #removelstnote

Keynote - A Language and Extensible Graphic Editor for Music 355

chunk = strip(chunk)# and space it leaves
chunk += nextnt

)
function markovmake(cnt, [t, chunk, lt, result)
{

Pick a random starting chunk
n = rand(sizeof (After))
for (chunk in After)

if(n--<=0)
break
undo coercion of indices to strings

chunk = phrase(chunk)
result = chunk
while(cnt-->0){

if (I chunk in After) {
print rfWarning - terninal chunk =rr,

chunk
break

)
Randonly pick a note that can foIlow

the current chunk
choice = After[chunk] T,

(l+rand(sizeof (After lchunk])))
result += choice

Update chunk by renoving first note
and adding new note

chunk%l = "
chunk = strip(chunk)
chunk += choice

)
return (result)

#
#

#
#

356 Tim Thompson

References

A. V. Aho, B. W. Kernighan, P. J. Weinberger, The AWK Programming
Language, Addison-Wesley, I 988.

Jon Bentley, More Programming Pearls, Addison-Wesley, 1988.

James R. Binkley, Ravel 2.0 - A Music Programming Environment,5Sl4
SW Taylor, Portland, OR 97221, 1988.

L. Cardelli and R. Pike, Squeak A Language for Communicating with
Mice, Computer Graphics, (19)3, 1985.

John Dunn, Music Box,PO Box 5348, Santa Rosa, CA 95402, 1988.

C. Fry, Flavors Band: A Language for Specifying Musical Style, Com-
puter Music Journal, (8)4, Winter 1984.

Michael Hawley, MIDI Music Software for UNIX, USENIX Summer 1986

C onference Proceedings, USENIX Association, I 986.

Gerard J. Holzmann, Beyond photography: the dígital darkroom,
Prentice-Hall, 1988.

Kevin Jones, Compositional Applications of Stochastic Processes, Corø-
puter Music Journal, (5)2, Summer 1981.

Peter S. Langston, (201)644-2332 or Eedie & Eddie on the Wire: An
Experiment in Music Generation, USENIX Summer 1986 Conference
Proceedings, USENIX Association, 1986.

Jim Miller, Personal Composer, The'Music Machine, MIT Press, 1989.

Daniel V. Oppenheim, Dmix, An Environment for Composition,
Proceedings of the International Computer Music Conference, 1989.

Xavier Rodet and Pierre Cointe, FORMES: Composition and Scheduling
of Processes, The Music Machine, MIT Press, 1989.

Carter Scholz, Guest Editorial, Keyboard Magazine, June, 1989.

Carter Scholz, HMSL Software Language, Music Technology, September,
l 988.

Bill Schottstaedt, Pla: A Composer's Idea of a Language, Computer
Music Journal, (7)1, Spring 1983.

Randall Stokes, The Anything,Box, Music Mind Magic, 401 S. Silver,
Centralia, wA 98531, 1988.

Dr. T's Music Software, 220 Boylston Street, Suite 206, Chestnut Hill,
M^,02167.

Twelve Tone Systems, Inc., PO Box 226,Watertown, MA, 02272.

fsubmitted Dec. 8, 1989; revised Jan. 5, 1990; accepted Jan. 15, 1990]

Keynote - A Language and Extensible Graphic Editor for Music 357

