The Personal Orchestra, or
Audio Data Compression
by 10,000:1

Michael Hawley MIT Media Laboratory

ABSTRACT: Virtually all of western classical music
could be recorded and stored on a single computer
disk and rendered on a music system costing as
much as a good piano.

To demonstrate and explore this, I built a system
for audio and musical research which permits a
workstation to control 64 synthesizers and a compu-
terized Bosendorfer Imperial concert grand piano.
It is easy to assemble and play complex scores on
the piano accompanied by a synthetic orchestra.
Examples here include a fully orchestrated ultra-
virtuoso arrangement of Franz Liszt’s “third” piano
concerto, the Totentanz. There are also families of
analytical programs that parse musical data to iden-
tify key, melodies, and other interesting features.

Since a performer generates about 3 kilobytes per
minute of gestural data, the volume of recorded
information is small: Moby Dick uses more space
than all of Scott Joplin’s piano music; Bach’s is 6
megabytes. Consequently, even elementary process-
ing provides great leverage over such concentrated
information. This will open new avenues for enter-
tainment media, while retaining a grand orchestral,
yet personal, perspective.

© Computing Systems, Vol. 3 * No. 2 * Spring 1990

289

It would be quite possible to arrange to control a distant
computer by means of a telephone line.

— Alan M. Turing, foreseeing terminal-modem hookup,
in his lecture to the London Mathematical Society, 1947.

Extraordinary how potent cheap music is.
— Noel Coward, 1932.

1. Introduction

In the near future, we can expect to see an orchestra in a box: a
synthesis system that is controllable by computer and can produce
sounds as appealing as those made by traditional instruments.
Forms of this technology are already finding use in many music
production situations. More than 40% of cinema and television
music is now produced synthetically. The startlingly low
bandwidth of musical performance information — about 3Kbytes
per minute of piano playing when recorded at the gestural level -
implies the controller can be an inexpensive computer, and enor-
mous musical databases can fit into very compact media. Tech-
nology featuring a “critical mass” of music whose content can be
amplified by an orchestral rendering system will someday be
commonplace.

Suppose we had a digital Boston Symphony Orchestra as a
home stereo add-on, and the apparatus to control it. What would
people want to do with such stuff? Most musical experiences, and
many forms of entertainment, are passive for listeners: turn on a
disc player, or go to a concert, and just listen. Lack of listener
interaction is usual, and social ambience — being “at the MET,” in
a smoky jazz club, in a cathedral, at a parade — or watching wild
personalities like Horowitz or Jerry Lee Lewis, often has as much

290 Michael Hawley

to do with the enjoyment of the experience as any other factors, if
not more. And little to do with computers. Franz Liszt and
Niccolo Paganini pioneered the image of the virtuoso in the 19th
century, and there is a beauty and excitement in sharing a live
performance that is only a vicarious memory in a recording.
Nevertheless, the fundamental density of musical control informa-
tion makes possible many interesting applications. For example,
society’s hi-tech “music box” at the moment is a CD player, but if
the gigabyte of audio data (and the disc) were replaced by a few
megabytes of control data, and if the lasers and mechanics were
replaced by synthesis electronics, the music box of tomorrow
would play not just one recording of Glenn Gould playing the
Goldberg Variations, but all of Bach. The fact that a controlling
processor is operating on music information encoded at a high
level (notes, finger motions), an encoding which is well-aligned
with the semantics of the situation, makes it possible to consider
rendering the data in other ways — faster, slower, using different
instruments — or to implement content-based computations (the
Name That Tune interface: hum a melody and the music box
retrieves the work and plays it). These examples might seem fan-
ciful but are not at all far-fetched.

Computer music activity was for many years largely mired at
the sample and sound-synthesis level, which consequently focused
much of the attention away from more natural levels of gestural
control. This tended to produce music which wasn’t well-matched
with most cognitive expectations because algorithmic controls
were fitted to the low-level apparatus of synthesis, which tends to
be independent of features that most people consider as character-
istically “musical,” like thythm, tonality, or even “notes.” Inap-
propriate technology at the control level kept computer-based
music from competing with traditional kinds, much like any mis-
placed choice of tools or abstractions can limit possibilities. In
fact, the development of musical devices that directly link key-
boards or other transducers to interesting sound synthesis
hardware is a relatively new phenomenon. The spectrum of music
applications seems so exciting today precisely because attention
and technology have shifted toward content. The nature of music
control information makes it easily computable with present

The Personal Orchestra

291

technology, and good synthesizers, interfaces, and computers are
readily available.

In the larger world of multimedia computer applications, there
has been a gap between what can in practice be implemented with
digital and analog systems. Broadly speaking, analog components
provide fast technology amenable for signal-level work but do not
often facilitate content-oriented computation. Digital systems, on
the other hand, are well-suited for processing of discrete and
dense content information, but because of limitations in nascent
technology, have only recently grown fast enough to deal with con-
siderable high-bandwidth signal information. Innovative connec-
tions between content and signal foster the real breakthroughs in
communications media, and over time, the gap between content
and signal will become less significant. For the moment, an
appealing aspect of musical applications is that they clearly
demonstrate what can be done when it is easy to compute along
the entire spectrum of information, from script-like content to sig-
nal and back. As with other dense encodings, like text or algebra,
computers can do remarkable, savant-like things with music con-
trol information especially when not bound by the inertia of gen-
eral knowledge. This is reminiscent of the situation with chess,
where computers with virtually no general knowledge are beating
grandmasters, and finding new winning solutions to endgames that
had previously been thought hopeless; or in symbolic arithmetic,
where a program by Doug Lenat once rediscovered the obscure
notion of maximally divisible numbers, known to Ramanujan and
a few other experts. The delightful thing about music is that
growing computational power has opened realtime pathways
between musical content and signal sufficiently so that the nature
of the information can be studied in the context of extremely
enjoyable music and realistic sound.

I will describe related work in representation and musical
control-level applications, then discuss our system components
and what they imply. Because notions of supercompressed rich
musical databases and representations for the data will be com-
mon in the future (and because they have enabled us to build
better scoring tools) I talk about them in some detail. I then
present a few applications with musical examples that demon-
strate what can be done by combining a grand synthetic orchestra

292 Michael Hawley

with sufficient computational control and a high-level
representation.

2. Related Work

A considerable amount of work oriented toward the representa-
tion of musical information to facilitate both composition and
performance has been done. Seminal papers include [Buxton
1978; Buxton et al. 1978; Buxton et al. 1981] in which Buxton and
colleagues developed an event-list data structure for music. They
implemented pervasive forms of instantiation and hierarchy, and
applications using this information. These are useful notions; I
applied some similar ideas. The Northwestern group of Decker,
Kendall, et al. [1986] built a well-integrated family of UNIX tools
for dealing with music performance data, whether at signal-level
or performance-level. Peter Langston [1986, 1990] and Hawley
[1986] have also experimented with similar equipment. Much of
Langston’s work involves music languages and grammars for gen-
erating compositions. There have been other interesting language
approaches, more for composers and researchers than for
automated composing algorithms, like Schottstaedt’s PLA
[Schottstaedt 1983, 1984] and Dannenberg’s Arctic [Dannenberg &
Rubine 1986]. Much of the function of these languages is to
experiment with instruments at a low level. Langston’s approach,
like analogous approaches to handling textual information in
UNIX, has the virtue of a kind of synergy made possible by build-
ing a friendly family of components.

Authoring systems can be built for composing with computer-
driven instruments. Commercial sequencers are examples of
these, as is the arranging application described here. Systems can
interactively augment or amplify human performances. Tod
Machover [Machover & Chung 1989] calls this class of tools
hyperinstruments. Barry Vercoe [Vercoe & Puckette 1985] and
Roger Dannenberg [Dannenberg & Bloch 1985; Dannenberg &
Mukaino 1988] have built synthetic accompanists: programs that
track live performers and accompany them. Robert Rowe [to
appear] has written a program called Cypher for tracking live input
and improvising against it according to a mapping of musical

The Personal Orchestra

293

features in the input to desired responses. Algorithmic composing
and rendering systems can be built that might pass a musical Tur-
ing test — Cope’s program [1987] has already composed plausible
impersonations — and the eventual presence of large digital
libraries of music data should invite forms of content analysis and
synthesis-from-content that previously have not been possible.
Maxwell and Ornstein’s Mockingbird [Maxwell 1982;
Maxwell & Ornstein 1983] was intended as a “note processor” for
producing high-quality, printed music, but was also important for
its elegant interactive design, and the division of labor between
the human user and the slightly intelligent assistant. Casting a
performance control stream into a graphical musical score is a
complex job, one that requires considerably intelligent interven-
tion. The reverse process, optical reading of scores to cast a
graphical notation into a performable data structure, has been stu-
died by Baird [1987], Kassler [1972], Prerau [1970; 1971; 1975],
and Ruttenberg [1990], who is programming the Connection
Machine to read Schubert string quartets. Audio transcription
technologies are also beginning to emerge [Massalin 1989]. All of
these help establish links between signal and control level data.

3. Apparatus

I use a Sun-3/260 (25MHz, 8MB, 1600x1280 bitmapped display)
with a custom VME-bus interface that controls 4 real-time MIDI
processors (Roland MPU-401), for a total of 64 channels of MIDI
output, and 4 channels of MIDI input. The Sun runs a local win-
dow system related to Hawley & Leffler [1985] and some MIDI
driver code and system tools (e.g., Hawley 1986). An IBM PC-AT
with a special multibus and Z80-based controller handles realtime
piano control, and is connected to the Sun through a serial port.
Instruments and other musical apparatus include a Yamaha KX-88
keyboard controller (a silent keyboard with weighted keys that
generates MIDI data), an MJC8 MIDI junction box, a number of
synthesizers (several Kurzweil devices, an E-mu, some Yamaha
synthesizers), a mixer, amplifier, and some good speakers. In

294 Michael Hawley

addition, there is a Bosendorfer grand piano. A NeXT is begin-
ning to find use for synchronized digital audio work.

The control machinery can manage a large quantity of sound,
limited in richness primarily by the number and quality of syn-
thesizers that are plugged in. Consider that a typical symphony
orchestra contains about 60 players, but most play duplicate parts.
Even a very rich score, like Berlioz’s Symphonie Fantastique, con-
tains at most 32 distinct parts, of which only 6 to 8 parts are
active in parallel (and not duplicated) at any time. I have only
partly populated the channels with synthesizers, rarely using more
than a dozen, yet already there are several thousand pre-loaded
instrumental voices from which to choose, and more in libraries,
so the timbral palette is large.

The Bosendorfer piano deserves a special word. It is an
Imperial concert grand, the largest piano in commercial produc-
tion: 9'6”, 1400 pounds, 97 keys (it has nine extra low bass notes)
and 3 pedals. It has been instrumented with a high-quality digital
recording and playback mechanism, designed by Wayne Stahnke
for the Kimball company, which now sells it as a product. Ham-
mer timings and velocities are recorded optically (onset timings to
roughly 800Hz, hammer velocity to 10 bits of precision) and
played back using a solenoid stack. It is the most magnificent
player piano in the world.

It is also the most expensive player piano in the world: at
about $120,000, the piano costs more than twice as much as all the
rest of the equipment, though currently still only about as much as
a gigabyte of silicon memory. It is worth mentioning that ham-
mer velocities, pedal positions, and timings for these events com-
pletely characterize all the device-level information: no other
information is required for perceptually perfect piano reproduc-
tion. Also, the recording parameters are comparable in resolution
to MIDI synthesizer data. For instance, half of the piano’s
21921024 velocity values are for silent but moving hammers, and
another bit or two is likely lost due to slop (noise) in the mechan-
ism, making piano resolution comparable to the 7-bit quantities
used by MIDI. This makes it relatively easy to unify full-
resolution piano and MIDI data structures, so that all instruments
can be conducted by the workstation. The piano has recently
been upgraded to handle MIDI 1/0, which seems sufficiently

The Personal Orchestra

295

expressive. It is controlled by custom Z80 processors which are in
turn monitored by an IBM PC-AT. This runs command-line appli-
cations to play and record. The PC, in turn, is controlled by the
Sun over a serial line, acting as a remote console.

In sum, this apparatus is not far from what should be com-
monplace in 10 years or so: a control-level processor with enough
bandwidth to drive 64 “performers,” a synthesis system capable of
rendering sounds of pleasing richness (if not orchestral quality)
and I/O (as well as a database) that makes interesting interaction
possible. It may be some time before there is a Bsendorfer in
every living room, and there is a real charm to the robotic keys on
a player piano, but synthetic timbres will be much more competi-
tive with traditional instruments over time.

Photo of piano and stack

296 Michael Hawley

4. Data Representations —
How Much Music Is There?

Statements like ““...all of Western classical music... on a single
computer disk” need some qualification. As was mentioned ear-
lier, performance or control-level data is the information captured
at the keystroke or gestural level. Performance event lists are
treated as digital recordings of interface activity with 32-bit tim-
ings in milliseconds and velocities to 16 bits, for generality. Data
of this kind encodes meaningful information in a compact way.
Our measurements show that a keyboardist, whether playing on a
Bosendorfer, a pipe organ, or a synthesizer clavier, almost never
generates more than 10,000 bytes per minute, and the average flow
is more on the order of 3,000 bytes per minute for reasonably ,
active music, like Joplin or Bach. Even seemingly high-bandwidth
pianists, like Art Tatum or Oscar Peterson, average in this range.
I expect other kinds of instrumentalists, such as violinists or wind
players, also provide roughly this much data when controlling
their instruments.! This number seems amazingly low, at first,
but piano-playing is really only fast typing and some foot-tapping
with time and velocity sampling, so the data rate should not be
surprising.

Now consider that digital audio, even if sampled and encoded
at poor telephone quality, requires about 3Kbytes per second,
nearly 2 orders of magnitude more than performance-level data,
and digital audio of compact disk quality requires a factor of 30
more than that. (Image data, uncompressed at about 300Kbytes
per frame, or 7.2Mbytes/sec, is still two or three orders of magni-
tude more.) By contrast, if one sat down to play Joplin for 24
hours straight, one would first run out of Joplin after 6 hours or
so. The average Joplin rag takes about 5 minutes or 20Kbytes.
Since he wrote roughly 50 rags, all of Joplin consumes about a

1. Interfaces that involve lips and skin on reeds or strings may seem more subtle, but
the amount of useful gestural control information supplied by a performer is still
probably very small. Digital wind instruments and pressure transducers on many
MIDI keyboards tend to produce large bursts of data, but it’s extremely compressible.
Even in piano-playing, the keyboard information is, for example, about 1600 bytes
per minute, while pedalling, which is not much compressed, can produce 7Kbytes per
minute. Future transducers will operate increasingly off acoustical signal.

The Personal Orchestra

297

megabyte, uncompressed. This is a tiny amount of data, and
straightforward compressors (like using a pitch lookup table, a key
signature, run or delta-coded amplitude information) would make
it even smaller, certainly by 2:1 (in fact, Woods’ compress pro-
gram, which is based on the Lempel-Ziv algorithm, already
reaches 1.8:1 on MPU-401-format data, which contains embedded
time offsets that are likely to disrupt the algorithm). Yet it could
be transmitted by modem and immaculately rendered by a com-
puterized piano or an orchestra of synthesizers. Furthermore, if
Joplin’s output amounts to only a megabyte, a generic composer
of western classical music would yield perhaps 10 megabytes in a
reasonably fertile career.? For example, all of Johann Sebastian
Bach’s keyboard music consumes about 45 LPs, or 30-40 hours,
plus or minus a few hours of repeats. This should be about 6 or 7
megabytes (Bach was extremely prolific). At such rates, a database
containing the complete works of 50 composers — which would
take more than 400 days to play — could be kept on one 500 mega-
byte CD-Rom.

Now, pushing the envelope calculation, how much music
exists? To pick a healthy subset, the Library of Congress currently
has a collection of approximately 2M musical recordings, which
they estimate average about 30 minutes each [Nichols 1989], or
IM hours, total. This is approximately 200GB in gestural tran-
scription. (In signal form, of course, it would be about 650 tera-
bytes of CD-rate audio, or 14TB at phone-rate.) It is safe to
assume that the entropy of this sort of information would permit
compression by a reasonable factor, but in any event, it is not an
overwhelming amount — suppose one “LC” of music is 100GB —
and it is a certainty that within 2 or 3 decades, storage media will
have evolved that allows consumers to own hundreds of gigabytes
of fast random access media in a rather small box. It is also fair
to assume that industrial-grade acoustic-to-gesture converters of

2. The typical great author also writes about 10 megabytes of text in a lifetime. Moby
Dick, at 1.3Mbytes, is a significant fraction of Melville’s output, and all of Shak-
espeare is about 6MB. Since musical performance data flows about 5x “faster” than
typing text, one might expect great composers to produce something more like 50MB
per life. This is true of improvisers, but thoughtful music seems to be slower and
harder to compose than text, in a certain sense, probably because the decisions
invited through various musical constraints (e.g., polyphony, harmony, voicing, etc.)
have about the same complexity as text.

298 Michael Hawley

reasonably high quality can exist by then. In terms of hours of
long-playing hi-fi, an LC of music takes about a third of a millen-
nium to play, if played 8 hours a day, day in and day out. 200
acoustical transcription machines could do the conversion in
about 6 months, though, and it does not seem at all unrealistic to
suppose that this can happen within 20 or 30 years. Thinking
quantitatively about the sheer volume of music in the world is not
difficult, though it is bizarre to imagine what commonplace per-
sonal collections of this size will imply.?

Returning to representational issues, the situation for music is
analogous to text as a dense encoding of speech. Like graphical
music notation, printed text doesn’t carry all the nuance of an
utterance but this is of little consequence compared to the value
added by retrieval and other kinds of mass-dissemination or vivid
content-oriented access. More importantly, the vital difference
between, say, a performance of Joplin that sounds mathematical,
metronomic, mechanical, and dull, compared to a performance
that sounds lifelike and compelling, is encoded primarily in the
timing values of only 15K of data. To give a more specific exam-
ple, the musical notion of ritardando - slowing down at a cadence,
analogous to “phrase-final lengthening” in speech — is one of the
most basic expressive devices in music. But quantifiable theories
of ritardando are feeble at best. Is time being stretched in some
kind of exponential or Fibonacci proportion (2:3:5...) because the
brain is doing so many binary-grouped autocorrelations? Or is it
a harmonic stretching (1/2:2/3:...)7 Phenomena like these should
be easy to measure and test from performance data. Future
“smart” music rendering systems will have to include parameters
to control expressive features like these, but their nature is not yet
well-known.

As we begin to explore what can be done with a useful gestural
recording of music data, we should remember that analogous

3. To put music library content in a more local perspective, the MIT music library has
10,599 books, 1,478 journals, 359 pieces of microfilm/fiche, 24,381 musical scores,
17,348 LP’s, CD’s, and tapes, and 73 videos. The audio material probably amounts to
roughly 2GB, which can be thought of as the disk an MIT student will someday buy
when enrolling in a music class. The score content is somewhat harder to estimate,
perhaps 2-10GB. The ratio at LC is roughly similar, about 2M audio recordings and
7M other musical items, which includes scores, manuscripts, texts, and “realia” (e.g.,
death masks, busts, a chunk of Beethoven’s hair).

The Personal Orchestra

299

opportunities await for speech and other kinds of recording. After
a speech recognition algorithm has done the work of transcribing
text from an audio utterance, the “intermediate” information —
timing, pitch modulation, etc. — should not be thrown away, for it
will be useful in training synthetic devices to speak or sing more
naturally. Current speech synthesis from text sounds stilted and
unappealing for much the same reason that algorithmically-
performed music sounds as if it was “played by a computer.”
None of the work here addresses the encoding of vocal informa-
tion in music, but the same reasoning applies. We will eventually
require a recording process that captures a structural analysis of
vocal parts so that they, too, can be resynthesized subject to
content-level modulation. This may take the form of language
translation (mapping timing, pitch, and vocal parameters onto a
different phonemic skeleton) or source substitution (e.g., resyn-
thesizing a voice part, but performing it on a violin, or with the
voice of an archetype, like Howard Cosell). In fact, Massalin has
already shown how sheep and chickens can be persuaded to sing
the 1812 Overture [Massalin 1989] and the synthesis opportunities
afforded by techniques such as LPC and sinusoidal approximations
[Quatieri 1985] are well-known. These resources will certainly
become available for content-based music recording and rendering
systems.

Our software deals primarily with three control formats —
MPU-401 MIDI data (which is raw MIDI information with time
tags), piano data (which is a readable ASCII list of timed events),
and a generalized event-list format (called mu data) that encodes
MIDI and piano data as well as being general enough to accommo-
date other kinds of controlling information. Both MPU data and
mu data can be dealt with in binary or printable form, and in
addition, mu and MIDI files can be assembled into a score which
is an event list of music fragments that also carries some graphical
information. I will briefly discuss each type.

4.1 Piano Data

The Bosendorfer generates two kinds of sensor data: hammer
velocities and pedal positions. These can be recorded as ASCII
files giving time, sensor, and data value:

300 Michael Hawley

% cat promenade

time Lkey value
3830 67 80

4365 65 73
4451 67 0
4872 70 72

4995 65 0
b3b4 72 67
5424 70 0
55699 77 66
5650 72 0

Middle C is 60; these notes are G-F-Bb-C-F (the beginning of the
Promenade from Moussorgsky’s Pictures at an Exhibition). Pedals
are sensors 1, 2, and 3 (none shown). The soft and loud pedals
generate 8 bits of data; the sostenuto pedal (middle pedal) is a
binary switch. The piano also sends and receives MIDI format
data through the MPU-401’s, with a small loss of velocity resolu-
tion. In practice, the piano is used like a 2000dpi typesetter:
draft work is done on synthesizers, and final copy on the piano.

4.2 MPU-401 MIDI Data

The Roland MPU-401 MIDI processors read and write MIDI data
using a one-byte time tag and some number of bytes of MIDI data.
The time is an offset in MPU clock ticks (240/second by default)
from the previous event. MIDI data elements are typically one
byte wide. Musical data can be read and written by this device
using shell-level commands like record or play, and can be
disassembled using the da command. For instance, the command
“record | da” writes a straightforward listing of the raw data
(to the left of the semicolon) and its disassembled information to
the standard output:

% record | da

0 f9 ; 2.400 2 tcwme [O] timing clock w/
measure end

The Personal Orchestra

301

£8
66 90 3c
25 40
26 43
21 48

le £9
4 4c
d 43
18 48
0 43
22 4c
3 48

; 3.600

38 ; 4.110
22 ; 4.295
34 ; 4.485
2d ; 4.650
; 4.800

33 ; 4.820
0 ; 4.885

0 ; 5.005

29 ; 5.005
0 ; 5.175

1c ; 5.190

0 N O O

9
10
11
12
13
14

tcip

kon
kon
kon
kon
tcwme

kon
koff
koff
kon
koff
kon

[60]=56
[64]1=34
[67]=52
[72]=45
[1]

[76]1=51
[67]1=0
[72]=0
[67]1=41
[761=0
[72]=28

timing

in
C4 key
E4 key
G4 key
C5 key
timing

clock
play

on

on

on

on
clock w/

measure end

E5
G4
Ch5
G4
E5
C5

key
key
key
key
key
key

on
off
off
on
off
on

Tools like these and their implementation have been described
in more detail elsewhere [Hawley 1986].

4.3 mu — A Performance-Level
Data Structure

This is an event list data structure meant to encapsulate piano,

MIDI, and other data. An Event is:

typedef long Time;/* 1000th of a second ticks

typedef enum {

tNull = O,

tInstrument,

tNote,
tControl,
tSysEx,

tEventList,

} Type;

typedef struct Event {
struct Event *prev, *next;

Time offset;/* offset from previous event
/* what kind of event
/* pointer to event of type ’type’

Type type;

char *e;

302 Michael Hawley

/* pedal, modulation, etc.
/* midi system exclusive packet
/* e.g., pointer to a melody

*/
*/
*/

*/
*/
*/

*

/* if NULL, use current instrument list */
List *instrument;
/* remaining fields for application use */
long (xfree) (), (xcopy) (), (xprint)(),
(xread) (), (xwrite)();
long addr;
Time t; /* holds absolute time */
/* true if event has been written */
int written:1,
/* true if event has been read */
loaded:1,
/* true if event has been selected */
selected:1,
/* true if next ptr resolved */
nextdone:1,
/* true if prev ptr resolved */
prevdone:1;
Rectangle r;
} Event;

Other event types, like structures for phrasing and dynamics,
or digital audio soundfiles, could be added. Event-specific data is
kept in Event->e; these are usually simple structures:

typedef struct {
short pitch, amplitude;
Time duration;

} Note;
typedef struct {
/* eg "kurzweil", "bosendorfer" x*/
char *synth;
char *voice; /* eg "chif flute" x/

/* indexes for internal use */
int mpu, channel, program;
} Instrument;

The decision to represent a Note as a single event rather than
as a pair of implicitly attached MIDI events makes subsequent
processing easier. Similarly, using symbolic instrument names for
instrument lists is essential for abstracting minimal orchestration

The Personal Orchestra

303

information. Future data structures for richer encodings, like vio-
lin or voice synthesis, will have to support more expressive data
per note or instrument. Various utilities for processing this kind
of data have been written (e.g., record, play, disassemble, etc.).
This event-level structure can expand to hold cues for soundfiles
and mixing control. It is clear that there will always be hetero-
geneous devices and control languages. Future representations
will increasingly have to support rather general data. Eventually,
the event list will not simply be a gesture recording, but will have
to lend itself to a hierarchy of different representations to facili-
tate various kinds of computation.

5. Applications

Now we look at a few applications, some for analysis, and some
for assembly. The mbed program is a data viewer that shows how
interesting features in the input are exposed with a good digital
lens; nc is a note-counter, which when combined with a histo-
gram display or other filter can be used to analyze key, but which
reveals other subtleties reflected by the statistical tonality of
music; the ntt program implements melodic indexing (a function
which will be sorely needed with very large music databases); the
nv program is useful for filtering gestural data to find changes in
voicing activity; the patch program begins to address the issue of
instrumentation; and finally, mudraw is a fairly rich scoring pro-
gram for composing and arranging. Most of these programs are
also demonstrated with audio examples.

5.1 Key Analysis (nc, mbed, and key)

The note-count command nc (analogous to UNIX wc) produces a
count of pitches (or cumulative pitch durations) in a stream of
music. Folding pitches into one octave and looking at the 12-bin
pitch histogram gives a good measure of traditional key. Here is
the first prelude from Book I of the Well-Tempered Clavier

by Bach:

304 Michael Hawley

PRAELUDIUM 1

BWYV 846

> P - =

X +—+— %nz_n:
T wl U Wl Tl ¥

)

[O23 - a performance of this piece, recorded and played on the
Bosendorfer, is example 23 on the disc.] It has a piano roll
display that looks like this:

This data viewer, mbed, does not show amplitude intensity (the
Sun is only a 1-bit device), but does show timing and pitch infor-
mation. The entire piece is drawn in the scroller, and interac-
tively, the scroller behaves like a lens. The dark region slides
freely over the piece; stretching it zooms in or out. This can be
quite revealing. Here is a 5-minute piece in C minor zoomed all
the way out:

i [P

| :n-} *_‘w.n.\m”{‘(
vitanth xLL 1

o .r |

T T I YT AU T I e AR e S 2

The white, horizontal striations in the image are a result of the
fact that in a tonal piece like this one, certain pitches are played
frequently (like C and G, the tonic and dominant) and certain oth-
ers (like C#) are played seldom, if ever. This suggests that the

The Personal Orchestra

305

bias in the pitch “spectrum” contains meaningful information
about the tonality.

The note count for the prelude in C major, showing number of
pitch events and cumulative duration, is:

% nc -m prelude.1.01
prelude.1.01:

Co 0 110 16672
C#-1 1 4 247
D-1 2 73 9931
D#-1 3 6 767
E-1 4 63 8212
F-1 5 67 7974
F#-1 6 14 1709
G-1 7 113 15545
G#-1 8 4 1017
A-1 9 51 5701
A#-1 10 10 1389
B-1 11 41 5307

(-m counts modulo 12, i.e., folded into one octave). The pitch his-
togram looks like this:

% cat prelude.1.01 | nc -m | \
awk ’{ print $1, $4}’ | sort +inr | histo

6872

stdin

The prelude is in C major and the commonest pitches are C, G, D,
E. This is typical for a tonal piece (tonic, dominant, dominant-
of-dominant, and major or minor third). The key program

306 Michael Hawley

computes this histogram and looks for the traditional key-
determining triad:

% key prelude.1.01

C

Besides reflecting the traditional sense of key with about 80%

accuracy (which is somewhat remarkable, since this is a first-order
measurement, and independent of temporal order) this 12-number
statistic points up subtler implications of pitch content [O24]:

% cat solace | key

F

% cat solace | nc -m | ... | histo

“SOLACE”

A Mexican Serenade.

By SCOTT JOPLIN
Composer of Mapie Leag Rug”

Coyyright 1969 by Semisary Naaks 0o 113 WA SLKY.
Interaations] Coppright Seeutel.

The Personal Orchestra 307

Solace, a rag by Scott Joplin, looks somewhat bitonal - it begins
in C and ends in F, and produces a bimodal distribution that
reflects the bitonality by showing a bulige instead of a steep slope.
The pitches enter in this order: F, C, E, A, D, G... This results in
an ambiguous key choice (either F (FC...A), a (CEA), or C (CE...G).
In this case, more time is spent in F or a than C, which skews the
final choice of key to F. In fact, it turns out that, more often than
not, Joplin rags begin in the dominant and end in the tonic. Simi-
larly, atonal music produces flattened distributions; and a filter
like this, if applied in a sliding sampling window, would detect
strong key changes. The first movement of Stravinsky’s Les Noces
is not particularly tonal, but pounds repeatedly on E’s (to evoke
ringing wedding bells); on the other hand, the Hallelujah chorus
from the Messiah is resoundingly in D major:

87256

strav? n:Iy

E D¢ D A¥ F# A C# G# G F B C

Stravinsky - Les Noces

308 Michacl Hawley

hallelujal

D A F# E G B C# G¥ A# C F D#
Handel - Hallelujah Chorus

Moreover, an artifact of tuning systems and conventions of musi-
cal form is that a certain sort of music, a kind of musical affekt, is
attracted by each tonal key on average and persists across centu-
ries. For example, C# minor is the key of the Moonlight Sonata,
of Rachmaninoff’s Prelude in C#, of various bittersweet works by
Chopin or Bach, etc., and these feelings come to mind when a
musician thinks of that key. It would be quite trivial to sample
such a statistic over a large database and discover correlations like
these. Although a histogram in and of itself may seem like a low-
level analysis tool in that it does not appear to exhibit the non-
linearities that are generally thought to be characteristic of high-
level processing, it is in fact being applied here to highly nonlinear
content data. Thus similarity metrics, when considered over a
wide range of music, will be distributed in a relatively complex
and meaningful manner. The nonlinearity is inherent in the data
at this point, not in the processing.

Finally, it’s interesting to note that nc is sort of a coarse-
grained, octave-folded Fourier spectrum. In fact, by summing and
octave-folding FFT’s, one could perhaps make the same measure-
ment from an audio signal. I have not tried this yet.

5.2 Melody Recognition — ntt

The ntt program* takes a melody played at the keyboard and
finds possible matches from a database of musical themes:

4. Name That Tune

The Personal Orchestra

309

(rg !herr\;f;in; Lﬁx‘-'r‘-;.-’,:;aiyrvl;rar for u. ..
&) A alex courape: star trek theme

save quit

My

bernstein
there’s a place for us
from west side story

It’s a naive implementation of a profound function. In the data-
base, each melody is represented as a string of relative pitch
changes. The first few notes of There’s A Place for Us from West
Side Story would be C-Bb-A-F-D or four intervals, one up, three
down, [10, -1, -4, -3], plus a starting tone (C). The input interval
sequence is coded as a string of bytes around ASCII ‘O’, so that
melodies are simple, sortable text strings. Rhythm is ignored. A
melody played on the keyboard is quantized (attempting to
remove embellishments), and then looked up literally (binary
search) in the database. Since the encoding is relative, transposi-
tions are found, but fuzzier approximate searches are not
currently done. The problem is similar to spelling correction.
The idea that relative pitch ought to be a more salient feature
than rhythm relates to the combinatorial fact that a melody of N
notes can contain at least 12N pitch combinations (if available
pitch choices are restricted to just one octave; there are more in
practice, of course). Rhythm tends to provide less variation,
hence less information. Psychological studies of human memory

310 Michael Hawley

for melodies tend to support this. Several papers (e.g., in the
Journal of Music Perception, c.f. Dewitt & Crowder [1986]) have
discussed factors of pitch and rhythm in memory for melodies,
and they generally indicate that while both rhythmic and pitch-
relative representations are used, pitch contour is more important.
One paper [Sloboda et al. 1985] discussed the memory of a musi-
cal idiot-savant, an individual who could play back a piano piece
after only 2 or 3 hearings. Sloboda observed that gross and highly
structural substitution errors occurred: for example, the savant
mistakenly folded the rhythm from one phrase onto the pitches of
another. This also tends to favor pitch as a more persistent
feature. It seems that what is combinatorially expedient agrees
with what is perceptually meaningful in this case.

It is clear that the matching could be done other ways — with
regular expressions, proximity metrics, etc. — but also that the
number of melodic strings in a seemingly large corpus is manage-
able. For instance, Brahms’ piano music runs to about opus 120,
and even if there were 10 or so memorable melodies per opus we
would still have only about a thousand short strings, but probably
far fewer. (The Dictionary of Musical Themes contains only
10,000 [Barlow & Morgenstern 1948], 348 by Brahms.) Melodic
indexes will become important as the volume of information in
common music systems increases, but the amount of computation
required to recognize one from a set of all melodies is likely to be
relatively small. We also note that Barlow observed that even a
short melody reveals enough of a “fingerprint” or “melos™ to
guess the composer, though we know of no attempt to quantify
this.

5.3 Looking at Polyphony - nv

For keyboard music, measuring the number of voices currently
active is also a useful statistic. The nv program does this:

The Personal Orchestra

311

% nv partita2.1

This locates cadences and other important changes in voice tex-
ture. This piece segments into three logical sections, which are
delimited by cadences. (The lower frame corresponds to the
entire piece in the scroller, and shows time on the x-axis, and
average number of active voices in y). The cadences appear as an
accumulated chord (lots of voices) followed by a short pause (no
voices). One thing we have not tried yet is separating parallel
voices into logical parts (e.g., by grouping events that are closest
together in pitch-time space into a single stream). Note that nv
slides a filtering window over the length of the piece, and uses an
averaging window to compute values. In general, the choice of a
width for this window is significant and depends on the tempo of
the piece, which is not determined automatically.

5.4 An Instrument Palette — patch
The fact that literally thousands of discrete “instruments” (the

synthesizer analog to organ stops) are present in the orchestra
causes an amplified form of an old problem for composers: the

312 Michael Hawley

choice of instrumentation, and the disposition of orchestras and
ensembles has been the subject of many treatises, as has the selec-
tion of organ stops (the ‘““registration’). It is also common to
create arbitrary new timbres through sampling or synthesis, and
this requires a coherent mechanism for managing all this informa-
tion. Any of these voices can be played from a central musical
keyboard (the KX-88 MIDI keyboard controller), and managed
with a palette-like application called patch:

& commands MIDI instrument finder
> N4

1 tx816-1 | new age piano fpx—2#1740

2 NE new age piano Fpx-3#1748

3 new electro FtxB1z#43#8

4 noise shot Ftx81z¥#264#0

5 nylon guitar Fix812406/8

i o.sph 26.6 #1x816-6#2578 k&

7 obobc 24.3 #tx816-3223#8

8 oboe Irmx #8040

9 oboe __________Fox-1/80460 |8

18 oboe #sx—246040 ;
oboe Fsx-378040
oboe ftx81247749
obos & fTlute Frmx#180178
oboa & Tlute fsx—-1F181f8
oboe & flute Fsx—-2#181#9
cboe & flute fsx—-37101280
oboa 1 #tx816-7#940
oboe 2 #tx816-771846
oboe 3 #FtxB816-7411#8
ocean 38.3 Ftx816-3#2040 |

piano fpx—-1#848
piano Fpx—-2#640
piano #px-3£849
solo st...frmx#3170
solo st...fsx~1#3148
solo st...¥#sx-2#3148
octave solo st...fsx-3731#8
octave strings fpx—-1766#8
octave strings ZIpx-2766#8
octave strings 7px-3766#8
octave strings Frmx74478
octave strings fox—-1#4470

RegEsn
L

This program allows users to map instruments to the keyboard by
choosing them from menus of per-synthesizer or global contents,
or by specifying a keyword. The instruments are tested and
played on the keyboard, and patch information can be passed on
to other programs. No knowledge of device level information
(like MIDI channels) should be necessary. Scores contain parts
that are played by instruments whose channel and program
numbers are compiled at run-time. Available voices and their
locations are kept in a single file:

The Personal Orchestra

313

voice synth program# mpu#

a bass/vibes px-1 25 0
a bass/vibes px-2 25 0
a bass/vibes px-3 25 0

Library routines like WhatChannel ("bosendorfer"),
WhatSynth(channel, mpu), WhatProgram(channel, voice),
etc., make it easy to look up instrumental attributes.

Although this deals with the immediate problem of finding one
from among thousands of instruments, there are at least two miss-
ing ingredients here: first, the ability to map out instruments into
some sort of timbral feature space (which implies a proximity
metric that gives some indication of the similarity of two timbres),
and second, a more formal language for computing from timbre.
Among other things, the ability to find a timbre similar to some
arbitrary timbre is what will permit intelligent synthesis systems
to re-cast orchestrations to play well on local machinery. This
remains a ripe arca for research, as Wessel [1979] and Grey [1975;
Grey & Moorer 1977] indicated.

5.5 Scoring and Performing on
Piano and Synthesizer

Performance scores for piano and orchestra can be assembled
using an event-list editor called mudraw. Parts can be played
from any keyboard, or generated by programs, and they appear as
segments of event data located at various times in the score.
From the scorefile, a performance list is compiled (for pure music,
usually an MPU-401-format file with instruments resolved for the
local patch setup). Here is a short arrangement of the Pavane
from Peter Warlock’s Capriol Suite [O25]:

314 Michael Hawley

It is based on a late 16th century dance from Arbeau’s Orchesogra-
phie, so I arranged it to sound like a Renaissance woodwind band.
There are five or six instrumental tracks — flutes, bassoon, oboe,
tambourine, drum - and the assembly process was, for each part,
pick an instrument (from patch), record some data in mudraw by
playing it on the keyboard, edit it if necessary (positioning it in
the score, touching up wrong notes or articulation). This indicates
the quality of synthetic voices which are available in present con-
sumer synthesizers.

The next example is a multi-layer orchestration of the Bach
prelude we showed earlier, scored for piano and synthesizers
[O26], using choir, oboe, synthetic pianos, and a sort of chime. It
bears some resemblance to the original, though relatively few
musicians recognize it. In this case, the original piano perfor-
mance was edited by removing the pedal information, and averag-
ing (low-pass filtering) the relative time offsets and durations.
After this editing, the piano part sounds like this [O27]:

B0 - Plgosendorfer. 1

This image is the part that appears in the graphical score. The
titlebar icons are: @ - close (hide), - pulldown the patch

reshape is a convenience, so parts can be collapsed but features

remain visible. Horizontal reshape does a linear stretch of offset
and duration values. This is a convenient way to adjust a

The Personal Orchestra

315

segment of music (or other temporal event stream) to fit a time
constraint. By selecting all the notes in this part and copying
them into a new part offset by an eighth note, a phased version of
the original results [O28] (not playable with fingers on a piano). A
synthetic piano, a choir part, and other voices [O29] are then
added. The full score as it appears in mudraw looks like this:

D? 00:32:091 00:00:702-00:31:985[03:20:000]
Q) &-Ficroir
—
o — e
E—
———
[e—— o
0 &-Fluatery-vibes =y

LDinszuu

PR

S e
0 @-Tleosendorrer .2
T e o e

* W <t & o I . + N
[m] xE.EBosm-fm-szuell b
T s e e v v e s

o 5 W o K
[s}]
0O 2-Dleosendorfer.1
e T T S S o o e T
0 SRR . R
. J R R K S

. il 5 N o
D z’u' prs_solo_ocboe.t

Parts can be “wired” together into a group, so that making time
changes in one component (shift or stretch) propagates to all ele-
ments in the group. Any set of notes, within or across parts, may
be selected and edited. For note-level editing, besides
cut/copy/paste, operations include: play the selection; record
(overdub in synch with) the selection; filter amplitudes: set to an
average or arbitrary level, louder or softer by a factor, apply a
linear crescendo or decrescendo (amplitude values may be
specified numerically or symbolically, pppp - ffif, and are filtered

316 Michael Hawley

through device-specific map tables, since mechanical pianos and
synthesizers all respond differently to keystroke velocities); filter
timings, both relative offsets and durations: set to an average or
arbitrary value, make faster or slower by a factor, apply a linear
acceleration or deceleration, legato, staccato. It would be desir-
able to provide a compressor filter to ensure that deviations in
amplitude remain within a certain range. There is also a function
which filters the selection through an arbitrary external com-
mand - e.g., to embellish a note sequence with fractal effects.
Transposition works this way (tr +1 octave), or by sliding the
selection up or down with the mouse. A macro facility makes it
easy to map these operations to keystrokes. A last missing
ingredient is the ability to synchronize one part with another
based on a sensible relationship (like beat correlation). This
would require factoring the timing contour into a separate data
structure (we currently simply filter the time values in place), and
although this is not done now, it is a first step toward providing
the capability to imprint an arbitrary performer’s style onto the
data. But it is most expedient to simply re-record a segment two
or three times until the articulation is adequate.

The record dialog box shows the selection being overdubbed, if
any, and provides switches to do mild filtering of the control
stream input (e.g., ignore pressure or pitch bend information),
select the source device (a Bosendorfer, a synthesizer control key-
board), etc.:

Q wetro source

B venders
Ko
D Sys ex){) m”.w-“
record ekay

After the performance is confirmed, the new music appears in a
part, placed in the score, where it can be edited. The next

The Personal Orchestra 317

example [O30] which was made by again taking the Bach prelude,
filtering it with a pitch inverter (to flip the keyboard by mapping
bass notes to treble, and vice versa):

This has a rather curious effect. Major chords become minor
chords, traditional tonic/dominant relationships become modal
harmonies, and the result is somewhat surprising.

As a final illustration, here is a longer piece, a segment of
Liszt’s Totentanz. [O31] is an excerpt of a studio recording made
by Jorge Bolet with the London Symphony (London CD 414
079-2). [032] is the synthetic version, arranged in a few hours
using these tools. It is a concerto for full orchestra and piano
solo, in the form of a set of variations on the Gregorian chant
Dies Irae (““day of judgement’). Here is the score, and a graphical
display of the first 60 seconds of performance data:

318 Michael Hawley

Totentanz.

Franz Liszt.

Amln,et‘o.

PunoSolo! e v
marcalo

Andante. - > = > 2
—F —=

,
-
N

=,
RS oxf
-
D

a.midi

The image hints at how some of the arpeggio effects were created
(by compositing layers of arpeggios, up to the limits of what the

The Personal Orchestra 319

piano can mechanically play). The play dialog (and the record
dialog) both compile a performance list (in this case, for the
MPU-401’s) from the current score information. This is an edited
and enhanced version of what a live performer would play, and in
some respects the Bdsendorfer can play rings around a live artist.
The synthesizers are not quite equal to the London Symphony,
but the richness is sometimes remarkable, and this trend will con-
tinue. Our conducting and arranging is deliberately different — I
prefer tempi and effects with more punch, have added percussion
and choral parts to the score, etc.

6. Future Work

I plan to continue expanding the scoring application, mudraw.
Some editing functions need refinement, and we are beginning to
require editing of control channels (e.g., pedal or pitchbend data)
and higher level operations. One of the difficulties with simple
graphical editing of performance data is in shaping subtle effects
of phrasing. Although it may seem at first that it would be useful
to graphically sketch a curve for crescendo or diminuendo or
accelerando or ritardando, or hand-edit continuous control streams
like pedalling or pressure, these are actually extremely unnatural
ways to contour a phrase. A better approach would function like
the synthetic accompanists of Vercoe and Dannenberg: the user
plays a selected part, accompanied by the rest of the system, and
this re-performed version is replaced on the original. Attributes
from the new performance (perhaps just the tempo, but perhaps
amplitudes and/or pitches) could be selectively replaced over the
original. In this way, the arranger molds the score by performing
it into shape.

The event list handled by mudraw is capable of incorporating
digital audio sound effects (played remotely by another computer)
and client/server code for this is already in place. We will prob-
ably enhance the editor to include this.

In the analysis area, while dictionary lookup of melodies is
easy, it is hard to isolate interesting melodies in an arbitrary
polyphonic texture. This should be improved. Doing that
requires polyphonic streaming (voice separation), which seems

320 Michael Hawley

manageable, followed by analysis of voice parts to find melodies.
As with famous soliloquies, the most memorable part of a melody
is at the beginning of the string, and applying this to groups of
pitches that cluster closest in time usually results in a meaningful
chunk. There has not been enough work with rhythmic statistics,
generally, to usefully characterize tempo changes (it would be
good to have a few statistics to indicate tempo, meter, and percen-
tage of rubato), but again, the histogram approach will probably
help here. The ritardando problem would be fun to study by com-
paring a computed performance to a live ones, to extract a tempo
derivative. Our work suggests that this will be an extremely
worthwhile thing to do, for it seems to be primarily the rhythmic
contouring of a performance, and secondarily the amplitude
modulation, that carry performer attributes. By abstracting this
information it should be possible to encapsulate the style of given
performers to some extent, so that algorithms can be made to
render new works in the style of a particular performer. Until
these areas are explored it will be difficult to build a metric that
correlates musical data based on performance nuance or com-
poser. Furthermore, the presence of a large repertoire of second-
order templates for things like ritardando or articulation should
make it possible to build this kind of analytical information into a
rendering system (e.g., “cast the phrase to make it sound less like
Schnabel and more like Glenn Gould”).

 Finally, to help with all of this, I plan to accumulate an exten-
sive database of on-line music here at the Media Laboratory to
provide firmer ground for statistical work. In addition to gather-
ing up performance data the way we do now, we also expect to
begin using paper piano roll readers and polyphonic pitch extrac-
tion (from acoustical recording) as input channels.

7. Conclusions

A set of demonstrations has been presented that begin to show
what can be done by computing along the range of musical infor-
mation, from signal to content. The existence of MIDI is not a
fluke. It indicates a trend in coding that pushes the computational
fulcrum toward content, and the implementation of meaningful

The Personal Orchestra

321

interactions. Even seemingly unimaginative processing can do
rather remarkable things when it is brought to bear on content-
level data. In a sense, this is because useful imagination was
already spent in casting the input into a more content-oriented
form. This will eventually apply across all media, but music and
audio information have already achieved considerable success.
This work immediately suggests a personal instrument that com-
bines:

« a critical mass of music — years of it — on a single data disk

« analytical tools that help uncover meaningful properties in
the content

» rendered audio quality more like grand orchestras than sim-
ple upright pianos

« data-rich algorithmic composers and performers, synthetic
accompanists, and other engaging interactive systems.

We have seen how seemingly elementary artifacts of high-level
data, like intervallic content or histograms of pitch occurrence,
correlate with rather deep human notions, like the identification
of melodies or the “feeling” associated with a tonal key. Although
properties like these may seem obvious in retrospect, their impli-
cations are hard to appreciate until they have been implemented
and studied. This phenomenon applies to other information. For
example, studies of the Brown corpus [Kucera & Nelson 1967]
showed that relative word frequencies correlate well with literary
“genre,” though large-scale text databases are still so uncommon
that there has not yet been much need to apply this. Several years
ago, Gabura discussed a composer-guessing algorithm that takes a
strong cue from the frequency of harmonic change - e.g., the
modulation of the pitch histogram over time [Gabura 1970]. It
would not be at all surprising to learn that the pattern of cuts in a
movie’s visuals correlates with content (e.g., more cuts and other
rapid pixel-level change during action-filled scenes), or even with a
particular moviemaker; or that the pacing of laughter identifies a
standup comedian. One lesson here is that as we begin to operate
on increasingly higher-level encodings of a signal, simple-seeming
processing elements require more thought to apply and interpret.
This is because we are no longer operating on a relatively uninfor-
mative low-level signal: we are measuring and modulating a

322 Michael Hawley

densely-coded content stream. What was once a numerical low-
pass filter for low-level samples is now a rhythmic smoother, or a
wrong-note finder. A trivial inverter transforms familiar music by
Bach into “new” music with haunting, unfamiliar harmonies.

We have also noted a trend towards an instrument that syn-
thesizes not one voice, but a grand orchestra. Traditional instru-
ments seem to be fading away much as horses and carriages were
supplanted by cars. This may seem heretical, but it is already true
in major studios, and not without precedent. The player piano
was once a booming pastime in American homes. In 1930, more
than 2.5 million player pianos were manufactured and sold in this
country. Great concert pianists, like Rachmaninoff, Hoffman,
Horowitz, Paderewski considered piano rolls to be a legitimate
and faithful recording medium. In fact, reproducing piano rolls
were their recording medium of choice for about 15 years. But
the player piano vanished almost overnight. By 1931 very few
were made. It was pushed out of the living room by improved
entertainment technology: radio and phonograph, primarily, but
also television, telephone, and a little later, the Hammond organ.
For that matter, the piano did an effective job of supplanting the
clavichord and harpsichord, which earlier had eclipsed lutes and
citterns. The move toward synthetic ensembles with thousands of
timbral possibilities is a step along the same path.

People seem to want increased access to information, and
more leverage for manipulating it. The piano in the 19th century
functioned something like a bitmapped Macintosh interface to
music, and with it, the user has enormous access to a rich litera-
ture. It lacks the full expressive control or the timbral diversity of
an orchestra, or a violin, but it adequately carried most of the
essential musical information into the hands of many people, and
of course evolved into an art medium and a cultural icon of its
own. The piano, like the Macintosh, also helped narrow the gap
between “professional’ technology and “amateur”: the same
works that are performed by concert artists (or published by pro-
fessional software authors) can be played in individuals’ living
rooms, often using the same devices. For many years, the piano
score was the common medium of communication for composers.
Liszt ported many of Bach’s greatest organ works to the piano,
and all of Beethoven’s symphonies, not to show off, but so that

The Personal Orchestra

323

mass musical audiences everywhere could gain access to it. This
roughly parallels personal computers and third party software,
although proprietary data formats prevent substantial software
interchange. One always has to “port” an application. At the
moment, the lack of a good device-independent interchange for-
mat and emulators are preventing exactly this kind of exchange
for synthetic instrument scores. Synthesizers are too heterogene-
ous and disorganized to permit useful exchange of data, and
instrument information is not abstracted (with MIDI) in a way
that would make it easy to re-orchestrate a score optimally for a
local device. Although music control information is so small that
it clearly could be hidden in the cracks of audio CDs, or broadcast
in a sideband of a radio or television channel to implement novel
entertainment media, no publishing or datacasting is likely to hap-
pen until rendering devices are made reasonably homogeneous,
and general enough to emulate orchestration information as well
as simple note lists. It is likely that two key prerequisites for this
will be reliable instrument identification and robust polyphonic
transcription in a way that permits interesting resynthesis.
Further, a variety of representations will have to be attached to
the controlling information to foster a good family of software for
manipulating it. For example, the representation would have to
make it easy to cast a vocal part from voice to LPC to a phonemic
list with a simple pitch-amplitude list, and back, because analysis
and synthesis operations can be applied at many levels.

People can also be very stubborn about accepting new ideas.
Someone once asked composer Edgar Varese why he refused to
adopt the 12-tone serial style, popular with other avant-garde com-
posers. Varese replied: “Just because you have invented the
automobile, doesn’t mean I have to shoot my horse.” We grow
terribly attached to knowledge or other possessions that represent
substantial investment, and there is currently no replacement for
the vitality or sense of humanity conveyed through a live perfor-
mance. But Varese was also reported to have experienced an
unusual thrill when, fairly late in life, he discovered a radical new
representation tool — stacks of graph paper in the supply room at
Bell Laboratories! New tools bring new insights, and future
Beethovens, Liszts, amateurs, or Als will have an interesting time

324 Michael Hawley

of it when personal orchestras and centuries of musical informa-
tion become the norm.

Acknowledgements

This work would not have been possible without the help of many
people:
e Yamaha corporation donated much of the synthesizer
hardware

« Marvin Minsky loaned his Kurzweil synthesizer

« the Bisendorfer piano was purchased by special arrange-
ment from Kimball International, and maintained by Hal
Vincent and others from Kimball

» the IBM PC which controls the piano was donated by the
IBM Scientific Center to our Visible Language group, and
then given by Patrick Purcell there to us

» the Sun workstation was donated by Bill Joy of Sun
Microsystems

o the NeXT workstation was donated by Steve Jobs of NeXT,
Inc.

» Other Kurzweil synthesizers were donated by Ray Kurzweil

« the original MPU-401/Sun work was inherited from Gareth
Loy at UCSD

o the VME MIDI interface was designed and built by Dave
Cumming, working from plans provided by Don Jackson
and Dan Steinberg at Sun

o the new MPU-401 device driver, and many low-level
improvements were contributed by Dan Steinberg at Sun

o Peter Langston of Bellcore contributed much MIDI software

We also thank Robert Rowe for his patience and determina-
tion, and Dave Cumming for his work on hardware, signal pro-
cessing, and driver-level code. Jim Turner from Kimball has
helped us recently with the piano. Discussions with Andy
Moorer, Peter Langston and Henry Massalin have always been
thought-provoking. Advisors Andy Lippman, Barry Vercoe, and
Marvin Minsky have allowed this project to exist, under the

The Personal Orchestra

325

research areas of Movies of the Future and Music and Cognition.
Finally, Nicholas Negroponte deserves a special word of thanks
for helping us mobilize some of the heavier pieces of equipment.
Moving a 1400 pound piano is never easy, and without Professor
Negroponte’s personal support, it would never have joined the
ensemble. Andy Lippman, Henry Massalin, Jim Davis, Peter
Salus, and others provided comments which improved this paper.

326 Michael Hawley

References

Henry Baird, Bibliography on Reading Music by Image Processing of
Scores, AT&T Bell Labs, 2¢-577, 600 Mountain Ave, Murray Hill,
NJ, 07974, April 1987.

Harold Barlow and Sam Morgenstern, A Dictionary of Musical Themes,
Crown Publishers, New York, NY, 1948.

William Buxton, Design Issues in the Foundation of a Computer-Based
Tool for Music Composition, University of Toronto, CSRG-97,
October 1978.

William Buxton, William Reeves, Ronald Baecker, and Leslie Miezei,
The Use of Hierarchy and Instance in a Data Structure for Com-
puter Music, Computer Music Journal 2(4):10-20, 1978.

William Buxton, Sanand Patel, William Reeves, and Ronald Baecker,
Scope In Interactive Score Editors, Computer Music Journal
5(3):50-56, Fall 1981.

David Cope, An Expert System for Computer-assisted Composition,
Computer Music Journal 11(4):30-46, Winter 1987.

Roger Dannenberg and Josh Bloch, Real-Time Computer Accompani-
ment of Keyboard Performances, Proceedings of the 1985 Interna-
tional Computer Music Conference, Computer Music Association,
pages 279-290, 1985.

Roger Dannenberg and Dean Rubine, Arctic: A Functional Language for
Real-Time Systems, Computer Music Journal 10(4):67-78, Winter
1986.

Roger Dannenberg and H. Mukaino, New Techniques for Enhanced
Quality of Computer Accompaniment, Proceedings of the 1988
International Computer Music Conference, Computer Music Asso-
ciation, pages 243-249, 1988.

Shawn L. Decker, Gary Kendall, Brian Schmidt, Derek Ludwig, and
Daniel Freed, A Modular Environment for Sound Synthesis and
Composition, Computer Music Journal 10(4):10-20, Winter 1986.

Lucinda Dewitt and Robert Crowder, Recognition of Novel Melodies
after Brief Delays, Music Perception, 3 #3, pages 259-274, Spring,
1986.

J. Gabura, Music Style Analysis by Computer, in Harry B. Lincoln, ed.,
The Computer and Music, Cornell University Press, 1970.

J. Grey, An Exploration of Musical Timbre, Ph.D. Thesis, Department of
Psychology, Stanford University, 1975.

The Personal Orchestra

327

J. Grey and J. A. Moorer, Perceptual Evaluation of Synthesized Musical
Instrument Tones, Journal of the Acoustical Society of America
62:454-462, 1977.

Michael Hawley and Samuel Leffler, Windows for UNIX at Lucasfilm,
USENIX Proceedings, Summer, 1985.

Michael J. Hawley, MIDI Music Software for UNIX, USENIX Proceed-
ings, Summer, 1986.

M. Kassler, An Essay Towards Specification of a Music Reading
Machine, in B. S. Brook, ed., Musicology and the Computer, New
York: City University of NY Press, 1970.

M. Kassler, Optical Character Recognition of Printed Music, Perspectives
on New Music 11(1), page 250, Fall-Winter 1972.

Henry Kucera and W. Nelson, Computational Analysis of Present-Day
American English, Brown University Press, Providence, RI, 1967.

Peter S. Langston, 201-644-2332, or, Eedie & Eddie on the Wire, USENIX
Proceedings, Summer, 1986.

Peter S. Langston, Little Languages for Music, in this issue of Computing
Systems.

Tod Machover and Joe Chung, Hyperinstruments: Musically Intelligent
and Interactive Performance and Creativity Systems, Proceedings
of the ICMC, 1989.

Henry Massalin, personal communication, 1989.
John Turner Maxwell, Mockingbird Manual, Xerox PARC, January 1982.

John Turner Maxwell and Severo M. Ornstein, Mockingbird: A
Composer’s Amanuensis, Xerox PARC CSL-83-2, January 1983.

Tom Nichols, Library of Congress Sound Recordings Collection, Per-
sonal communication, 1989.

D. S. Prerau, Computer Pattern Recognition of Printed Music, Ph.D.
Thesis, MIT, September 1970.

D. S. Prerau, Computer Pattern Recognition of Standard Engraved
Music Notation, Proceedings of the Fall Joint Computer Confer-
ence, AFIPS Press, Montvale, NJ, November 1971.

D. S. Prerau, DO-RE-MI: A Program that Recognizes Music Notation,
Computers and the Humanities 9:25-29, Pergamon Press, 1975.

Thomas Quatieri and R. J. MacAulay, Speech Transformation Based on
a Sinusoidal Representation, ICASSP, March 1985.

328 Michael Hawley

Ted Ross, The Art of Music Engraving and Processing, Charles Hansen,
New York, 1970.

Robert Rowe, Implementing Real-time Musical Intelligence, Computer
Music Review, to appear.

Alan Ruttenberg, Optical Score Reading, MIT Media Laboratory,
Master’s Thesis, January 1990.

Bill Schottstaedt, PLA — a Composer’s Idea of a Language, Computer
Music Journal 7(1):11-20, Spring 1983.

Bill Schottstaedt, PLA — a Tutorial and Reference Manual, Stanford
University CCRMA, STAN-M-24, December 1984.

John Sloboda, B. Hermelin, and N. O’Connor, An Exceptional Musical
Memory, Music Perception, 3 #2, pages 155-170, Winter 1985.

Leland Smith, Music by Computer, Journal of Music Theory, pages 291-
308, Fall 1983. See also J. Audio Eng Soc 20(1), January 1972.

David Wessel, Timbre Space as Musical Control Structure, Computer
Music Journal, 3(2):45-52, 1979,

Barry Vercoe and Miller Puckette, Synthetic Rehearsal: Training the
Synthetic Performer, ICMC Proceedings (1985), pages 275-278.

[submitted Aug. 2, 1988; revised Nov. 21, 1989; accepted Jan. 3, 1990]

The Personal Orchestra 329

