
CONTROVERSY

Portability -
A No Longer Solved Problem

Stuart Feldman

Bellcore

W. Morven Gentleman

National Research Council of Canada

ABSTRACT: Of Man's First Disobedience, .. . or
Not long ago, the problem of software portability
seemed on the way to solution. Now, the need and
demand for portability is enormously greater, but
solution seems much further away. Reasons include
stricter requirements for portability, different expec-
tations by and of the people doing the work, and a
far wider range of environments in which software
must function. This paper describes how this came
about and modern approaches to the problem.

1. The Innocents Abroad

Program portability is an old goal. There have been many notable
successes, but there has been a major shift in expectations and
satisfaction in the past decade. The flrst efforts were in the areas

of mathematical and systems software, and a great deal of

l. All the section headings refer to actual works; no prize is offered to those who
identify them. -PHS

@ Computing Systems, Vol. 3 'No. 2 ' Spring 1990 359



research led to good practical solutions involving clever software
and concentrated activity. Thus, we find ourselves in the para-
doxical situation of having better techniques and knowledge but in
more trouble and with more grumpy customers.

We contend that almost any program can be made portable,
usually at acceptable production cost and execution effectiveness.
There are many impressive examples. Even embedded systems
with exotic peripherals and real-time constraints, have been suc-
cessfully ported. However, the scale and scope of the problem
have increased dramatically, and techniques need to be extended
and upgraded to meet current demands.

In the old days it was rarely possible to move a system without
change but it was important to avoid reinventing the whole thing.
The idea that something was either portable or not soon
broadened to a continuous measure of how portable an object
was, depending on how much easier it was to move than to re-
create from scratch. It is technically possible to create a com-
pletely portable version of almost any program since it is possible
to reduce it to a Turing machine simulation, but the cost of such
an approach is far too high. With careful study, computer scien-
tists found some significant areas in which high degrees of porta-
bility were achieved at seemingly negligible cost. As a result of
this achievement in limited areas, people are starting to demand
absolute portability again, and in a far richer world.

As the cost of hardware drops, a growing fraction of 'oopera-
tors" are people who make use of computers, but are not
knowledgeable about them, have no desire to delve into their mys-
teries, and do not want to spend time or thought in installing
software.

In the past, moving a program was viewed as an extraordinary
event. It is now the norm for any valuable code. Writing a pro-
gram over from scratch is possible but also expensive, and the
prospect is truly boring if it has to be done more than once.
Many programs evolve radically, and the sequence of'changes can
usefully be described as a port from one machine to itself. If
there are already versions for a number of environments, the func-
tional changes then need to appear in all the environments, so

there may very well be a sequence of parallel ports. This task can
be a nightmare if not controlled carefully, supported by a

360 Stuart Feldman and W. Morven Gentleman



computer, and planned in advance. Conversely, significant
economies are likely if one assumes that many ports will be done,
and that some will be done in parallel. Forethought does indeed
sometimes pay.

Ofcourse, various panaceas have been offered. Language stan-
dardization has been presented as a necessary and sufficient solu-
tion to the software portability problem. (A major selling point of
Ada was that programs would almost automatically be highly port-
able.) Not so. It is often possible to cover language inconsisten-
cies, once they are known, by preprocessing and postprocessing
tricks. The deeper problems are likely to lie in the ineffable inter-
face or the unknowable confrguration description.

Almost all successful portability efforts have been based on
defining an ideal system to which each ported version is the best
possible approximation given certain constraints. There are two
basic approaches, the "Least Common Multiple," in which the
model encompasses all the features that one anticipates encounter-
ing, and the individual ports are subsets of the ideal, and the
"Greatest Common Divisor" approach, in which the ideal
includes the minimal functionality, and the implementations
include some adornments. The GCD approach is likely to be
easier to understand, since the abstraction is simple, but the
results may not be very satisfactory. More imagination and dis-
cipline are required to produce a sensible LCM model, but the
approach is likely to provide better performance over a wide
variety of targets since the model includes all the relevant aspects.
It can be expensive to do an LCM port, but if appropriate tools
are available, it can be straightforward to simulate complex ideas
on a restricted machine. (For example, it is easy to implement an
interpreter for the standard Pascal intermediate language PCODE
and it is easy to translate Pascal into PCODE, but it can be very
hard to optimize clever address expressions and to handle other
such horrors. A more general intermediate is more laborious to
implement, but that work can be mechanized, and it is then easier
to do the hard job of generating good code on a wider variety of
machines.)

Controversy: Portability - A No Longer Solved Problem 36I



2. For Whom the Bell Tolls

The basic reasons for wanting portable systems remain the same:

portability increases the range of environments in which a piece of
work can be applied with reasonable cost. The intellectual or
frnancial costs of developing a serious piece of software can be

amortized over a broader base, so a wider variety of jobs is worth
doing and the rewards for the more obvious items increase. The
maintenance costs can frequently be spread also, since many bugs

and functional enhancements apply to all versions rather than
being target-specifrc. The time to deliver to a market can be

reduced dramatically by applying portability techniques: it is
often the case that writing a program so that it can be ported has

little effect on the time it takes to write the first version, but later
versions can appear almost instantly. Some jobs simply would not
be attempted if they could not be ported cheaply, since they may
require some very scarce resource (typically, human expertise) to
do at all; if an opportunity exists to do something once, it may be

unrealistic to expect to do the job twice. The effective lifetime of
a portable piece of software increases, since it is possible to tran-
sport it temporally to more modern pieces of equipment, not just

to spatially separated ones.
The importance of portability is quite generally recognized. A

recent international committee with the romantic name ISO/IEC

JTC-liTSG-l has as its purpose making a recommendation to its
parent committee what new international standards are needed,

and what existing standards may need adjustment, in order to
improve the portability of application programs.

Portability has advantages to a wide variety of people and
organizations. In addition to the general considerations above,

there are special benefrts to people in particular roles:

. Integrated software system vendors and even hardware ven-
dors are particularþ interested in the ability to change sub-

strate (computing environment) while preserving the surface

level products. They can keep customers who are interested
in a particular operating system or in a particular turnkey
application over a long period of time and a wide spectrum
of technologies.

362 Stuart Feldman and !üy'. Morven Gentleman



. Independent (third-party) software vendors are especially
interested in the ability to increase their market size by
offering their product on a variety of platforms. They can
do this with low redevelopment cost (whether measured in
terms of money, time, or boredom) and without retraining
their support staff.

. System integrators can offer their services in a wide range of
platforms and for a wider range of components to integrate.
They also have a business opportunity of evaluating, port-
ing, and adapting software.

. Developers involved in geographically or corporately
dispersed activity can share ideas and results over a wide
range. This permits achieving critical mass even if indivi-
dual organizations are small and resources are scarce.

. Educators care about portability because it increases the
life-time of the skills they are imparting, permits students to
get experience on a variety of equipment, and to have some
commonality (e.g., programming language and editor)
between courses.

. Naive end users are in favor of portable programs because
they do not need re-training when hardware changes. The
ability to exchange information with others without under-
standing frne distinctions is also of very high value.

. Managers and official decision makers are strongly in favor
of portability because it increase the choice of platforms and
facilitates phased upgrades (it is not necessary to change
everything at once). It avoids illegal favoritism, increases
competition in the marketplace, and leads to lower prices.

. Sophisticated individual users are likely to be pushing limits
of their systems and are prepared to work at a low (code)
level, but like the ability to choose from a variety of pro-
ducts to get around limitations or restrictions and enjoy
access to rarely needed but exceedingly important tools.

A more general value of portability involves interactions with
other tools. If a particular program is found in a variety of con-
texts, and other programs are similarþ (but independently)
ported, then the combination can be considered as a unit by a

Controversy: Portability - A No Longer Solved Problem 363



nser. If one can assume that a particular system will be available,
then it is reasonable to write complicated programs that depend
on interacting with it. The class of objects that are manipulated
provides a level of abstraction that can be used in other programs,

with full expectation that they can be handled properly in another
environment. This idea applies to editors, screen managers, com-
pilers, and a wide variety of other complicated services.

Personal mobility is also enhanced, since one need not re-
create one's intellectual environment on a trip or after a career
change. (Most but not all consider an increase in personal porta-
bility to be a social good. Consider recent events in Eastern
Europe.)

Certain concepts become standard, and need not be defrned
and described each time they are wanted. Terminology can

become widespread even when details change. (There are many
ways to define and implement a pipe or to write a for loop, but
no computer scientist will ask what you mean if you use the
terms. Everyone knows what a byte or a floating point number is,
without an exact definition.)

3. Economics

There are few hard data on portability (or almost any other area
in software engineering). In particular, it is not easy to estimate
the cost ofcreating a program or system to be portable, nor are

there any uniform rules to apply to the costs of using a portable
rather than a bespoke system.

Experience seems to indicate that the costs of doing a system
in a portable manner are usually quite small. It may take intellec-
tual effort and discipline, but the measurable expenses are prob-
ably a small percentage of the original design and implementation.
The major expense comes from the need to test and package the
numerous versions of a sucqessful product.

The efficiency penalties incurred when writing a program in a
general fashion can be quite hard to estimate, and effort estimates
can be thrown off entirely if large amounts of ancillary software
must come with the software being moved. It is not sufficient to
move a subroutine or even a program - an entire world may need

364 Stuart Feldman and Vy'. Morven Gentleman



to be moved. Part of the scaffolding used in developing the sys-

tem may need to migrate with the main software in a well
engineered system; the trickiest parts of a port can involve the ini-
tialization and general support mechanisms.

Nonetheless, as the complexity of the task grows and the
breadth of environments to reach widens, it is necessary to ask if
the goal of portability is still worthwhile and if it is worth paying

the sometimes significant costs.

4. Paradiso

Once upon a time, it seemed that the problem of portability, at
least for numerically based programs, was solved. Excellent
mathematical libraries were available that worked well over a
wide range of machines. They could be made available for a new
range of machine in times ranging from days to a couple of
months, with strong certainty that the effort would result in good

software. A new language, Fortran 77, promised to bring order
out of chaos and to present a safe model for scientific program-
ming. The unpleasant jungle of floating point systems was being
tamed by models to describe the well-behaved parts of most sys-

tems and also by the rapid spread of a well-designed and accepted
(IEEE) Standard. It seemed possible to make programs function
nicely over a wide range of input and output devices, including
fixed-width cards, variable width printers, hard-copy and soft-copy
character terminals. Certain systems, UNIX for example, seemed

to be ñnding use on a wide variety of machines not originally
designed to be a home. This trend would inevitably lead to uni-
form command interfaces and make life even smoother for users.

The issue was so well understood that valuable books such as the
conference proceedings edited by Cowell Í19771, the collection of
articles resulting from a course by Brown U9777, and the mono-
graph by Wallis I l9s2] were published long ago. These books con-
tain descriptions of successful techniques, accurate information,
and insightful articles. Lesser books have since been written
([Dahlstrand 1984; Lecarme & Gart 1986; Henderson 1988]).

Controversy: Portability - A No Longer Solved Problem 365



5. Paradise Lost

Over the last few years, it has been clear that either we have lost
our way or were in a Fool's Paradise. It is not so easy to port
large numerical codes intelligently from a scalar processor to a
parallel machine. This was known long ago, but now many more
people care about the answers because they have vector or array
machines but lack staff to overcome the problems they cause.
Fortran portability problems were addressed and answered quite
satisfactorily, just in time for computer scientists to lose interest
in the language and to press the claims of a broad spectrum of
languages, many with terrible floating point properties. The UNIX
system has continued to spread, but has become fiizzy in the pro-
cess. A raft of versions are in common use (System III, System V,
4.2BSD, 4.3BSD, 4.0, lots of brand-name systems), various stan-
dards activities are underway (POSIX etc.), and some implemen-
tations are unfaithful. A user would be well advised to stick to a
tiny subset of UNIx if faced with a new system, just as he kept
within the uncomfortable PFORT subset of Fortran in the old
days. So, have we carefully unlearned everything we knew?

6. Something Happened

The real problem is that we have become greedy, the world has
become more complicated, and change has accelerated. The Gol-
den Age involved a restricted range of hardware and software
choices, and models had frnally evolved that encased most of the
uninteresting variations. Computers were still relatively rare
birds, the number of providers of fundamental software was small,
and certain users had large leverage on the vendors. Many of the
successes involves mathematical and scientifrc applications, as wit-
nessed by the very large fraction of Wallis's book that refers to
such issues and examples. The other major class of successes
described in the literature has been systems software, in particular
operating systems and compilers. These are of course extremely
important, the techniques have been very impressive (portable
code generators at first appear a contradiction in terms), and the

366 Stuart Feldman and W. Morven Gentleman



result is tools essential for porting other programs, but one must
remember that the goal for most users is portable applications not
portable tools.

Now, there are orders of magnitude more providers of sys-

tems, and any individual buyer can have effect on but a few.
Users no longer buy all their hardware and software from a single
vendor. For example, UNIXJike systems abound; more than a
hundred are available that use the 680x0, but they are not pre-

cisely identical - most would have no market if they were! The
properties of Fortran that made it suitable for use in libraries also
make it uninteresting to the vanguard, since the roots of the
language are almost primeval, and the standardization that makes

it a suitable portability vehicle also guarantees at best glacial pro-
gress. Whole language cultures can flourish and disappear
between revisions of an international standard. We now want to
transport more variegated items, not just number-crunching
processes, but whole systems with complex data and display
requirements.

Some of the basic assumptions underlying portability experi-
ence have been falsified. It used to be a rare and signiflcant event
when a product was to be ported, and the move would be done by
a dedicated (in one sense or another) professional who knew a lot
about the computing environment. In the world of microcomput-
ers, most owners and users are (intentionally) unskilled in the
mysteries of the machine, and see it as a vehicle for their other
tasks, not as an object of inherent interest, and do not wish to
spend time or money on installing or moving software. A piece of
software is likely to be moved by a casual user who has no desire
to follow a long set of steps and to make clever changes to the
installation or operating instructions based on his (nonexistent)
knowledge of his environment. When machines are connected by
a network, users often expect to port software on demand, and to
move software frequently and to perform computations symbioti-
cally on several machines. Such a user is unlikely to give deep

thought to the characteristics of the different environments of the
connected machines, and expects the port to take seconds or
minutes, not days. Such a user is likely to get quite annoyed at
seemingly trivial and usually invisible problems like byte order;
two's complement, one's complement, or sign-and-magnitude

Controversy: Portability - A No Longer Solved Problem 367



arithmetic; absolute rather than relative memory locations in
pointers; and representation of floating point numbers. He is not
likely to be very sympathetic about different ways of storing infor-
mation in frles, or in changing names of global variables or data
references. This lack of dedication comes at a time when the
breadth of detail has increased alarmingly.

7. Enemies of Promise

Our systems grow ever more complex and assume more about
their environment. A typical scientific program no longer does a
mathematical computation and terminates. There is likely to be
some sort of growing data base, complex input specifrcation,
graphical output, and interaction with other and very different
programs. The models that could explain variation among For-
tran processors and floating point units do not stretch well to
cover cascades oflanguages, processors, and peripherals provided
by multitudinous designers and vendors.

The following paragraphs describe some of the current degrees
of variation that we see in the systems to which we might want to
move our software. The naive user (ourselves on bad days) will
assume that the distinctions are all beneath notice and for some-
one else to worry about.

7.1 One Two Three . .. Infinity
(Parallel and Distributed
Computing Models)

For years we could assume a basic single-stream von Neumann
model of computation, and this bias was implicit. The advent of
the cheap microprocessor means that multi-processor
confrgurations will proliferate. (Input/output devices often have
an embedded microprocessor.) At the other end of the economic
spectrum, the only way known to get enonnous throughput on
numerical calculations is through highly parallel machines. Array
co-processors are quite inexpensive for their measured FLOPS
rates, and Class VI supercomputers are no longer scarce. Though
we dare not ignore the computational models that these machines

368 Stuart Feldman and W. Morven Gentleman



present, we do not have any simple description (and certainly no
parametrízation) of this space. Further to enrich our lives and
complicate our descriptions, future machines can be expected to
be inhomogeneous congeries with specialized components for
graphics, floating point, and other well-defined and highly res-
tricted uses.

7.2 Speøk, Memory
(Storage Sizes)

Changing technology presents other opportunities. Memory costs
are dropping fast enough that machines with enonnous memories
are being delivered. High-end machines now demand large stores.
Memories of 64MB or more are common on fast minicomputers
and mainframes; some mainframes cannot be purchased with less

than that amount of memory per processor. Some supercomput-
ers are offered with gigabytes of memory. Virtual memory sys-

tems are common but by no means universal. An algorithm that
is clever on a machine with 64KB of memory is nonsensical on
one with lMB of memory. Certain programs that are right for a

lMB machine will probably prove outlandish for one with l00MB.
(For a concrete example, consider the Fast Fourier Transform.
When space is at a premium, the computation can be done in
place, but at the cost of requiring a "digit reversal" transposing of
the data which is intricate and, especially for mixed radix prob-
lems, time-consuming. If enough memory is available, orderings
of the data at intermediate stages of the algorithm become possi-
ble that can, for example, maximize vector lengths, thus improv-
ing performance on vector machines. If lots more memory is
available, redundant storage of trigonometric values can be used
to further speed the computation.)

It is becoming more common to provide important functions
in ROM, PROM, or on microcode floppies. The lifetime and
change cycle for such pieces of not-so-soft-ware is very different
from that of ordinary user programs, and may involve peculiar
linkage and error signal conventions.

Controversy: Portability - A No Longer Solved Problem 369



7.3 The Sign of Four
(Number Representation)

The success of the IEEE Standard should not blind us to the con-
tinued life of IBM-hex and Cray-style floating point numbers. The
IEEE "standard" is actually a floating point standard generator: it
contains so many implementation options (which subset of the
formats to support, parameters of the extended types if any,
meanings of NaNs, responses to exceptions) that simple software
cannot be written to work over unspecified IEEE Standard
arithmetic.

Integer representations can also cause problems. Most
machines have word lengths that are powers of 2, but the default
integer length is either 16 or 32 depending on hardware architec-
ture or compiler choice. Very interesting bugs can result from
unintended wraparound at 65536. (We may be starting the cycle
again with longer addresses and 64 bit integers.)

Even if the binary representation of quantities is agreed, the
order of bytes is unlikely ever to be settled. Big-Endians and
Little-Endians see no reason to change their ways to accommodate
the others. Combining that freedom with choices of floating point
representations produces the need for messy bit-twiddling pro-
grams which must know the exact format of the data stream on
which they are operating. Moving data between machines then
becomes even more difficult, especially if these delicate programs

to fiddle bits must also be moved and be transformed.

7.4 The Time Machine
(Time Representation)

Representations of time are numerous and contradictory. Julian
seconds are OK but cumbersome. Virtually every other represen-
tation is a mess. Decoding requires knowing abbreviations and
full forms of month names in a variety of languages, rules for leap
seconds, leap days, and leap months in variously formulated lea.p

years, arithmetic in Roman and Arabic numerals, and various
different encodings for negative numbers (BC).

Even with the ability to decode various strings and to produce
similar ones, there are actual dangerous ambiguities. If an

370 Stuart Feldman and W. Morven Gentleman



American is sent a date by a European, the best thing to do is ask

- you cannot tell whether the date is in European order (Europe-
ans typically use d-m-y order) or in Amencan (m-d-y) order, or if a

European has politely reversed the order for American tastes.
Otherwise, if you arranged a meeting on 6-7-89, should you have
shown up on the seventh of June or the sixth of July?

7.5 Gruesome Alphabets
(Character Representations)

EBCDIC is still with us, as are some 6-bit fossils. ASCII is com-
mon, but there are many freedoms for choices of national charac-
ters. The C language uses all but one of the 95 printing characters
in the set, so even a simple printout of a C program is likely to
look strange outside the U.S. Some terminals use the printable
characters to control special functions ("in-band signaling"), so
the result of copying a document to the screen may produce truly
astonishing and nasty results. There is no agreement at all on
representing more general graphics with multiple fonts and larger
character sets. Even issues of whether to use more bits of charac-
ters or shift sequences are not settled. The X3.41 extensions, with
multiple bytes per character, shifts, and loadable character sets,
are a messy solution of the wrong problem.

Related important problems arise when representing words.
The idea of a collating sequence (sorting sequence of individual
characters) is simply not sufficient to sort words. Depending on
context and use. "Mc" and "Mac" alphabetize the same, o'St."

(Saint) alphabetizes before Sir at the beginning of a name but after
it at the end of a name (Street). Rules in other languages are even
more difficult.

7.6 Information Please
(Complex Data)

Even if we can reach some agreement on low-level number and
character representation, the handling of more complex data struc-
tures is very hard. Keeping consistent representations of aggre-
gates, relationships, and pointers can be a nightmare. Efficient
mappings between different databases (relational, entity-relation,

Controversy: Portability - A No Longer Solved Problem 371



hierarchical, object) are not generally possible. Transferring
hypermedia documents among systems can be impossible (if some
of the media are not available on the target) or just very hard.

Luckily, there are some de facto standard representations that
can help. PostScript provides a usable intermediate representa-
tion for complex text (though color and images continue to be real
problems.) Various representations of sounds are also broadly
usable.

There are success stories in the area of commercial comput-
ing: spreadsheet and desktop publishing programs can exchange
information, formatting, and even pictures across machine ranges
and software vendors.

7.7 Flatland
(Higher-Dimensional I/O)

Most of us now use two-dimensional output devices (graphics
screens), and many have quite fine-grained resolution. There is no
standard representation of the abilities of such devices, nor how to
use them to present pictures or even line drawings. There are
crude approaches to describing broad ranges of terminals (the
UNIX termcap facility, X3.64), but these do not really solve the
problem for the coming range of devices. A multi-window capa-
bility can emulate a variety of output devices on a single screen,
but it cannot satisfy varying needs for resolution, color, or
increase the amount of screen area. The increasing availability of
implementations of X.tl at least provide a common model,
despite dissatisfactions.

A single computer will probably have several output units;
even today it is not unknown for a user to have a simple terminal,
a low-resolution color screen, and a high-resolution monochrome
display in close proximity. This is a temporary solution for the
problem that inexpensive computers often have more attractive
output abilities (color, pictures, motion, voice and music) than do
most expensive ("professional") equipment. (The latest worksta-
tions frnally provide acoustic output, but not always input, and, at
a price, high resolution color.) Quality printing used to be the
preserve of specialized firms, then of large organizations; but
printing suitable for publication can now be produced on laser

372 Stuart Feldman and W. Morven Gentleman



printers that are trending toward the hobbyist price range. We do
not have any good way to control the mapping of abilities across
this broad range of resolutions and software. If mixed or propor-
tionally spaced fonts are permitted, simple techniques for locating
or describing pieces of text become senseless. How long till we
have three-dimensional output (stereo screens, milling machines)?

One of the safe assumptions in portability eforts has been that
input would be a linear string of characters from a keyboard, and
that input and output would not interact. The exact representa-
tion and lengths of lines cause discomfort, but programs could be
written easily to circumvent the problems. Pointing devices
(mice, light pens, touchscreens, and so forth) are now ubiquitous,
but we have no generally accepted model for their interaction with
programs. Dynamic reshaping of windows, following cursor
movements, and more exotic interactions are both hard to pro-
gram and describe at present. Menus are a venerable idea, but
there is no standard interface software for producing, presenting,
and signaling them. Each window system has its own idea of a
good way to describe and present menus. How are we to cover
this deficiency in portable programs and still permit use of
hardware to which users ars accustomed?

Perhaps the real problem in trying to develop device-
independent programs is that there are no device-independent
humans.

7.8 The Sound and the Fury
(Acoustic I/O)

Until recently, only inexpensive home computers and large
business-oriented machines came with sound production devices,
the former for sound effects in games, the latter for voice response
to salesmen. There are no\ry a number of devices for producing
sound. There are several standards: MIDI, digital sound (CD
encoding), ¡r-law, analog signals. In addition, there are proprietary
interfaces for speech generation.

There are no generally followed standards for acoustic input.

Controversy: Portability - A No Longer Solved Problem 373



7.9 Wired
(Communications)

Computers communicate, both with humans and with other auto-
mata. Communications systems usually operate in terms of proto-
cols, which are defined more or less exactly. When the definitions
are loose, it becomes very difficult to design software or hardware
to send data to another site. If the definitions are too tight, they
can restrict progress or make some important functions impossi-
ble. The X.3,X28, andX29 communications standards for
start/stop terminals seem benign, but effectively demand half
duplex (alternating one-way rather than simultaneous two-way)
communication over certain classes of network. Obviously, UNIX
systems will work badly over such paths.

Networks have different packet formats, header contents, and
ways of identifying addressees. The situation is sufficiently
anarchic that there is not necessarily a unique parse of a mixed
UUCP and ARPANET (R.I.P.) address.

7.10 Dead Souls
(File Systems)

Almost every computer comes with some form of persistent
modifrable memory, and ways of storing and retrieving data in
that memory. Almost all other aspects of the file or database sys-

tem are variable. The naming scheme is sometime flat, sometimes
tree-oriented, sometimes unconstrained graph-oriented, sometimes
content-addressable. The names often have awful restrictions
(choice of characters, total length of name, number of com-
ponents, or length of individual components) which can make por-
tability peculiarly irksome. The name itself often carries undesir-
able information about file location or purpose; these restrictions
are invisible and highly idiosyncratic. The form of the data that
may be saved or the file system's assumptions about the content
can make it impossible to write certain simple applications in a
portable way. Different systems store ancillary information with
files: modification times, generation or version numbers, enforced
data layout, or impregnable protection schemes.

374 Stuart Feldman and W. Morven Gentleman



The only way around most of these problems is to interpose a
program that models a desired and well-defrned frle system
between the application and the given system, then to try to
implement that model on each system. The implementation pro-
cess is likely to be tedious, and the result to be bulþ, erroneous,
and slow.

7.II Also Sprach Zarathustra
(Languages)

Our old rock, Fortran as lingua franca of scientifrc computation,
has split. Now that Fortran 77 is common, it is suffering the irreg-
ular implementations of most languages. The quirks of the major
implementations are legion, and the compilers have many poorly
tested releases. No PFORTTT has been found in which it is safe to
program. So it is probably time to start worrying about
PFORT-88X.

Fortran is no longer a favored language, and a compiler is
unlikely to be found on most low-cost systems. Even if a compiler
is available, the user may not want to learn that unfortunate
language, and will insist on writing his code in something more
suited to human production. But other languages are in an
equally bad state of standardization: (Do you have K&R C,

ANSI-C, or a mongrel? How Common is your LISP?)

It is common for programs written in different languages to
interact with each other. Even if a user succeeds in writing a

monoglot program, the interface to the operating system will
almost certainly involve a language shift (mixed language pro-
gramming), since these interfaces are frequently governed by the
necessities of hardware architecture or speed of assembly language
coding rather than for meeting the needs of a general language.

People often advocate standards as a solution for problems,
but there are many traps. A standard will either stifle innovation
or force it underground. A standard that is too permissive will
prevent gross bugs, but leave lots of subtle incompatibilities.

Controversy: Portability - A No Longer Solved Problem 37 5



7.12 Cultural Literacy
(System Conventions)

A program must not only provide a basic function, it must fit in
nicely in its new environment. It is necessary that it have the
right "look and feel" and so must be consistent with the expected
human interface and the way other programs in its new neighbor-
hood will react. If everyone else uses menus, you should too. If
terse responses are the norm, reticence is a virtue. (If the system
mimics punch cards, should you put sequence numbers on your
lines?)

7.13 The Whole Earth Catalog
(System Descriptions)

We must cover both finer and broader distinctions if our systems
are to seem portable. In one sense we have returned to the earli-
est days of computing, when every machine was hand-crafted and
very different from the others. A purchaser of a workstation or
personal computer is likely to pick a configuration or get a set of
boards that is detectably different from most others. He will also
buy software components from a multitude of vendors, and these
too will differ from those used by his friends. These differences
may be at a very fine level (choice of processor or memory level,
particular ROM or co-processor), but the software ought to con-
form gracefully to these alternatives. We are also accustomed to
being able to run on an enonnous variety of systems, and a scien-
tist will think nothing of using four different systems in a single
day. She will not even think about the name of the manufacturer
(and may have no idea or interest if it is one of a herd of clones
of a popular make) and does not want to know anything at all
about systems used by her friends when they send mail or files.
This insouciance represents on one hand a triumph of portability,
but presents an enormous challenge. Systems still provide a huge
variety of facilities: multi-tasking, inter-process communication,
real-time control, asynchronous input and output, interrupt or
exception detection and recovery. The alternatives seem either to
program assuming a basic 1965 computer and to ignore twenty

376 Stuart Feldman and Vy'. Morven Gentleman



years of progress, or to find some way to encompass this variety.
The latter we have so far failed to do.

8. Pqtterns of Culture

Further demands are caused by the world-wide marketplace. It is
now common that the hardware must be able to run on 50/60H2,
ll0/220V in frigid or blistering temperatures, and must be able to
produce a variety of scripts. The demands of international and
trans-cultural use are even tougher on the software.

It is not always sufficient for a computer to read and write and
speak English. At the simplest level, different sets of translation
tables and comment strings and digital sound recordings are
needed. At a deeper level, there are cultural assumptions. One
was mentioned in the section on time representations. For
another, what should the output of an accounts payable system
be? In America, it is likely to be a check. In Europe, a wire
transfer to a GIRo account or a direct deposit into a bank account
is more common. There are complex systems whose only function
is to arrange complex barter arrangements for countries with
inconvertible currencies. certain information that is required in
databases in some countries is forbidden in others. That fact will
surely affect choice of sort keys!

The requirements of transculturalization are really those of
program portability writ large: one needs to anticipate the
breadth ofchanges and be prepared to adapt broadly.

9. Atlas Shrugged

A very general problem, covering many special aspects, involves
the context in which a program runs. Must the program carry its
entire world \4'ith it? If a program needs to solve linear equations,
should it assume the presence of a some particular commercial
library, should the package come with a license for the relevant
library, or should it contain a copy of the routines needed to do
the calculation? How does the program find out about certain sys-
tem information? Even on similar systems, the locations of

Controversy: Portability - A No Longer Solved problem 377



certain files may vary - what directory holds which commands or
tables? What names are bad? (It is probably a serious misfortune

to have login name "tmp" on a UNIX system.) Some programs

can use different methods depending on what resources (tem-

porary frles, real primary memory) are currently available, but
there is no convenient and portable way to get the necessary

information.

10. Pilgrim's Progress

Users are starting to see a glimmering of help.

. Certain popular programs run on a variety of systems, and

their users are quite happy without knowing how much
work the vendor had to do. The major spreadsheet pro-
grams and many computer games are in this category.

. The porting of Wordstar to essentially all CP/M machines

and PC lookalikes was a triumph of portability and clever

work. If a program is sufficiently valuable, massive efforts

can be justifred.

. The major mathematics libraries have been rewritten with
the vector machines in mind, so it is likely that decent if not
brilliant performance will be achieved on parallel machines.

. There are (at least two, alas) graphics standards, and there is

growing use of a printing standard. Basing programs on

them may permit intelligent use of output devices of varying
quality without distorting the application program.

. Network standards have been published and are having
strong impacts. There are too many of them, and they are

still too vague in places (especially at the higþer levels of
abstraction), but on many systems it is feasible to plug in
hardware that masters most of the low-level complexities.

. Some systems are self-identifying: it is possible for a pro-
gram to discover directly on what hardware confrguration or
system version it is currently running, so that it can

automatically reconfigure itself. Without this information,

378 Stuart Feldman and Vy'. Morven Gentleman



programs must resort to extremely unreliable coding tricks
for guessing their immediate environment.

At a higher level, there seem to be some points in system
design with promise as narrow places to manipulate for standardi-
zation. Ideas about user interface are not settled, but some groups
seem to reaching agreement on user interface management sys-
tems so it may be possible to introduce descriptions of the win-
dowing world and menu-like inputs that can be comprehended by
a wide variety of user programs and of hardware implementations.
A language like PostScript may provide a low-level printing inter-
face between disparate environments, now that low-cost high-
quality laser printers are available that support the language.

Il. Look Homeward, Angel

It may be useful to look at some other industry's attempts at stan-
dardization and portability for hints about good approaches and
objectives. For a moment, consider cameras. These days, most
film packages are self-describing, so a fancy camera can tell what
speed and color properties it has. Cheaper cameras still require
the user to check the box and turn a dial on the camera. How-
ever, no camera manufacturer expects you to use its own brand of
film (unless the camera is disposable); new formats are introduced
with greatest trepidation. The operating characteristics of most
cameras are very similar; once you have learned to focus and set
apertures and speed settings, most other hobbyist equipment will
provide a subset of the features you know about. Some manufac-
turers force you to use their accessories (lenses, etc.) to maintain
quality or profit margins, but many others follow informal stan-
dards, so that a wide variety of lenses can be bought and plugged
into many cameras. It is necessary to know the family to which
your camera belongs, but you can then often ignore the details.

Sound familiar? Many computer users know they have an
IBM PC or a clone thereof, but frequently don't remember what
kind they bought. They are similarly unlikely to remember the
vintage of their Macintosh or other multi-version product. They
certainly don't want to think about what release of the underlying
system they are running, nor do they buy updates just because

Controversy: Portability - A No Longer Solved Problem 379



they are offered. It is the responsibility (both technical and
economic) of a system provider to handle these problems and not
bother the poor owner with them. The objective of portability
research and application is to make work as generally available as

makes sense at low costs in time, energy, and resources.
The most successful single approach is to define an ideal that

contains the substance of the desired product. One should then
use tools (homemade or commercial, as necessary) to create
specifrc implementations. The limits of portability are then
defined by the scope of one's model and the power of one's tools
and the motivation to proceed. The success of the effort depends
crucially on the artfulness of the choice of what to include in the
model and what to exclude.

References

Peter J. Brown, ed., Software Portability: an advanced course, Cam-
bridge University Press, 1977.

Wayne Cowell, ed., Portability of Numerical Software, Lecture Notes in
Computer Science 57, Springer-Yetlag, 1977.

Ingemar Dahlstrand, Software Portability and Standørds, John Wiley,
l.IY, 1984.

John Henderson, Software Portability, Gower, London, 1988.

Olivier Lecarme and Mireille Pellissier Gart, Software Portability,
McGraw-Hill, NY, 1986.

Peter J. L. Wallis, Portable Programming, MacMillan Ltd., London,
1982.

fsubmitted Sept. 4, 1989; revised Dec. 1, 1989; accepted Dec. 18, 1989]

380 Stuart Feldman and rü. Morven Gentleman


