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ABSTRACT: The Ct+ Programming Language

[Stroustrup 1986] describes Cr+ as defrned and

implemented in August 1985. This paper describes

the growth of the language since then and clarifies a
few points in the defrnition. It is emphasized that
these language modifications are extensions; Cr+
has been and will remain a stable language suitable
for long term software development. The main new

featurei of Cr-+ are: multiple inheritance, type-safe
linkage, better resolution of overloaded functions,
recuriive definition of assignment and initialization,
better facilities for user-defrned memory manage-

ment, abstract classes, static member functions,
const member functions, protected members, over-
loading of operator ->, and pointers to members.

These features are provided in the 2.0 release

of Cr+.

This paper is a revised and expanded version of a paper with a similar title.
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0. Introduction

As promised in The C++ Programming Language, C++ has been
evolving to meet the needs of its users. This evolution has been
guided by the experience of users of widely varying backgrounds
working in a great range of application areas. The primary aim of
the extensions has been to enhance C++ as a language for data
abstraction and object-oriented programming IStroustrup I 987a]
in general and to enhance it as a tool for writing high-quality
libraries of user-defined types in particular. By a high-quality
library I mean a library that provides a concept to a user in the
form of one or more classes that are convenient, safe, and efficient
to use. In this context, safe means that a class provides a specific
type-secure interface between the users of the library and its pro-
viders; fficient means that use of the class does not impose large
overhead in run-time or space on the user compared with hand
written C code.

Portability of at least some C+r implementations is a key
design goal. Consequently, extensions that would add significantly
to the porting time or to the demands on resources for a Cr+
compiler have been avoided. This ideal of language evolution can
be contrasted with plausible alternative directions such as making
programming convenient

o at the expense of efficiency or structure;
. for novices at the expense of generality;

. in a specific application area by adding special purpose
features to the language;

. by adding language features to increase integration into a
specific C++ environment.
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For some ideas of where these ideas of language evolution might
lead C+r see Stroustrup 1987a, b; 1989.

A programming language is only one part of a programmer's
world. Naturally, work is being done in many other fields (such as

tools, environments, libraries, education and design methods) to
make C++ programming more pleasant and effective. This paper,

however, deals strictly with language and language implementation
issues. Furthermore, this paper discusses only features that are
generally available. Speculative or experimental features, such as

exception handling and parameterized types, are not presented

here.

1. Overview

This paper is a brief overview of new language features; it is not a

manualr or a tutorial. The reader is assumed to be familiar with
the language as described in The C++ Programming Langaage and
to have sufficient experience with C++ to recognize many of the
problems that the features described here are designed to solve or
alleviate. Most of the extensions take the form of removing res-

trictions on what can be expressed in Cr-+.
First some extensions to Cl+'s mechanisms for controlling

access to class members are presented. Like all extensions
described here, they reflect experience with the mechanisms they
extend and the increased demands posed by the use of C++ in
relatively large and complicated projects:

Access Control ($2)

C++ software is increasingly constructed by combining semi-
independent components (modules, classes, libraries, etc.) and
much of the effort involved in writing C++ goes into the design
and implementation of such components. To help these activities,
the rules for overloading function names and the rules for linking
separately compiled code have been refined:

Overloading Resolution ($3)

Type-Safe Linkage ($a)

l. A revised C+r manual is under review and will appear later this year.
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Classes are designed to represent general or application-specific
concepts. Originally, Cr+ provided only single inheritance, that
is, a class could have at most one direct base class, so that the
directly representable relations between classes had to be a tree
structure. This is sufficient in a large majority of cases. However,
there are important concepts for which relations cannot be natur-
ally expressed as a tree, but where a directed acyclic graph is suit-
able. As a consequence, C++ has been extended to support multi-
ple inheritance, that is, a class can have several immediate base
classes, directly. The rules for ambiguity resolution and for ini-
tialization of base classes and members have been refined to cope
with this extension:

Multiple Inheritance (g 5)

Base and Member Initialization ($6)
Abstract Classes ($7)

The concept of a class member has been generalized. Most
important, the introduction of const member functions allows the
rules for const class objects to be enforced:

static Member Functions ($8)
const Member Functions ($9)
Initialization of static Members ($t0)
Pointers to Members ($ t t)

The mechanisms for user-defrned memory management have
been refined and extended to the point where the old and inele-
gant "assignment to this" mechanism has become redundant:

User-Defrned Free Store Management ($ l2)

The rules for assignment and initialization of class objects
have been made more general and uniform to require less work
from the programmer:

Assignment and Initialization ($13)

Some minor extensions are presented:
Operator -> ($ 14)

Operator , ($15)
Initialization of static objects ($16)

The last section does not describe language extensions but
presents the resolution of some details of the Cr-+ language
definition:

Resolutions ($ t7)
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In addition to the extensions mentioned here, many details of
the definition of C+r have been modified for greater compatibility
with the proposed ANSI C standard IANSI 1988].

2. Access Control

The rules and syntax for controlling access to class members have

been made more flexible.

2.1 protected Members

The simple private/public model of data hiding served C++ well
where C++ was used essentially as a data abstraction language and
for a large class of problems where inheritance was used for
object-oriented programming. However, when derived classes are

used there are two kinds of users of a class: derived classes and
"the general public." The members and friends that implement
the operations on the class operate on the class objects on behalf
of these users. The private/public mechanism allows the program-
mer to distinguish clearly between the implementers and the gen-

eral public, but does not provide a way of catering specifically to
derived classes.2 This often caused the data hiding mechanisms to
be ignored:

ctass X { ll One bad way:
/t ...

publ.ic:
int ai // ' ta'r shou[d have been private

',', l"Î.ioi:"" l' ""*:ìi"ä"T, 3 !3
il ...

ji

Another symptom of this problem was overuse of friend
declarations:

An interesting discussion ofaccess and encapsulation problems in languages with
inheritance mechanisms can be found in Snyder [ 1986].
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ctass X { // Another bad way:
friend ctass D1; ll make derived classes friends to
friend class D2¡ tt give access to private member tal
u .-.
friend ctass Dn;u...

int a;
publ. i c:

);
The solution adopted r¡ras protected members. A protected

member is accessible to members and friends of a derived class as
if it were publ ic, but inaccessible to "the general public" just like
private members. For example:

ctass X {
ll private by defauIt:

int priv;
protected:

int prot;
pubt ic:

int pubt;
);
classY:pubticX{

void mf();
);
Y::mf ()
{

priv = 1; ll error: priv is private
prot = 2; I I OK: prot is protected

ll and mf() is a nember of Y

Publ = 5; // 0K: Publ. is Pubtic
)
void f(y* p)
t

p->priv = 1i ll error: priv is private
p-)prot = 2; ll error: prot is protected

ll and f() is not a friend
ll or a member of X or Y

p->publ. = 5; // 0K: pubL is pub[ic
)

A more realistic example of the use of protected can be found
in section 5.
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A f riend function has the same access to protected members
as a member function.

A subtle point is that accessibility of protected members
depends on the static type of the pointer used in the access. A
member or a friend of a derived class has access only to protected
members of objects that are known to be of its derived type. For
example:

class Z : publ.ic Y {u ...
);
void Y::mf()
{

prot = 2; ll OK: prot is protected and
ll mf() is a member

Xa;
a.prot = 3; ll error: prot is protected and

ll aisnotaY
x* P = this;
p-)prot = 3; ll error: prot is protected and

ll p is not a pointer to Y

zb¡
b.prot = 4; ll OK: prot is protected and

ll mf() is a member and
ll a Z is a Y

)

A protected member of a class base is a protected member of
a class derived from base if the derivation is public and private
otherwise.

2.2 Access Control Syntax

The following example confuses most beginners and even experts
get bitten sometimes:

ctass X {u ...
publ Í c:

int f()i
>,

ctassY:X{l*...*l}i
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int g(y* p)
{ u -..

return p->f()i ll erroel
);

Here x is by default declaredto be a private base class of v.
This means that y is not a subtype of x so the call p->f ( I is ille-
gal because v does not have a public function f ( ). Private base
classes are quite an important concept, but to avoid confusion it is
recommended that they be declared private explicitly:

ctass Y : private X { l* ... *l }i
Several pubI ic, private, ârrd protected sections are allowed

in a class declaration:

ctass X {
publ i c:

int i1;
pr i vate:

int i2;
publ ic:

int i3;
,ì

These sections can appear in any order. This implies that the
public interface of a class may appear textually before the private
"implementation details":

ctass S {
pubt i c:

f();
int i 1;u ...

pr i vate:
s( );
int i2;
il ...

);

2.3 Adjusting Access

When a class base is used as a private base class all of its
members are considered private members of the derived class.
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The syntax base-class-name =: member-name can be used to
restore access of a member to what it was in the base:

ctass base {
publ. i c:

int publ.;
protected:

int prot;
pr i vate:

int priv;
);
ctass derived : private base {
protected:

base::prot; // Protected in derived
pubt i c:

base::publ.; // pubt ic in derived
);

This mechanism cannot be used to grant access that was not
already granted by the base class:

ctass derivedZ : pubtic base t
pubLic:

base::priv; I I error: base::priv is private
);

This mechanism can be used only to restore access to what it was

in the base class:

cIass derivedS : private base {
protected:

base::publ.; I I error: base::pubI was pubI ic
Ii

This mechanism cannot be used to remove access already granted:

cIass derived4 : public base {
pr i vate:

base: :publ.; I I error: base: :pubI is publ' ic
I,

We considered allowing the last two forms and experimented with
them, but found that they caused total confusion among users

about the access control rules and the rules for private and public
derivation. Similar considerations led to the decision not to intro-
duce the (otherwise perfectly reasonable) concept of protected base

classes.
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2.4 Details

A friend function has the same access to base class members as a
member function. For example:

class base {
protected:

int prot;
pubt ic:

int pub;
);
ctass derived : private base {
pubt i c:

friend int fr(derived *p) { return p-)prot; }
int mem() { return prot; }

);
In particular, a friend function can perform the conversion of a
pointer to a derived class to its private base class:

class derivedZ : private base {
pubIic:

friend base* frZ(derived2 *p) { return p; }
base* mem() { return this; }

>i

base* f(derived2* p)
{

return p; ll error: cannot convert; base is a
ll private base class of derived

)

However, friendship is not transitive. For example:

ctass X {
friend class Y;
pr i vate:

int a;
>,

ctass Y {
friend int fr3(y *p)

{ return p->a; > ll error: fr5() is not
ll a friend of X

int mem(y* p)
{ return p->a; } ll 0K: mem() is a friend of X

);
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3. Overloading Resolution

The C++ overloading mechanism was revised to allow resolution
of types that used to be "too similar" and to gain independence of
declaration order. The resulting scheme is more expressive and

catches more ambiguity errors. Consider:

doubte abs(doubLe);
fIoat abs(fLoat);

To cope with single precision floating point arithmetic it must be

possible to declare both of these functions; now it is. The effect of
any call of abs(l given the declarations above is the same if the
order of declarations was reversed:

f Ioat abs(fl.oat);
doubIe abs(doubIe);

Here is a slightly simplified explanation of the new rules.

Note that with the exception of a few cases where the the older
rules allowed order dependence the new rules are compatible and

old programs produce identical results under the new rules. For
the last two years or so C++ implementations have issued warn-
ings for the now "outlawed" order dependent resolutions.

C++ distinguishes 5 kinds of "matches":

l. Match using no or only unavoidable conversions (for exam-
ple, array name to pointer, function name to pointer to
function, and t to const T).

2. Match using integral promotions (as defined in the proposed

ANSI C standard; that is, char to int, short to int and

their unsigned counterparts) and tl.oat to doubte.

3. Match using standard conversions (for example, int to
doubte, derived* to base*, unsigned int to int).

4. Match using user defined conversions (both constructors and

conversion operators).

5. Match using the ellipsis ... in a function declaration.

Consider frrst functions of a single argument. The idea is

always to choose the "best" match, that is the one highest on the
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list above. If there are two best matches the call is ambiguous and
thus a compile time error. For example,

ftoat abs(ftoat);
double abs(doubte);
int abs(int);
unsigned abs(unsi gned) ;
char abs(char);

abs(1); // abs(int);
abs(1U), I I abs(unsigned);
abs(1.0); // abs(doubte);
abs(1.0F)¡ l l abs(fLoat);
abs('ar ); // abs(char);
abs(11)i ll error: ambiguous, abs(int) or abs(doubte)

Here, the calls take advantage of the ANSI C notation for
unsigned and f toat literals and of the C++ rule that a character
constant is of type char.3 The call with the t,ons argument 1L is
ambiguous since abs(int) and abs(doubl,e> would be equally
good matches (match with standard conversion).

Hierarchies established by public class derivations are taken
into account in function matching, and where a standard conver-
sion is needed the conversion to the "most derived" class is
chosen. A void* argument is chosen only if no other pointer
argument matches. For example:

class B { l* ... *l }i
ctass BB : pubtic B { l* ... *l },
ctass BBB : pubtic BB { /* ... *l l,
f (B*) ;
f(BB*);
f(void*);
void g(BBB* pbbb, ¡n¡* pi)
{

f(pbbb)ì ll f(BB*);
f(pi)i ll f(void*);

)

3. Surprisingly, giving character constants type char does not cause incompatibilities
with C where they have type i nt. Except for the pathological example
sizeof( rår ), every oonstruct that can be expressed in both C and C++ gives the
same result. The reason for the surprising compatibility is that even though charac-
ter conslants have type int in C, the rules for determining the values of such con-
stants involves the standard conversion from char to int.
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This ambiguity resolution rule matches the rule for virtual
function calls where the member from the most derived class is

chosen.
If two otherwise equally good matches differ in terms of

consto the const specifrer is taken into account in function match-
ing for pointer and reference arguments. For example:

char* strtok(char*, const char*);
const char* strtok(const char*, const char*);

void g(char* vc, const char* vcc)
t

// strtok(char*, char*);
char* p1 = strtok(vcrnarr)-

// strtok(const char*, char*);
const char* p2 = strtok(vccrrtatt);
char* p3 = strtok(vcc,',4,t); /l error

)

In the third case, strtok(const char*, const char*) is chosen

because vcc is a const char*. This leads to an attempt to initial-
ize the char* pl with the const char* result.

For calls involving more than one argument a function is

chosen provided it has a better match than every other function
for at least one argument and at least as good a match as every

other function for every argument. For example:

ctass compIex t l* ... *l comptex(doubl'e); ]i
f(int,doubIe);
f(doubte, int);
f(comptex,int);
f(int ...);
f(comptex .. . );
comptex z = 1i

f11, 2.0)¡ l/ f(int,doubte);
f (.0, 2); // f(doubte, int);
f(2, 1.2ri I I Í(conPlex,int);
f(2, 1, 3>ì ll f(comPtex ...);
Í(2.0, z\, ll Í<int...);
f(1, 1r, ll error: ambiguous, f(int,doubte) and

I I f(double, int)

The unfortunate narrowing from doubl"e to int in the third and

the second to last cases causes warnings. Such narrowings are

allowed to preserve compatibility with C. In this particular case
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the narrowing is harmless, but in many cases doubt.e to int
conversions are value destroying and they should never be used
thoughtlessly.

As ever, at most one user-defined and one built-in conversion
may be applied to a single argument.

4. Type-Safe Linkage

Originally, C+r allowed a name to be used for more than one
name ("to be overloaded") only after an explicit overtoad
declaration. For example:

overtoad max; ll tovertoad' no¡r obsotete
int max(int,int);
doubIe max(doubte,doubte) ;

It used to be considered too dangerous simply to use a name for
two functions without previous declaration of intent. For
example:

int abs( int);
doubte abs(doubl.e); // used to be an error

This fear of overloading had two sources:

l. concern that undetected ambiguities could occur

2. concern that a program could not be properly linked unless
the programmer explicitly declared where overloading was
to take place.

The former fear proved largely groundless and the few problems
found in actual use have been taken care ofby the new order-
independent overloading resolution rules. The latter fear proved
to have a basis in a general problem with C separate compilation
rules that had nothing to do with overloading.

On the other hand, the redundant over toad declarations them-
selves became an increasingly serious problem. Since they had to
precede (or be part oÐ the declarations they were to enable, it was
not possible to merge pieces of software using the same function
name for different functions unless both pieces had declared the
function overloaded. This is not usually the case. In particular,
the name one wants to overload is often the name of a C standard
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library function declared in a C header. For example, one might
have standard headers like this:

/* Header for C standard math Library, math.h= *l
doubte sqrt(doubl,e);
l* ... *l

ll header for C++ standard comptex arithmetic Iibrary,
// comPtex.h:

overload sqrt;
comptex sqrt(compIex) ;
il...

and try to use them like this:

#inctude (math.h)
#inctude (comptex.h)

This causes a compile time error when the overl.oad for sqrt() is
seen after the first declaration of sqrt(). Rearranging declara-
tions, putting constraints on the use of header files, and sprinkling
overtoad declarations everywhere 'Just in case" can alleviate this
kind of problem, but we found the use of such tricks unmanage-
able in all but the simplest cases. Abolishing overtoad declara-
tions and getting rid of the over L oad keyword in the process is a
much better idea.

Doing things this way does pose an implementation problem,
though. When a single name is used for several functions, one
must be able to tell the linker which calls are to be linked to
which function definitions. Ordinary linkers are not equipped to
handle several functions with the same name. However, they can

be tricked into handling overloaded names by encoding type infor-
mation into the names seen by the linker. For example, the
names for these two functions

doubIe sqrt(doubte);
comptex sqrt(comptex) ;

become

sqrt--Fd
sqrt--FTcomp I ex

in the compiler output to the linker. The user and the compiler
see the C++ source text where the type information serves to
disambiguate and the linker sees the names that have been
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disambiguated by adding a textual representation of the type
information. Naturally, one might have a linker that understood
about type information, but it is not necessary and such linkers
are certainly not common.

Using this encoding or any equivalent scheme solves a long-
standing problem with C linkage. Inconsistent function declara-
tions in separately compiled code fragments are now caught. For
example,

/l 1ite1.c:
extern name* Lookup(tabte* tbt, const char* name);

u ...
void some-fct(char* s)
t

name* n = tookup(gtbt,s);
)

looks plausible and the compiler can frnd no fault with it. How-
ever, if the definition of lookup() turns out to be

/l fite2.c:
Iookup(const char* name)

)

the linker now has enough information to catch the error.
Finally, we have to face the problem of linking to code frag-

ments written in other languages that do not know the C++ type
system or use the C++ type encoding scheme. One could imagine
all compilers for all languages on a system agreeing on a type sys-
tem and a linkage scheme such that linkage of code fragments
written in different languages would be safe. However, since this
will not typically be the case we need a way of calling functions
written in a language that does not use a type-safe linkage scheme
and a way to write Cr-+ functions that obey the different (and typi-
cally unsafe) linkage rules for other languages. This is done by
explicitly specifying the name of the desired linkage convention in
a declaration:

extern rrCil doubIe sqrt(doubl.e);
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or by enclosing whole groups of declarations in a linkage directive:

extern rrCrr {
#inctude (math.h)
)

By applying the second form of linkage directive to standard
header files one can avoid littering the user code with linkage
directives. This type-safe linkage mechanism is discussed in detail
in Stroustrup [1988].

5. Multiple Inheritance

Consider writing a simulation of a network of computers. Each
node in the network is represented by an object of class sr{itch,
each user or computer by an object ofclass Terminat, and each

communication line by an object of class L i ne. One way to moni-
tor the simulation (or a real network of the same structure) would
be to display the state of objects of various classes on a screen.

Each object to be displayed is represented as an object of class

Displ.ayed. Objects of class oisptayed are under control of a
display manager that ensures regular update of a screen and/or
data base. The classes Terminal and switch are derived from a
class Task that provides the basic facilities for co-routine style
behavior. Objects ofclass Task are under control ofa task
manager (scheduler) that manages the real processor(s).

Ideally, Task ând Displ.ayed are classes from a standard
library. If you want to display a terminal, class Terminal must be

derived from class Displ.ayed. Class termina[, however, is
already derived from class Task. In a single inheritance language,

such as Simula67, we have only two ways of solving this problem:
deriving Task from Displ.ayed or deriving Displ.ayed from Task.

Neither is ideal because they each create a dependency between
the library versions of two fundamental and independent con-
cepts. Ideally, one would want to be able to say that a Terminal
is a task and a Displ.ayed; that a Line is a Disptayed but not a
task; and that a Switch is a task but not a Displ.ayed.

The ability to express this class hierarchy, that is, to derive a
class from more than one base class, is usually referred to as
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multiple inheritance. Other examples involve the representation
of various kinds of windows in a window system [Weinreb &
Moon l98l] and the representation of various kinds of processors

and compilers for a multi-machine, multi-environment debugger

ICargill 1986].
In general, multiple inheritance allows a user to combine con-

cepts represented as classes into a composite concept represented
as a derived class. C++ allows this to be done in a general, type-
safe, compact, and efficient manner. The basic scheme allows
independent concepts to be combined and ambiguities to be
detected at compile time. An extension of the base class concept,
called virtual base classes, allows dependencies between classes in
an inheritance DAG (Directed Acyclic Graph) to be expressed.

5.1 Ambiguity Detection

Ambiguous uses are detected at compile time:

ctass A { publ,ic: f ()¡ /* ... t l }i
cIass B t publ.ic: f(); /* ... r,/ ];
ctass C : publ.ic A, pubtic B { }i
void g() t

c* p;
p->f(); ll error: ambiguous

)

Note that it is not an error to combine classes containing the same
member names in an inheritance DAG. The error occurs only
when a name is used in an ambiguous way - and only then does
the compiler have to reject the program. This is important since
most potential ambiguities in a program never appear as actual
ambiguities. Considering a potential ambiguity an error would be
far too restrictive.a

Typically one would resolve the ambiguity by adding a

function:

4. The strategy for dealing with ambiguities in inheritance DAcs is essentially the same
as the strategy for dealing with ambiguities in expression evaluation involving over-
loaded operators and user-defrned coercions. Note that the access control mechan-
ism does not afect the ambiguity control mechanism. Had a: : f ( ) been pr i vate
the call p->f () would still be ambiguous.
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ctass C : pubtic A, public B {
pubtic:

f()
t

ll Cts own stuff
A::f()i
a::f();

);
This example shows the usefulness of naming members of a

base class explicitly with the name of the base class. In the res-

tricted case of single inheritance, this way is marginally less

elegant than the approach taken by Smalltalk and other languages
(simply referring to "my super class" instead of using an explicit
name). However, the Cr+ approach extends cleanly to multiple
inheritance.

In this context it might be worth noting that v: : f means "the
f from class Y or one of Y's base classes" and not simply "the f
declared in class Y." For example:

ctass X t publ.ic: int f(); );
class Y : publ.ic X { }i
class Z: publ.ic Y { publ.ic: f(); };
int Z::f() { return Y::f(); } ll cal.l.s the X::f()

5.2 Multiple Inclusion

A class can appear more than once in an inheritance DAG:

ctass A : publ.ic L { lt ... *l }i
ctass B : publ ic L t l* ... *l ]i
ctass C: publ.ic A, pubtic B { l* ... *l }i

In this case, an object of class c has two sub-objects of class t,
namely A: : L and B: : L. This is often useful, as in the case of an
implementation of lists requiring each element on a list to contain
a link element. If, in the example above, t is a link class, then a
c can be on both the list of ns and the list of gs at the same time.

Virtual functions work as expected; that is, the version from
the most derived class is used:

)
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ctass A t publ. ic: virtuaI l(ri lt ... *l >i
ctass B { publ.ic: virtuaI g(); /* -.. *l ]i
ctass C : publ. ic A, publ ic B

{ Publ'ic: f(); gcli lt' --- *l },
void ff()
{

C obj;
A* pa = &obj;
B* pb = &obj i
pa_>f()i /l calls c::f
Pb->g(); ll calts C::g

)

This way of combining classes is ideal for representing the
union of independent or nearly independent concepts. However,
in some interesting cases, such as the window example, a more
explicit way of expressing sharing and dependency is needed.

5.3 Virtual Base Classes

Virtual base classes provide a mechanism for sharing between
sub-objects in an inheritance DAG and for expressing dependen-
cies among such sub-objects:

class A: publ.ic virtual w { l* ... r,/ t;
ctass B : publ. ic virtuaI W { l* ... t'I >i
cIass C : publ.ic A, pubtic B,

publ.ic virtual U { l* ... */ };
In this case there is only one object of class w in class c.

A virtual base class is considered an immediate virtual base
class of every class directly or indirectly derived from it. There-
fore, the explicit specification of w as a base of c is redundant.
Class c could equivalently be declared like this:

ctass C : pubt ic A, publ ic B { Itc ... t'/ }i

I prefer to mention the virtual base explicitly, though, since the
presence of a virtual base typically affects the way member func-
tions are programmed (see below).

Constructing the tables for virtual function calls can get quite
complicated when virtual base classes are used. However, virtual
functions work as usual by choosing the version from the most
derived class in a call:
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ctass l, {u ...
pubtic:

virtuaI void f();
virtuat void g();
virtual void h();
virtual void k();u ...

);
ctass AU : pubtic virtual ]l

{ lt ... */ publ.ic: void s(>ì l* ... *l }ì
ctass Btl : publ.ic virtuaI brl

{ l* ... */ pubtic: void f(r, lt ..- tl }i
ctass Gtl : pubLic Atl, publ,ic BLl, publ.ic virtuaI tl {u -..
pubtic:

void h()iu...
Iì
CU* pcw = ne!, Cl{;

pcw->f( ); // invokes BU: : f( )
pc¡r-)g(); // invokes All::g()
pcw-)h()i // invokes Cll::h()
((AlJ*)pc¡r)->f()i l/ invokes Bll::f() !!!

The reason that BU::f () is invoked in the last example is that
the only f ( ) in an object of class ctJ is the one found in the
(shared) sub-object t, and that one has been overridden by
Btl::f ().

Ambiguities are easily detected at the point where ctt's table of
virtual functions is constructed. The rule for detecting ambigui-
ties in a class DAG is that all re-definitions of a virtual function
from a virtual base class must occur on a single path through the
DAG. The example above can be drawn like this:

w(fshk)

AW{e w{f}\
B

-/
)(h

-/
)

\
cw
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Note that a call n'up" through one path of the DAG to a virtual
function may result in the call of a function (re-defined) in
another path (as happened in the call <(AlJ*)pcw)->t<l in the
example above). In this example, an ambiguity would occur if a
function f ( ) was added to At,. This ambiguity might be resolved
by adding a function f () to cu.

Programming with virtual bases is trickier than programming
with non-virtual bases. The problem is to avoid multiple calls of
a function in a virtual class when that is not desired. Here is a
possible style:

ctass I'l t
il..-

protected:
-f() t my stuff )
il ...

pubIic:
f() { _f(); }
il -..

);
Each class provides a protected function doing its "own stufl"
-f (), for use by derived classes and a public function f <t as the
interface for use by the "general public."

class A : pubtic virtual. ]l {u.-.
protected:

-f() { my stuff }u...
pubt ic:

f() { -f(); tl::-f(); }u ...
);

A derived class f ( ) does its "own stuff' by calling -f < I and its
base classes' "own stuff' by calling their -f ( )s.

class B : pubtic virtuat U {
il ...

protected:
-f() { my stuff }
il ...

publ ic:
f() { -f(); u::-f(); }
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u ...
>,

In particular, this style enables a class that is (indirectly) derived
twice from a class w to call t.t::f () once only:

ctass C : pubL ic A, pubI ic B, pubI ic virtual. 1., t
/t -..

protected:
-f() t my stuff )u ..-

publ. i c:
f() { -f(); A::-f(); B::-f(); bJ::-f(); }u ...

);
Method combination schemes, such as the ones found in Lisp

systems with multiple inheritance, were considered as a way of
reducing the amount of code a programmer needed to write in
cases like the one above. However, none of these schemes
appeared to be sufficiently simple, general, and efficient enough to
warrant the complexity it would add to Cr-+.

5.4 Time and Space Efficiency

As described in Stroustrup [1987], a virtual function call is about
as efficient as a normal function call - even in the case of multiple
inheritance. The added cost is 5 to 6 memory references per call.
This compares with the 3 to 4 extra memory references incurred
by a virtual function call in a C++ compiler providing only single
inheritance. The multiple inheritance scheme currently used
causes an increase of about 500/o in the size of the tables used to
implement the virtual functions compared with the older single
inheritance implementation. To offset that, the multiple inheri-
tance implementation optimizes away quite a few spurious tables
generated by the older single-inheritance implementations so that
the memory requirement of a program using virtual functions
actually decreases in most cases.

It would have been nice if there had been absolutely no added
cost for the multiple inheritance scheme when only single inheri-
tance is used. Such schemes exist, but involve the use of tricks
that cannot be done by a C++ compiler generating C.
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6. Base and Member Initialization

The syntax for initializing base classes and members has been

extended to cope with multiple inheritance and the order of ini-
tialization has been more precisely defined. Leaving the initializa-
tion order unspecifred in the original defrnition of C++ gave an
unnecessary degree of freedom to language implementers at the
expense of the users. In most cases, the order of initialization of
members doesn't matter and in most cases where it does matter,
the order dependency is an indication of bad design. In a few
cases, however, the programmer absolutely needs control of the
order of initialization. For example, consider transmitting objects
between machines. An object must be reconstructed by a receiver
in exactly the reverse order in which it was decomposed for
transmission by a sender. This cannot be guaranteed for objects
communicated between programs compiled by compilers from
different suppliers unless the language specifres the order of con-
struction.

Consider:

ctass A { publ.ic: A(int); A(); l* ... t l
cIass B { publ.ic: B(int); B()¡ /* ... */
class C : publ.ic A, pubtic B {

const a;
int& b;

publ.ic:
C( int&);

);
In a constructor the sub-objects representing base classes can be
referred to by their class names:

C::C(int& rr) : A(1), B<2>, a(3), b(rr) { /* ... */ }
The initialization takes place in the order of declaration in the
class with base classes initialized before members,s so the initiali-
zation order for class c is l, B, a, b. This order is independent
of the order of explicit initializers, so

l;
);

5. Virtual base classes force a modification to this rule; see below.

214 Bjarne Stroustrup



C::C(int& rr) : b(rr), B(2r, a(3), A(1) { l* ... t l }

also initializes in the declaration order A, B, a, b.

The reason for ignoring the order of initializers is to preserve
the usual FIFO ordering of constructor and destructor calls.
Allowing two constructors to use different orders of initialization
of bases and members would constrain implementations to use

more dynamic and more expensive strategies.
Using the base class name explicitly clarifies even the case of

single inheritance without member initialization:

cIass vector {
/t .-.

publ. i c:
vector(int);
il -.-

I,
c t ass vec : publ. i c vector {u ...
publ.ic:

vec(int,int);
// ..-

);
It is reasonably clear even to novices what is going on here:

vec::vec(int Iow, int high) :
vector(high-Low-1, { l* ... *l >

On the other hand, this version:

vec::vec(int tow, int high) :
(high-l,ow-1> { l* ... */ >

has caused much confusion over the years. The old-style base

class initializer is of course still accepted. It can be used only in
the single inheritance case since it is ambiguous otherwise.

A virtual base is constructed before any of its derived classes.

Virtual bases are constructed before any non-virtual bases and in
the order they appear on a depth-first left-to-right traversal ofthe
inheritance DAG. This rule applies recursively for virtual bases of
virtual bases.

A virtual base is initialized by the "most derived" class of
which it is a base. For example:
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ctass V { publ.ic: V(); V(int) i lt, ... *l },
cIass A : publ. ic virtuaI V

t publ.ic: A(); A(int); /* ... *l I,
cIass B : pubtic virtuaI V

t publ.ic: B(); B(int);7* ... *l >i
ctass C : pubtic A, pubtic B

t publ.ic: C(); C(int);7't ... */ >i

A::A(int i) : V(i) { /* ... *l }
B::B(int i) { l* ... *l }
C::C(int i) t l* ... *l >

V v(1); ll use V(int)
A a(2)i ll use V(int)
B b(3)i ll use v(,
C c(4)l l/ use Y()

The order of destructor calls is defined to be the reverse order
of appearance in the class declaration (members before bases).

There is no way for the programmer to control this order - except
by the declaration order. A virtual base is destroyed after all of
its derived classes.

It might be worth mentioning that virtual destructors are (and
always have been) allowed:

struct B { l* ... *l virtual -B(); ];
structD:B{-D();};
void g() t

B*P=newD;
detete p; ll D==-D() is calted

)

The word virtual was chosen for virtual base classes because

of some rather vague conceptual similarities to virtual functions
and to avoid introducing yet another keyword.

7. Abstract Classes

One of the purposes of static type checking is to detect mistakes
and inconsistencies before a program is run. It was noted that a

significant class of detectable errors was escaping C+r's checking.
To add insult to injury, the language actually forced programmers
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to write extra code and generate larger programs to make this
happen.

Consider the classic "shape" example. Here, we must first
declare a class shape to represent the general concept of a shape.
This class needs two virtual functions rotate(t and draw().
Naturally, there can be no objects of class shape, only objects of
specific shapes. Unfortunately Cr-+ did not provide a way of
expressing this simple notion.

The C+¡ rules specify that virtual functions, such as rotate()
and draw( ), must be defined in the class in which they are first
declared. The reason for this requirement is to ensure that tradi-
tional linkers can be used to link C++ programs and to ensure that
it is not possible to call a virtual function that has not been
defined. So the programmer writes something like this:

ctass shape {
point center;
coIor cot;
/t ...

pubtic:
where() { return center; }
move(point p) { cente¡=p; draw()i }
virtual. void rotate( int)

{ error(rrcannot rotate'r); abort( ); }
virtuaI void draw()

{ error(r'cannot drawrr); abort(); }
// ..-

>,

This ensures that innocent errors such as forgetting to define a
draw(l function for a class derived from shape and silly errors
such as creating a "plain" shape and attempting to use it cause
run time errors. Even when such errors are not made, memory
can easily get cluttered with unnecessary virtual tables for classes
such as shape and with functions that are never called, such as
draw( ) and rotate( ). The overhead for this can be noticeable.

The solution is simply to allow the user to say that a virtual
function does not have a definition; that is, it is a "pure virtual
function." This is done by an initializer =0:

ctass shape {
point center;
coIor cot;
il .-.

The Evolution of C++: 1985 to 1989 217



pubI i c:
hrhere() { return center; }
move(point p) { cente¡=Pointi

/t
virtuat void rotate(int) = 0;
virtuat void draw() = 0; ll
t/ ...

);

A class with one or more pure virtual functions is an abstract

class. An abstract class can only be used as a base for another
class. In particular, it is not possible to create objects of an

abstract class. A class derived from an abstract class must either
define the pure virtual functions from its base or again declare
them to be pure virtual functions.

The notion of pure virtual functions was chosen over the idea

of explicitly declaring a class to be abstract because the selective
definition of functions is much more flexible.

8. Static Member Functions

A static data member of a class is a member for which there is
only one copy rather than one per object and which can be

accessed without referring to any particular object of the class it is
a member of. The reason for using static members is to reduce

the number of global names, to make obvious which static objects
logically belong to which class, and to be able to apply access con-

trol to their names. This is a boon for library providers since it
avoids polluting the global name space and thereby allows easier
writing of library code and safer use of multiple libraries.

These reasons apply for functions as well as for objects. In
fact, most of the names a library provider wants to be local are

function names. It was also observed that nonportable code,

such as

((x*)0)->f();

was used to simulate static member functions. This trick is a time
bomb because sooner or later someone will make an f ( > that is
used this way virtuat and the call will fail horribly because there

draul(); )
pure virtuaI function

pure virtuaI function
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is no x object at address zero. Even where f() is not virtual such
calls will fail under some implementations of dynamic linking.

A static member function is a member so that its name is in
the class scope and the usual access control rules apply. A static
member function is not associated with any particular object and
need not be called using the special member function syntax. For
example:

ctass X {
int mem;
static int smem;

pubtic:
static void f(int,X*);

);
void g()
{

X obj;
f(1,&obj); ll error (unless there reatty is

ll a gLobal function f())
X::f(1,&obj); ll Íine
obj.f(1,&obj); // atso fine

)

Since a static member function isn't called for a particular object
it has no this pointer and cannot access non-static members
without explicitly specifying an object. For example:

void X::f(int i, X* p)
{

mem = i; ll error: ¡¡hich mem?
p-)mem = i; ll Íine
smem++; ll fine¿ onty one smem

)

9. const Member Functions

Consider this example:

ctass s t
int aa;

pubL i c:
void mutate() t aa++; )
int vatue() { return aa; }

I,
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void g( )
{

s o1;
const s o2;
ol.mutate();
02. mutate( ) ;int i = o1.vaIue() + o2.vaLue();

)

It seems clear that the call o2.mutate() ought to fail since o2 is a
const.

The reason this rule has not been enforced until now is simply
that there was no way of distinguishing a member function that
may be invoked on a const object from one that may not. In
general, the compiler cannot deduce which functions will change
the value of an object. For example, had mutate() been defined
in a separately compiled source file the compiler would not have
been able to detect the problem at compile time.

The solution to this has two parts. First, const is enforced so
that "ordinary" member functions cannot be called for a const
object. Then we introduce the notion of a const member func-
tion, that is, a member function that may be called for all objects
including const objects. For example:

ctass X {
int aa;

publ.ic:
void mutate() { aa++; }
int vatue() const { return aai ,

);
Now x : : va I ue ( ) is guaranteed not to change the value of an
object and can be used on a const object whereas x::mutate()
can only be called for non-const objects:

int g()
t

X o1;
const X o2;
ol.mutate(); ll fine
o2.mutate(); l/ error
return ol.vatue(¡ + o2.vatue(); l/ fine

)
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In a const member function of x the this pointer points to a
const x. This ensures that non-devious attempts to modify the
value of an object through a const member will be caught:

ctass X {
int a;
void cheat() const { a++; } ll error

Ii
Note that the use of const as a suffix to < ¡ is consistent with

the use of const as a suffix to *.
It is occasionally useful to have objects that appear as con-

stants to users but do in fact change their state. Such classes can
be written using explicit casts:

ctass XX {
int a;
i nt ca I t s-of-f;
int f() const { ((XX*)this)-)ca[[s-of-f++;

return a; )
il ...

);
Since this can be quite deceptive and is error-prone in some con-
texts it is often better to represent the variable part of such an
object as a separate object:

class XX t
int a;
int& caI ts-of-f;
int f() const { caL[s-of-f++; return a; ]u ...
XX() : catts-of-f(*nev int) { l* ... *l }-XX() { detete &catts-of-f¡ l* --- *l >u ...

l,

10. Initialization of static Members

A static data member of a class must be defrned somewhere.
The static declaration in the class declaration is only a declara-
tion and does not set aside storage or provide an initializer.

This is a change from the original C+r definition of static
members, which relied on implicit definition of static members
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and on implicit initialization of such members to 0. Unfor-
tunately, this style of initialization cannot be used for objects of
all types. In particular, objects of classes with constructors cannot
be initialized this way. Furthermore, this style of initialization
relied on linker features that are not universally available. For-
tunately, in the implementations where this used to work it will
continue to work for some time, but conversion to the stricter
style described here is strongly recommended.

Here is an example:

ctass X {
static int i;
int j;
X(int);
int read();

);
ctass Y {

static X a;
int b;
Y( int);
int read();

);
Now x: : i and y: : a have been declared and can be referred to,
but somewhere definitions must be provided. The natural place
for such definitions is with the defrnitions of the class member
functions. For example:

/ / fi Ie X.c:
X::X(int jj) { i = jj; f
int X::read() { return j; }
int X::i = 3;

l/ tile Y'cz
Y::Y(intbb){b=bb;l
int Y::read() { return b; }
X Y::a = 7ì

I 1. Pointers to Members

As mentioned in Stroustrup 1986, it was an obvious deficiency in
Cr-+ that there was no way of expressing the concept of a pointer
to a member of a class. This led to the need to "cheat" the type
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system in cases, such as error handling, where pointers to func-
tions are traditionally used. Consider this example:

struct S {
int mf(char*);

);
The structure s is declared to be a (trivial) type for which the
member function mf is declared. Given a variable of type s the
function mf can be called:

Sa;
int i = a.mf (rrheI torr);

The question is "What is the type of nr?'
The equivalent type of a non-member function

int f(char*);

is

int (char*)

and a pointer to such a function is of type

int (*) (char*)

Such pointers to "normal" functions are declared and used like
this:

int f(char*); ll decLare function
ll dectare and initial.ize pointer to function

int (*pf)(char*) = &f;
int i = 1*pf)(r,hetlott)ill catI function through pointer

A similar syntax is introduced for pointers to members of a
specifrc class. In a definition mf appears as:

int S::mf(char*)

The type of s::mf is:

int S:: (char*)

That is, "member of s that is a function taking a char* argument
and returning an int." A pointer to such a function is of type

int (S::*)(char*)
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That is, the notation for pointer to member of class s is s::*.
rrly'e can now write:

/l declare and initiaIize pointer to member function
int (S::*pmf)(char*) = &S::mf;

S a;
/l call function through pointer for the object tal

int i = (a.*pmf)("hetto'r);

The syntax isn't exactly pretty, but neither is the C syntax it is
modeled on.

A pointer to member function can also be called given a
pointer to an object:

S* p;
/l call function through pointer for the object r*p':

int i = (p_>*pmf)("he[[o");

In this case, we might have to handle virtual functions:

struct B {
virtuat f();

);
structD:B{

f();
ji
int ff(B* pb, int (B::*pbf)())
t

return 1pb->*pbf)();
>,

void gg()
{

D dd;
inti=ff(&dd,&B::f);

)

This causes a call of o: : f ( ). Naturally, the implementation
involves a lookup in dd's table of virtual functions exactly as a
call to a virtual function that is identified by name rather than by
a pointer. The overhead compared to a "normal function call" is
the usual (about 5 memory references [dependent on the machine
architecturel).

. It is also possible to declare and use pointers to members that
are not functions:
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struct S {
int memr'

);
int S::* psm = &S::mem;

uo-O 119* ps)
t

ps-)*psm = 2;
)
void g()
{

S a;
f (&a);

)

This is a complicated way of assigning 2 to a.mem.

Pointers to members are described in greater detail in Lipp-
man & Stroustrup 1988.

12. User-Defined Free Store
Management

C++ provides the operators new ârd detete to allocate memory
on the free store and to release store allocated this way for reuse.
Occasionally a user needs a finer-grained control of allocation and
deallocation. The first section below shows "the bad old way" of
doing this and the following sections show how the usual scope
and overloaded function resolution mechanisms can be exploited
to achieve similar effects more elegantly. This means that assign-
ment to this is an anachronism and will be removed from the
implementations of C++ after a decent interval. This will allow
the type of ttris in a member function of class x to be changed to
X *const.

I2.l Assignment to this

Formerly, if a user wanted to take over allocation of objects of a
class x the only way was to assign to this on each path through
every constructor for x. Similarly, the user could take control of
deallocation by assigning to this in a destructor. This is a very
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powerful and general mechanism. It is also non-obvious, error
prone, repetitive, too subtle when derived classes are used, and
essentially unmanageable when multiple inheritance is used. For
example:

ctass X t
int on-free-store;u .-.

publ. i c:
x( );
X( int i );_x( );
/t ..-

)

Every constructor needs code to determine when to use the user-
detned allocation strategy:

X::X( ) {
if (this == 0) { ll 'neu' used

this = mya[ [oc(sizeof(X) );
on-free-store = 1;

)
etse { ll static, automatic, or member of aggregate

ll forget this assignment at your peril
this = this;
on-free-store = 0;

)
/l initiatize

)

The assignments to this are "magic" in that they suppress the
usual compiler generated allocation code.

Similarly, the destructor needs code to determine when to use
the user-defined deallocation strategy and must use an assignment
to this to indicate that it has taken control over deallocation:

X::-X() {
// cIeanuP
if (on-free-store) {

myfree(this);
l/ Íorget this assignment at your perit

this = 0;
)

)

This user-defined allocation and deallocation strategy isn't inher-
ited by derived classes in the usual way.

226 Bjarne Stroustrup



The fundamental problem with the "assign to this" approach
to user-controlled memory management is that initialization and
memory management code are intertwined in an ad hoc manner.
In particular, this implies that the language cannot provide any
help with these critical activities.

12.2 Class-Specific tree Store
Management

The alternative is to overload the allocation function operator
new() and the deallocation function operator del.ete{) for a
class x:

ctass X {
lt ...

publ. i c:
void* operator new(size-t sz)

{ return myattoc(sz); }
void operator deIete(X* p) { myfree(p); }
X() { /* initiatize */ }
X(int i) { /* initial.ize */ }
-X() { /* cteanup */ }
// ...

);
The type size-t is an implementation-defined integral type used
to hold object sizes.6 It is the type of the result of sizeof.

Now x: :operator new( ) will be used instead of the global
operator new() for objects of class x. Note that this does not
affect other uses of operator new within the scope of x:

void* X::operator new(size-t s)
{

// gl.obal. operator new as usual
void*P=newchar[s];
/t...
return p;

)

6. operator neu( ) used to require a tong; size-t was adopted to bring C++ allocation
mechanisms into line with ANSI C.
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void X::operator detete(X* p)
{

u...
delete (void*) p¡ll globat operator detete as usuat

)

When the new operator is used to create an object of class x,
operator ner¡() is found by a lookup starting in x's scope so that
x::operator ne¡r(l is preferred over a global ::operator new().

12.3 Inheritance of operator new)

The usual rules for inheritance apply:

// objects of ctass Y are atso attocated
class Y : publ. ic X

< I / using X::oPerator new
t/ ...

);
This is the reason x::operator new() needs an argument specify-
ing the amount of store to be allocated; sizeof (Y) is typically
different from sizeof (x). Naturally, a class that is never a base

class need not use the size argument:

void* Z::operator new(size-t) { return next-free-Z(>i }

This optimization should not be used unless the programmer is
perfectly sure that z is never used as a base class, because ifit is,
disaster will happen.

An operator ne¡r(), be it local or global, is used only for free
store allocation, so

X a1; ll aLtocated staticatty
void f ( )
{

X a; I I al, located on the stack
X vt10l i ll attocated on the stack

)

does not involve any operator new(). Instead, store is allocated
statically and on the stack.

x::operator ner¡() is only used for individual objects of class
x (and objects ofclasses derived from class x that do not have
their own operator new{)), so
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x*p=neyx[10];

does not involve X::operator new() because xt10l is an array.
Like the global operator new(), X: :operator new() returns a

void*. This indicates that it returns uninitialized memory. It is
the job of the compiler to ensure that the memory returned by
this function is converted to the propertype and - if necessary -
initialized using the appropriate constructor. This is exactly what
happens for the global operator new().

X::operator new(> and X::operator del.ete() are static
member functions. In particular, they have no this pointer. This
reflects the fact that x::operator ne¡¡() is called before construc-
tors so that initialization has not yet happened and X::operator
detete(¡ is called after the destructor so that the memory no
longer holds a valid object of class x.

12.4 Overloading operator new)

Like other functions, operator new() can be overloaded. Every
operator new() must return a void* and take a size-t as its first
argument. For example:

void* operator new(size-t sz), ll the usuaI atlocator
void* operator new(size-t sz, heap* h)
{ l/ attocate from heap 'h'return h->al. Iocate(sz) ;
)
void* operator new(size-t, void* p)
{ l/ ptace object at 'p'return p;
)

The size argument is implicitly provided when operator new is
used. Subsequent arguments must be explicitly provided by the
user. The notation used to supply these additional arguments is
an argument list placed immediately after the nerr operator itself.

static char buf [sizeof(X)]; ll static buffer
ctass heap {u ...
>i

heap hl;
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f() {
X*p1=

X*p3=

)(* p2 =

neg X; ll use the defautt a[locator
ll operator ne}r(size-t sz):
// operator new(sizeof (X))

new(&hî) X; ll use h1's attocator
ll operator new(size-t sz, heap* h):
I I operator new(sizeof (X),&h1)

new(buf) X; tt expticit attocation in rbuf'
ll operator new(size-t, void* p):
I / operator new(sizeof (X),buf )

)

Note that the explicit arguments go after the new operator but
before the type. Arguments after the type go to the constructor as

ever. For example:

ctass Y {
void* operator new(size-t, const char*);
Y(const char*);

,ì
Y* p = ne¡ú(rrstring f or the a[ locatort')

Y(rrstring for the constructorrr);

I 2.5 Controlling Deallocation

Where many different operator new( ) functions are used one
might imagine that one would need many different and matching
operator del.ete(¡ functions. This would, however, be quite
inconvenient and often unmanageable. The fundamental
difference between creation and deletion of objects is that at the
point of creation the programmer knows just about everything
worth knowing about the object whereas at the point of deletion
the programmer holds only a pointer to the object. This pointer
may not even give the exact type of the object, but only a base
class type. It will therefore typically be unreasonable to require
the programmer writing a detete to choose among several
variants.T

7. The requirement that a programmer must distinguish between de I ete p for an indi-
vidual object and detetefnl p for an array is an unfortunate hack and is mitigated
only by the fact that there is nothing that forces a programmer to use such arrays.
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Consider a class with two allocation functions and a single
deallocation function that chooses the proper way of deallocating
based on information left in the object by the allocators:

class X {
enum { somehow, other-way } which-attocator;

void* operator new(size-t sz)
( void* P = atlocate-somehow();

( (X*)p)->which-al, Iocator = somehorl;
return p;

)
void* operator ne¡¡(size-t sz , int i)
{ void* p = attocate-some-other-way();

((X*)p)->which-al. Iocator = other-way;
return p;

)
void operator detete(void*);
il .-.

);
Here operator detete() can look at the information left behind
in the object by the operator new() and deallocate appropriately:

void X::operator detete(void* p)
{

snitch (((X*)p)->which-aL tocator) {
case somehow:

dea [ [ocate-somehow( ) ;
break;

case other-bray:
dea[ [ocate-some-other-way( ) i
break;

defau I t :

/* something is funny */
)

)

Since operator new() &nd operator detete() are static member
functions they need to cast their "object pointers" to use member
names. Furthermore, these functions will be invoked only by
explicit use of operators neu¡ and del.ete. This implies that
x: : wh i ch-a l. I ocator is not initialized for automatic objects so in
that case it may have an arbitrary value. In particular, the default
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case in X::operator detete() might occur if someone tried to
detete an automatic (on the stack) object.

Where (as will often be the case) the rest of the member func-
tions of x have no need for examining the information stored by
allocators for use by the deallocator, this information can be
placed in storage outside the object proper ("in the container
itselfl'), thus decreasing the memory requirement for automatic
and static objects of class x. This is exactly the kind of game
played by "ordinary" allocators such as the C mal.toc() for
managing free store.

The example of the use of assignment to this above contains
code that depends on knowing whether the object was allocated by
neu or not. Given local allocators and deallocators, it is usually
neither wise nor necessary to do so. However, in a hurry or under
serious compatibility constraints, one might use a technique like
this:

ctass X {
static X* [ast-X;
int on-free-store;u ..-
x( );
void* operaton new(long s)
{

return Last-X = attocate-somehou();
)
/t ...

);
X::X( )
{

if (this == tast-X) { ll on free store
on-free-store = 1;

)
el.se {// static or automatic or member of aggnegate

on-free-store = 0;
)u -..

)

Note that there is no simple and implementation-independent way
of determining that an object is allocated on the stack. There
never was.
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12.6 Placement of Objects

For ordinary functions it is possible to specifically call a non-
member version of the function by prefixing a call with the scope
resolution operator : :. For example,

::open(f i Iename,Itrwrr) '

calls the global open(). Prefrxing a use of the new operator with
:: has the same effect for operator new(); that is,

x* p = ::new X;

uses a global operator ner¡() even ifa local X::operaton new()
has been defined. This is useful for placing objects at specific
addresses (to cope with memory mapped I/O, etc.) and for imple-
menting container classes that manage storage for the objects they
maintain. Using :: ensures that local allocation functions are not
used and the argument(s) specified for new allows selection among
several global operator new() functions. For example:

/l place object at address p:
void* operator new(size-tr void* p) { return p; }
char buf Isizeof(X)l;
f()
{

/l static buffer

x* p =::new(bufl x¡tt expticit al.tocation in'buf'
/ I place an X at address 0777

P = ::new( (voidt')0777) X¡
)

Naturally, for most classes the :: will be redundant since most
classes do not defrne their own allocators. The notation ::
del.ete can be used similarly to ensure use of a global deallocator.

12.7 Memory Exhaustion

Occasionally, an allocator fails to find memory that it can return
to its caller. If the allocator must return in this case, it should
return the value 0. A constructor will return immediately upon
frnding itself called with ttr i s==0 and the complete new expression
will yield the value 0. In the absence of more elegant error
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handling schemes, this enables critical software to defend itself
against allocation problems. For example:

void f()
{

x*P=nerx;
if (p == 0) { /* handle atlocation error */ ]
// use P

)

The use of a new-handler lStroustrup 1986] can make most such
checks unnecessary.

12.8 Explicit Cølls of Destructors

Where an object is explicitly "placed" at a specific address or in
some other way allocated so that no standard deallocator can be
used, there might still be a need to destroy the object. This can be
done by an explicit call of the destructor:

p_>X::-X()i

The fully qualified form of the destructor's name must be used to
avoid potential parsing ambiguities. This requirement also alerts
the user that something unusual is going on. After the call of the
destructor, p no longer points to a valid object ofclass x.

12.9 Size Argument to operator delete)

Like X::operator new(), X::operator detete() can be over-
loaded, but since there is no mechanism for the user to supply
arguments to a deallocation function this overloading simply
presents the programmer with a way of using the information
available in the compiler. X: :operator delete( ) can have two
forms (only):

class X {
void operator detete(void* p);
void operator detete(void* p, size-t sz);
t/ ...

);
If the second form is present it will be preferred by the compiler
and the second argument will be the size of the object to the best
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of the compiler's knowledge. This allows a base class to provide
memory management services for derived classes:

class X {
void* operator new(size-t sz);
void openator deIete(void* p, size-t sz);
virtuat -X();
il .-.

);
The use of a virtual destructor is crucial for getting the size right
in cases where a user deletes an object of a derived class through
pointer to the base class:

ctass Y : publ.ic X {
il..-_Y( );

);
x*P=newY;
deIete p;

13. Assignment and Initialization

C++ originally had assignment and initialization default defined as

bitwise copy of an object. This caused problems when an object
of a class with assignment was used as a member of a class that
did not have assignment defined:

class X {u...
pubtic:

X& operator=(const X&);u ...
>i

ctass Y {
Xa;u...

);
void f()
t

Y Y1, Y2;u ...
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y1 = y2¡
)

Assuming that assignment was not defined for y, y2.a is copied
into y1.a with a bitwise copy. This invariably turns out to be an
error and the programmer has to add an assignment operator to
class Y:

class Y {
X a;
t/ .-.
const Y& operator=(const Y& arg)
{

=.::n'"'

I,
To cope with this problem in general, assignment in C++ is

now defined as memberwise assignment of non-static members
and base class objects.s Naturally, this rule applies recursively
until a member of a built-in type is found. This implies that for a
class X, X(const X&) and const X& X::operator=(const X&l will
be supplied where necessary by the compiler, as has always been
the case for x::x() and x::-x(). In principle every class x has
X::X(), X::X(const X&), and X::operator=(const X&l defined. In
particular, defining a constructor x::X(T) where t isn't a variant
of xA does not affect the fact that x::x(const x&l is defined.
Similarly, defining x::operator=(T) where T isn't a variant of xA
does not affect the fact that x::operator=(const X&) is defined.

To avoid nasty inconsistencies between the predefined
operator=(l functions and user defrned operator=() functions,
operator=( ) must be a member function. Global assignment
functions such as ::operator=(X&, const x&) are anachronisms
and will be disallowed after a decent interval.

Note that since access controls are correctly applied to both
implicit and explicit copy operations we actually have a way of
prohibiting assignment of objects of a given class x:

8. One could argue that the original defrnition ofC++ was inconsistent in requiring bit-
wise copy of objects of class y, yet guaranteeing that x: : operator-( ) would be
applied for copying objects ofa class x. In this case both guarantees cannot be
fulfrlled.
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ctass X {
ll Objects of class
I I except by members
void operator=(X&);
x(x&);u...

pubt i c:
X( int);u...

);
void f() {

x a( 1);
Xb=a;
b=ai

)

X cannot be copied
ofX

ll error: X::X(X&) private
I I error: X::operator=(X&) private

llok:aYisanX
ll xx=,lyì means xx.operator=((X&)yy);
ll and is optimized to xx.aa = yy.aa

The automatic creation of x::X(const x&) and X::operator=
(const x&t has interesting implications on the legality of some
assignment operations. Note that if x is a public base class of v
then a v object is a legal argument for a function that requires an
x&. For example:

class X { pubtic: int aa; };
ctass Y : pubtic X { publ.ic: int bb; };
void f() {

X xx;
Y vv¡
xx = Yyì

)

Defrning assignment as memberwise assignment implies that
operator=() isn't inherited in the ordinary manner. Instead, the
appropriate assignment operator is - if necessary - generated for
each class. This implies that the "opposite" assignment of an
object ofa base class to a variable ofa derived class is illegal as

ever:

void f() {
X xx;
Y vy;
YY = xx,

)
ll error: an X is not a Y
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The extension of the assignment semantics to allow assignment
of an object of a derived class to a variable of a public base class
had been repeatedly requested by users. The direct connection to
the recursive memberwise assignment semantics became clear only
through work on the two apparently independent problems.

14. Operator ->

Until now -> has been one of the few operators a programmer
couldn't define. This made it hard to create classes of objects
intended to behave like "smart pointers." When overloading,
-> is considered a unary operator (of its left hand operand) and
-> is reapplied to the result of executing operator->(). Hence the
return type of an operator-)() function must be a pointer to a
class or an object of a class for which operator-><l is defrned.
For example:

struct Y { int m; };
class X {

Y* p;
/t ...
Y* operator->() {

if(P==0){
/l initial.ize p

)
etse {

I I check p

p;

);
Here, class x is defined so that objects of type x act as pointers to
objects of class y, except that some suitable computation is per-
formed on each access.

void f(X x, X& xr, X* xp)
{

x->n; I I x-p')n
xr->m; I / xr.p->m

)
return

)
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xp->m; I I error: X does not have a member m

)

Like operator=(), operator[] (), and operator()(),
operator->() must be a member function (unlike operator+(),
operator-(), operator((), etc., that are often most useful as
friend functions).

The dot operator still cannot be overloaded.
For ordinary pointers, use of -> is synonymous with some

uses of unary * and il. For example, for

Y* p;

it holds that:

p-)n == (*p).m == p[OJ.m

As usual, no such guarantee is provided for user-defrned operators.
The equivalence can be provided where desired:

ctass X {
Y* p;

publ. ic:
Y* operator-)() { return p; }
Y& operator*() { return *p; }
Y& operatorll(int i) { return ptiJ; }

);
If you provide more than one of these operators it might be

wise to provide the equivalence, exactly as it is wise to ensure that
x+=l þ¿r the same effect âS x=x+î for a simple variable x of some
class x if +=, =, âûd + are provided.

The overloading of -> is important to a class of interesting
programs, just like overloading t I, and not just a minor curiosity.
The reason is that indirection is a key concept and that overload-
ing -> provides a clean, direct, and efficient way of representing it
in a program. Another \¡/ay of looking at operator -> is to con-
sider it a way of providing Cr+ with a limited, but very useful,
form of delegatíon IGul l9S6].
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15. Operator l

Until now the comma operator , has been one of the few opera-
tors a programmer couldn't defrne. This restriction did not
appear to have any purpose so it has been removed. The most
obvious use of an overloaded comma operator is list building:

ctass X {. l* ... *l }i
ctass Xl. ist {

lt .--
pubt i c:

xt ist();
XIist(const X&);
friend Xl.ist operator,(const X&, const X&);

I,
void f()
{

X arbrc;
Xl. ist x[ = (arb,c);

// meaning operator, (operator, (arb) rc)
)

If you have a bit of trouble deciding which commas mean what in
this example you have found the reason overloading of comma
was originally left out.

16. Initialization of static Objects

ln C, a static object can only be initialized using a slightly
extended form of constant expressions. In Cr+, it has always been
possible to use completely general expressions for the initialization
of static class objects. This feature has now been extended to
static objects of all types. For example:

#inctude (math.h>

doubte sqrt2 = sqrt(2);
main()
{

if (sqrt(2) !=sqrt2) abort();
)
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Such dynamic initialization is done in declaration order within a
file and before the first use ofany object or function defrned in the
file. No order is defined for initialization of objects in different
source frles except that all static initialization takes place before
any dynamic initialization.

17. Resolutions

This section does not describe additions to Cr+ but gives answers
to questions that have been asked often and do not appear to have
clear enough answers in the reference manual IStroustrup l9S6].
These resolutions involve slight changes compared to earlier rules.
This was done to bring Cr+ closer to the ANSI C draft.

17.1 Function Argument Syntax

Like the C syntax, the C++ syntax for specifying types allows the
type int to be implicit in some cases. This opens the possibility
of ambiguities. In argument declarations, Cr+ chooses the longest
type possible when there appears to be a choice:

typedef long I;
/l Í1() takes an unnamed tconst tong' argument

fl (const I );
ll t2() takes a rconst intr argument (catted 'i')f2(const i );

This rule applies to the const and votatite specifrers, but not to
unsigned, short, [ong, or signed:

f3(unsigned int I); /l ok
f4(unsigned l)¡ll ok: equivatent to f4(unsigned int I);

A type cannot contain two basic type specifiers so

f5(char I) { I++; ¡
fó(I I) { I++; 1

are legal.
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17.2 Declaration and Expression Syntax

There is an ambiguity in the C++ grammar involving expression-
statements and declarations: an expression-statement with a "func-
tion style" explicit type conversion as its leftmost sub-expression
can be indistinguishable from a declaration where the first declara-
tor starlts with a (. For example:

T(a); ll dectaration or type conversion of 'a'

ln those cases the statement is a decløration.
To disambiguate, the whole statement may have to be exam-

ined to determine if it is an expression-statement or a declaration.
This disambiguates many examples. For example, assume r is the
name of some type:

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)((c; | / expression-statement
T(*d)(doubLe(3)); // expression-statement

I I dectaration
I I dectaration
I I dectaration

T(*e)(int);
T(f) It;
T(g¡={1,2}i

The remaining cases are declarations. For example:

T(a); I / dectaration
T('tb)(); // dectaration
T(c)=7i ll dectaration
T(d),e,f=3; I / dectaration
T(g)(h,2); ll dectaration

The disambiguation is purely syntactic; that is, the meaning of
the names, beyond whether they are names of types or not, is not
used in the disambiguation.

This resolution has two virtues compared to alternatives: it is
simple to explain and completely compatible with C. The main
snag is that it is not well adapted to simple minded parsers, such

as YACC, because the lookahead required to decide what is an
expression-statement and what is a declaration in a statement con-
text is not limited.

However, note that a simple lexical lookahead can help a

parser disambiguate most cases. Consider analysing a statement;
the troublesome cases look like this
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T(d-or-e) tait
Here, d-or-e must be a declarator, an expression, or both for the
statement to be legal. This implies that taíl must be a semicolon,
something that can follow a parenthesized declarator or something
that can follow a parenthesized expression, that is, an initializer,
const, votati [e, ( or I or a postfrx or infix operator.

A user can explicitly disambiguate cases that appear obscure.
For example:

void f()
t

auto int(*p)(); I / expL icitty dectaration
(void) int(*p) () ;/ / expticitl.y expression-statement
0, int(*p)(); I I expL icitty expression_statement(int(*p)()); /l explicitl.y expression_statement
int(*p)(); // resolved to dectaration

)

17.3 Enumerators

An enumeration is a type. Each enumeration is distinct from all
other types. The set of possible values for an enumeration is its
set of enumerators. The type of an enumerator is its enumeration.
For example:

enum wine ( red, white, rose, bubbty );
enum beer { ate, bitter, lager, stout ];

defines two types, each with a distinct set of 4 values.

wine ¡l = red;
beer b = bitter;
w = b; ll error, type mismatch: beer assigned to wine
t{ = stouti// error, type mismatch: beer assigned to wine
vt = 2ì l/ error, type mismatch: int assigned to wine

Each enumerator has an integer value and can be used wherever
an integer is required; in such cases the integer value is used:

int i = rose;// the value of rrose' (that is 2) is usedi = b; ll the vatue of tb' is assigned to ri'

This interpretation is stricter than what has been used in C++
until now and stricter than most C dialects. The reason for
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choosing it was ANSI C's requirement that enumerations be dis-

tinct types. Given that, the details follow from Cr+'s emphasis on

type checking and the requirements of consistency to allow over-

loading, etc. For example:

int f(int)i
int f(wine);
void g( )
{

f(i); ll l(int)
f(H); ll Î(vtine)

f(1); ll Í(int)
f(¡rhite); ll f(uine)
f(b); ll t(int), standard conversion

t I from beer to int used
)

C+r's checking of enumerations is stricter than ANSI C's, in that
assignments of integers to enumerations are disallowed. As ever,

explicit type conversion can be used:

¡¡ = wine(257); /* caveat emptor */

An enumerator is entered in the scope in which the enumera-

tion is defined. In this context, a class is considered a scope and

the usual access control rules apply. For example:

class X {
enum { x, Y, z }i
il ...

publ. i c:
enum { a, b, c }i
f(int i = a) { g(i+x); ... }
u ...

)
void h() {

int i = a; ll error: ¡X::ar is not in scoPe
i = X::a; ll ok
i = x::x; ll error: rX::xr is Private

)
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17.4 The const Specffier

use of the const specifier on a non-local object implies that link-
age is internal by default (static); that is, the object declared is
local to the ñle in which it occurs. To give it external linkage it
must be explicitly declared extern.

similarly, int ine implies that linkage is internal by default.
External linkage can be obtained by explicit declaration:

extern const doubte g;
constdoubteg=9.81;
extern inI ine f( int);
intine f(int i) { neturn i+c; ¡

17.5 Function Types

It is possible to define function types that can be used exactly like
other types, except that variables offunction types cannot be
defined - only variables of pointer to function types:

typedef int F(char*), /l function taking a char*

F* pr, ',i iliii:l',:":,:;'iil:lT";" '"'
F Í; // error: no variabl.es of function type attowed

Function types can be useful in friend declarations. Here is an
example from the Cr-+ task system:

ctass task : pubtic scheduter {
friend SIG-FUNC-Typ sig_func;

/l the type of a function must be specified
l/ in a friend function dectaration

// ...
)

The reason to use a rypedef in the friend declaration sig_func
and not simply to write the type directly is that the type of
sisnat() is system dependent:

ll BSD signat.h:
typedef void SIG_FUNC_Typ(int, int, sigcontext*);
l/ gth edition signat.h:
typedef void SIG-FUitC_Typ( int) ;
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Using the typedef allows the system dependencies to be localized
where they belong: in the header frles defining the system

interface.

17.6 Lvalues

Note that the default definition of assignment of an x as a call of

X& operator=(const X&)

makes assignment of xs produce an lvalue. For uniformity, this
rule has been extended to assignments of built-in types. By impli-
cation, +=, -=; *=, etc., now also produce lvalues. So - again by
implication - do prefix ++ and -- (but not the postfrx versions of
these operators).

In addition, the comma and ?: can also produce lvalues. The
result of a comma operation is an lvalue if its second operand is.

The result of a z: operator is an lvalue provided both its second

and third operands are and provided they have exactly the same

tYPe.

17.7 Multiple Name Spaces

C provides a separate name space for structure tags whereas C++

places type names in the same name space as other names. This
gives important notational conveniences to the C++ programmer

but severe headaches to people managing header files in mixed
C/Cr-+ environments. For example:

struct stat {u ...
);
extern nCtr int stat(const char*, struct stat *);

was not legal C++ though early implementations accepted it as a

compatibility hack. The experience has been that trying to
impose the "'pure C++" single name space solution (thus outlaw-
ing examples such as the one above) has caused too much confu-
sion and too much inconvenience to too many users. Conse-
quently, a slightly cleaned up version of the C/C++ compatibility
hack has now become part of C+r. This follows the overall
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principle that where there is a choice between inconveniencing
compiler writers and annoying users, the compiler writers should
be inconvenienced.e It appears that the compromise provided by
the rules presented below enables all accepted uses of multiple
name spaces in C while preserving the notational convenience of
C+r in all cases where C compatibility isn't an essential issue. In
particular, every legal C++ program remains legal. The restric-
tions on the use of constructors and typedef names in connection
with the use of multiple name spaces are imposed to prevent some
nasty cases of hard to detect ambiguities that would cause trouble
for the composition of C++ header files.

A typedef can declare a name to refer to the same type more
than once. For example:

typedef struct s { /* ... */ } s;
typedef s s;

A name s can be declared as a type (struct, class, union,
enum) and as a non-type (function, object, value, etc.) in a single
scope. In this case, the name s refers to the non-type and struct
s (or whatever) can be used to refer to the type. The order of
declaration does not matter. This rule takes effect only after both
declarations of s have been seen. For example:

struct stat { /t' ... *l }i
stat a;
void stat(stat* p);

// struct is needed to avoid the function name
struct stat b;
stat(o)ì l/ function catl
int f( int);
f(f);
struct f

struct f
{ l* ... *l }i

// struct is needed to avoid the function name
at

A name cannot simultaneously refer to two types:

struct s { /* ... */ }ì
typedef int s; ll error

9. Sorry Jens, Mike, Mike, Mike, Phil, Walter, et al.
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The name of a class with a constructor cannot also simultaneously
refer to something else:

struct s { s(); l* ... *l }i
int s(); ll error

struct t* p;
int t(); ll ok
int i = t();
struct t t t(); l* ... *l > ll error
i = t();

If a non-type name s hides a type name s, struct s can be
used to refer to the type name. For example:

struct s { /* .-. *l },
f(int s) { struct s a; s++; }

Note: if a type name hides a non-type name the usual scope rules
apply:

int s;
f()
{

struct s { /* ... *l }î ll nev ¡sr refers to the
ll type and the gtobal. int is hidden

sa;
)

Use of the : : scope resolution operator implies that its argu-
ment is a non-type name. For example:

int s;
f()
{

struct s { /* ... *l }|
sa;
::s = 1;

)

17.8 Function Declaration Syntax

To ease the use of common C+r and ANSI C header files, void
may be used to indicate that a function takes no arguments:

extern int f(void); ll sane as rextern int f();r
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18. Conclusions

C+¡ is holding up nicely under the strain of large scale use in a
diverse range of application areas. The extensions added so far
have been have all been relatively easy to integrate into the C++
type system. The C syntax, especially the C declarator syntax, has
consistently caused much greater problems than the C semantics;
it remains barely manageable. The stringent requirements of com-
patibility and maintenance of the usual run-time and space
efficiencies did not constrain the design of the new features notice-
ably. Except for the introduction of the keywords catch,
private, protected, signed, temptate, and votatil.e the exten-
sions described here are upward compatible. Users will find, how-
ever, that type-safe linkage, improved enforcement of const, and
improved handling of ambiguities will force modification of some
programs by detecting previously uncaught errors.
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