
Heuristics for Disk Drive
Positioning in 4.3BSD

W. Richard Stevens

Health Systems International

ABSTRACT: The throughput of a disk subsystem is
critical to the performance of a computer system.
The 4.3BSD UNIX operating system provides a good
example for looking at the heuristics that are used
to optimize the positioning of the read-write heads
of a disk drive. In this paper we investigate the
heuristics used in the BSD hp disk driver. These
heuristics are driven by three parameters that can
be changed by the system manager. We investigate
the interaction of these parameters with the BSD
fast file system. This provides a way to see the
effects of the BSD fast frle system. Finally we
present the results of monitoring three active frle
systems during day-to-day use, to see what effect
these heuristics can have.

@ Computing Systems,Yol.2. No. 3 . Summer 1989 251

I. A Scenario

A site is running 4.3BSD on a VAX with one of the popular disk
configurations: an Emulex Massbus controller with Fujitsu Eagle
disk drives. They upgrade to the 4.3BSD Tahoe release and after a
few days notice sluggish performance. Measuring the throughput
of the disks, they find it has gone from 750 Mbytes/sec to 320

Mbytes/sec. What's happened? To answer this question they
might do a díff of the hp driver between the two releases, but this
generates about 1,500 lines of output, as there were some funda-
mental changes made to all the disk drivers in the Tahoe release
with the addition of disk labels. Another option is to go back
through the Usenet newsgroups (assuming they've archived the
appropriate newsgroups) where they would find an official Berke-
ley posting that describes how to tune three parameters for this
disk driver that can greatly affect performance. (This posting is
included as Appendix A.)

This paper is a detailed analysis of exactly what these three
parameters do and how to measure them for a system. This
analysis provides an interesting look at the heuristics used by
some of the BSD disk drivers in positioning the read-write heads
of a disk. We also find an interaction between these parameters
and the BSD fast file system. Finally we look at some statistics
collected during a day's worth of typical timesharing usage to see

what effect these heuristics can have.

252 W. Richard Stevens

2. Introduction

There are two types of disk controllers typically used today:

. Controllers such as DEC's UDA50, which are termed "smart
controllers." This type of controller takes requests from the
operating system and automatically optimizes them. Typi-
cal optimizations include the efficient use of multiple drives,
and the sorting of requests for a single drive to minimize
access times.

. Controllers such as the hp controllers found on many DEC
systems. These are termed "dumb controllers" as they
require the operating system to handle any desired
optimizations.

Section 8.6 of Leffler et al. [19891 gives a description of some of
the heuristics used in the up disk driver. This driver is for a
'odumb" controller that is similar to the hp controller used for the
tests in this paper. We are specifically interested in the heuristics
used to position the read-write heads of a disk. We show that
these heuristics are dependent on the processor speed, the disk
characteristics (rotational speed and number of sectors per track),
and the layout policies of the file system.

Consider the following points:

. Disk drives are slow compared to processors. Typical rota-
tional speeds are 3600 revolutions per minute, which gives

an average latency time (one-half a revolution) of 8.33

milliseconds.

. Many disk controllers support both a search command and
a seek command. A search command positions the read-
write head to a specific sector on a specific cylinder. As

soon as the specified cylinder and sector are reached, the
driver is notified by an interrupt. A seek command posi-

tions the read-write head to a particular cylinder. The
driver is notified by an interrupt as soon as the specified
cylinder is reached. The sector position after a seek is

random.

Heuristics þr Disk Drive Positioning in 4.3BSD 253

. Some controllers support the seek command but not the
search command. If a search,command is supported, it is
preferable to the seek, since the search notifres the driver
only when the desired sector is ready to be read or written.
The BSD disk drivers contain a variable, called sc_doseek in
the hp driver, that can be set if the controller does not sup-
port a search command.

. Many controllers allow the driver to have a seek or a search
in progress on more than one disk at the same time. This is
called "overlapping seeks." Since the positioning of the
read-write heads typically accounts for most of the time
spent by a disk, being able to overlap this operation on mul-
tiple disks can reduce the overall time required to access the
disks. For example, assume the driver has a request for one
disk that requires a seek of 5 ms followed by a read of 2 ms,
and a request for a second disk that requires a seek of l0 ms
followed by a read of 2 ms. If the seeks are not overlapped,
a total time of 19 ms is required. Overlapping the seeks
reduces this total time to 12 ms. When more than one disk
is seeking or searching, the frrst that arrives at its desired
location interrupts the processor.

. Many controllers allow the driver to obtain the current posi-
tion of the read-write heads. In the hp controller this is
called the "lookahead register." This capability is required
if the driver wants to optimize positioning on a particular
cylinder.

. Most controllers only allow a single disk to be reading or
writing at a time. Other disks can be seeking or searching
while one disk is executing a read or write command. Also,
once a read or write command is initiated, the controller
cannot start a seek or search on another disk until the read
or write completes. Therefore, before starting a read or a
write, the heads should be positioned as close as possible to
the starting sector. For example, if a read is initiated when
the starting sector is still three-quarters of a revolution away
on that cylinder, during that 12.5 milliseconds, plus the time
required to actually read the desired sectors, the controller
can't initiate a read, write, seek, or search on another disk.

254 W. Richard Srevens

. Interrupts require processor time to handle. If every data
transfer is preceded by a seek or search, then it takes two
interrupts for every read or write. If the driver never per-

formed seeks or searches, only a single operation and a sin-
gle interrupt would be required. Clearly there is a tradeoff
between tying up the controller with a read or write com-
mand, versus the additional interrupt overhead associated
with a seek or search.

3. BSD Block Allocation

Chapter 7 of Leffler et al. [1989] describes the allocation of blocks
to a new file that is being written. For our purposes we are

interested in the following features.

. The BSD block allocation routines try to place sequential
blocks on the same cylinder. This implies that the disk
drivers often find the read-write heads already positioned on
the correct cylinder.

. In addition to trying to place consecutive blocks on the
same cylinder, the block allocation routines also try to posi-

tion sequential blocks so they are in rotationally optimal
locations. When reading a file sequentially, after one block
has been read the driver has to process the interrupt for that
operation and then set things up to read the next block.
Sequential blocks should be separated by as many sectors as

required so that the driver has time to start the read of the
next block. This is called the "rotational delay" of the frle
system and we discuss it in Section 5. This parameter
depends on the amount of CPU time required by the driver,
so it is dependent on the processor.

. Almost every UNIX system detects sequential reading of a
file by a process, and automatically initiates the read of the
next data block. This means that most read system calls,
after the first one, return quickly, since the requested block
is already in a disk buffer. Section 5.2 of Bach [1986]
describes this read-ahead policy. To a disk driver this
means that it often finds a request for block,À[next on its

Heuristics for Disk Drive Positioning in 4.3BSD 255

queue, when it is processing the read-completion interrupt
for block l/- /.

. In the following examples we assume a block size of 8t92
bytes and a fragment size of 1024 bytes. That is, all blocks
of the file are 8192 bytes in length, except possibly the frnal
block.

4. The BSD hp Disk Driver

The hp driver supports three parameters for each type of disk
drive: mindist, maxdist, and sdist. These three parameters con-
trol the heuristics that are used in positioning the read-write
heads. With 4.3BSD these three values are initialized in the driver
source code. To change them requires modifying the driver and
recompiling the kernel, or using a debugger to patch the kernel.
The 4.3BSD Tahoe release moved these parameters to the file
/etc/disktaå, which is used by the disklabel program to write these
three values, along with other disk-dependent parameters, to the
label on the disk drive. The Tahoe release also refers to these
three parameters as dI, d2, and d3. The parameter dI
corresponds to mindist, d2 is maxdist, and d3 is sdist. We'll use
the 4.3BSD names since they are more descriptive.

Any time a search operation is executed, the driver leads the
search by the number of sectors specifred by sdist. For example, if
sdist is 5 and the desired sector is 32, then the driver issues its
search command for sector 27. This parameter is required
because it takes the driver some time to process the interrupt that
occurs when the search is complete, before it can issue a read or
write command. This parameter is affected by both the speed of
the processor and the speed of the disk. If this parameter is too
small, then once the interrupt from the search command is
received and the read or write command issued, the desired sector
has already passed by. This is called "losing a revolution" and
the controller is tied up for a complete revolution while waiting
for the desired sector to pass by again. If this parameter is too
large, then the read or write command is issued too early, tying up
the controller when it might be possible to be servicing another
disk.

256 rü. Richard Stevens

The mindisr and maxdist parameters are used by the driver to
determine if it should issue a search command or if it should

immediately issue the read or write command. These parameters

are used only when the disk is already positioned on the correct
cylinder. If the disk is on the desired cylinder, the driver reads

the disk's lookahead register to determine the sector at which the

disk is currently positioned. If the distance from the current posi-

tion to the desired position is within the ranges specified by
mindist and maxdisl, then the driver issues the read or write com-
mand immediately. But if the distance is less than mind¿sr or
greater than maxdist, the driver issues a search command instead.

The mindisl parameter specifies the minimum amount of time
required by the processor to set up a read or write command. If
the distance to the desired sector is less than this value, a read or
write should not be initiated. By the time the command is issued

the desired sector will have passed by the read-write heads.

Instead, the driver should issue a search command to avoid tying
up the controller for an entire revolution.

The maxdisl parameter is used to avoid starting read or write
operations for sectors that are still a long distance away on the

current cylinder. If the distance is greater than maxdisr it is
better to issue a search command, rather than tying up the con-

troller with a read or write.
These three parameters should obey the following inequality:

mindist < sdist < maxdist I

Our reasoning is as follows. First, the mindist parameter is exam-

ined while in the disk driver. If the driver decides to issue a read

or write, no additional interrupt processing is required. All it has

to do is set up the appropriate device registers and start the opera-

tion. The sdist parameter, however, has associated with it the
processing of another interrupt and then the initiation of a read or
write. The difference between sdist and mindisl is the time
required to process this additional interrupt. To prove the second

relationship of Inequality l, assume that maxdisr is less than or
equal to sdist. For example, assume maxdist is 6, sdist is 10, and

the distance to the desired sector is 8. This distance is greater

than maxdisl so a search command is issued. But the search com-

mand is offset by sdíst, so the search is for sector -2. (All the

Heuristics þr Disk Drive Positioning in 4.3BSD 257

sector arithmetic is done modulo the number of sectors per track,
since sector numbers are nonnegative. Hence, if there are 48 sec-
tors per track, then the sector that is -2 away from the current
position corresponds to the sector that is 46 sectors away.) This
means the search command is issued for the sector that is behind
the current position by 2 sectors - almost an entire revolution is
lost. Therefore, since any search for a sector that is greater than
maxdist sectors away is always offset by sdist, maxdist must be
greater than sdist to avoid losing a revolution.

There are three different conditions that the driver must
handle.

l. desired position < mindist.

2. mindist < desired position < maxdist.

3. maxdisr < desired position.

We can show these pictorially. For the first condition we have:

mindist

,f

maxdist

t,

issue search

J

desired position < mindist

current desired

Here we show a single track of the disk as an elongated box.
Realize that the left end of the box is actually joined to the right
end, forming a circle. Since the distance to the desired sector is
less than mindist, and since sdist is greater than mindist by Ine-
quality l, the search is for a position prior to the current position.

sdist I
I

258 W. Richard Stevens

For the second condition we have:

mindist maxdistttvv
I
I

mindist < desired position 3 maxdist

current desired

In this case the driver issues the read or write command
immediately.

The final condition is:

mindist maxdistttttvv
+i

^Í\î\I I I
maxdist <desiredposition

current issue search desired

The implementation of the hp disk driver in the original
4.3BSD distribution contains some errors that are worth investigat-
ing. First, the test against mindist and maxdisl is backwards:

it Øn desired cylíndeÒ {
/* catcutate dist = distance to desired sector */
if (dist) maxdist ll dist < mindist)

/* start read or write */
etse

l* do a search */
)

The condition should be

if (dist (= maxdist && dist >= mindist)
/* start read or ¡¡rite */

eIse
l* do a search */

This is fixed in the 4.3BSD Tahoe release. Another bug that is
fixed in the Tahoe release is that the original 4.3BSD release
incorrectly set the sc-doseek true for some controllers (all Emulex

Heuristics lor Disk Drive Positioning in 4.3BSD 259

controllers). This prevented any search commands from being
executed for these controllers. Instead, the driver executed only
seek commands and then issued the read or write anywhere on the
desired cylinder.

The flnal bug, which is still in the Tahoe release, is that the
distributed values for the three parameters, mindist, maxdist, and
sdist are incorrect. The entries for every disk type have a maxdist
value that is less than sdist. As shown above, this can cause a
revolution to be lost whenever the actual distance is between the
two values. These incorrect values can drop the performance of
certain disks by a factor of three when switching from the original
4.3BSD release to the Tahoe release. Indeed, this performance loss
was noticed and a Usenet message posted by Berkeley on how to
adjust these three values. This posting is included as Appendix A.
The techniques given in this message are not optimal, although
the values derived are better than the distributed values.

5. Measuring the sdist Parameter

Tests were run on two different systems, a VAX I l-785 and a VAX
8650. On the 785 was an Emulex SC780 disk controller with
Fujitsu Eagle (M2351) disk drives. The 8650 had an Emulex
SC7003 disk controller with CDC 9720-850 disk drives. Both Emu-
lex controllers are Massbus controllers. Some relevant parameters
for these two disks are:

Fujitsu Eagle CDC 9720-850

revolutions per minute 3961
sectors per track 48
bytes per sector 512
microseconds per sector 316
track-to-track seek, milliseconds 5

Table l: Disk drive parameters for disks used in tests

The microseconds per sector value is calculated from the frrst two
values above it in the table.

The first thing to measure is the sdist value. This value shows
the amount of time required by the processor to handle an inter-
rupt from the controller and issue a read or write. We expect that

260 W. Richard Stevens

3600
68

5t2
245

5

as we continually decrease this value we will hit a point where

there isn't enough time for the driver to respond to an interrupt
and start the read, causing a revolution to be missed. Indeed, Fig-

ure I shows this. The timing tests were done by writing an

8 megabyte file and then reading the file using different values for
sdist. The reading and writing were done with 1024 reads or
writes of 8 Kbytes at a time. Multiple tests were done for each

value, to make certain there were no anomalies with any specific
test. The systems were in single-user mode while the timing tests

were conducted. The important value to measure is the total
elapsed time - the wall clock time. Also, to accurately measure

the sdist effect, we want every read or write to be preceded by a
search command, even if the disk is already positioned on the
correct cylinder. To do this we set mindist to I and maxdíst to 0.

This causes the driver's test that we showed earlier to always be

false, causing a search command to be issued before every read or
write. Then we continually decreased the value of sdist to see

how far ahead of the desired cylinder we had to be interrupted.
For the 785 the minimum value for sdist is 5 sectors and for the
8650 it is 3 sectors. In actual use, however, one should be conser-

vative with these values since there is typically more system

activity than in the single-user conditions used for these tests. For
example, we actually use sd¿s¿ values of 8 for the 785 and 5 for the
8650 to allow for this variability.

seconds

to read

8 Mbytes

0246810121416
sdist in sectors

Figure l: Effect of sdist on a sequential read

28

24

20

8

4

0

20l8

vAX 8650 with 9720

Heuristics þr Disk Drive Positioning in 4.3BSD 261

Note, however, that the graph not only shows an increase in
the time required to read the frle when the sdist value is too small,
but it also shows an increase at larger values. This is an interac-
tion with the BSD fast file system that is instructive to look into.

First, as mentioned earlier, the BSD file system tries to place
consecutive blocks ofa frle separated by a certain spacing (in sec-
tors). This is termed the "rotational delay." With 4.3BSD it
defaults to 4 milliseconds when the file system is created and it
can be changed at a later time using the tunefs command. With
the Tahoe release the rotational delay is an optional argument to
the newfs command and it can also be changed with the tunefs
command. This rotational delay is to ensure that the system has
enough time after receiving the read-complete interrupt to process
the interrupt and start the read of the next block of the file. This
optimization of the next sector location is done when the frle is
being written. The actual algorithm to calculate this distance is in
the routine blkpref, and is based on the following calculation:

rotational delay in ^, *
!99!Øi9P ,

seconddist = secÍors 1000 løs-:--^_
Jragment second

The value of this equation is the number of disk fragments (e.g.,
1024 byte fragments, if the file system uses 8 Kbyte blocks with
I Kbyte fragments) that should separate consecutive data blocks
for a given frle. The integer value díst is then rounded up to the
next multiple of the block size (e.g., 8). For both the Eagle and
9720 disks, this calculation generates a spacing of 8 fragments
(16 sectors), if the rotational delay is 4 milliseconds. Since the
value is always rounded up to the next multiple of the block size,
a smaller value of the delay in milliseconds still generates the
minimum spacing of 16 sectors. It is possible, however, to gen-
erate a larger spacing by specifying a delay greater than 4 mil-
liseconds.

Now we can see why Figure I has a large increase around an
sd¿il value of 14 sectors for both disks. V/hen the driver processes
the interrupt for the completion of the read, the next block to read
is usually ló sectors away. By the time it issues its search com-
mand, if the value of sdist is greater than 14, it generates a search

262 W. Richard Stevens

command for a sector prior to its current position, so a complete
revolution is lost. The spacing of consecutive data blocks around
the cylinder by the BSD fast file system is what generates the

increase in Figure I around the sdist value of 14 sectors.

We now compute an estimated value for the maximum read-

ing rate that we can expect from these two disks. To read an

8 Mbyte frle in 8 Kbyte chunks, the following two steps are exe-

cuted 1024 times:

l. Read 8192 bytes (one block, 16 sectors).

2. Let the disk move another block (16 sectors) until the next
data block is reached.

For the 9720 disk this gives a calculated minimum time of 8.03

seconds, and for the Eagle disk the value is 10.35 seconds. These

values are close to the measured values of 8.2 and 11.1. Note that
we have ignored the track-to-track seek times that must also

occur, since an 8 Mbyte file requires at least 18 cylinders on both
disks. We have also ignored the opening of the file, which also

requires a small amount of time.
If we miss a revolution, however, the steps become:

l. Read 8192 bytes (one block, 16 sectors).

2. Let the disk move another complete revolution plus one

block (16 sectors) to reach the next data block.

Adding up the times for these two operations gives calculated

values of 25.1 seconds for the 9720 and 25.9 seconds for the Eagle.

The measured values were 25.2 and 25.9, respectively.
We can now understand why the faulty 4.3BSD routines gen-

erated optimal results, despite their bugs. Since the driver's
sc-doseek flag was always true for an Emulex controller, whenever

the disk was already positioned on the correct cylinder, a read was

started, regardless of how far away (or how close) the desired sec-

tor was. Since the next block was typically 16 sectors away, the

read was started and a revolution was not lost.
Fixing the coding bugs, however, without setting the three

parameters to reasonable values, provides a performance drop of a
factor of three. For example, setting the driver's sc-doseek flag
false (which is correct) and correcting the test involving mindist
and maxdisl generates the following scenario for the Eagle. The

Heuristics for Disk Drive Positioning in 4.3BSD 263

default value of sdist is 15 and the default value of maxdist is B.

When the driver finishes reading one data block the next one is
about 14 sectors away. This is greater than 8 so the driver issues a
search, but the search is offset by 15 sectors (e.g., one sector before
the current position) so a revolution is lost.

Performing the timing tests described in this section not only
shows the maximum value for sdist that should be used, it also
shows the spacing being used to separate sequential blocks of a
file. To see what effect the "rotational delay" term in Equation 2
has on the performance, we changed a file system on a CDC 9720-
850 disk from a 4 ms delay to a 5 ms delay, using the tunefs com-
mand. Equation 2 now gives a dist vahx of t0 fragments, which
is then rounded up to 16. This corresponds to 32 sectors. Rewrit-
ing the 8 Mbyte file and then reading the frle using different values
of sdist gives the results in Figure 2. This effect of the rotational
delay is increased for disks with large numbers of sectors per track
since the number of sectors per track is in the numerator of Equa-
tion 2.

The drop in Figure 2 between a distance of I sector and a dis-
tance of 3 sectors is identical to the drop in Figure I for this pro-
cessor. We expect this, since the amount of processor time
required to handle the search-complete interrupt and start the
next operation is dependent only on the processor and the
sequence of instructions that must be executed in the device

32

28

24

,aaorrd, 20

to read

8 ubytes

8

4

0

0 2 4 6 8 1012141618202224262830323436
sdist in sectors

Figure 2: Effect of sdist and rotational delay on a sequential read

264 W. Richard Srevens

VAX 8650 with 9720, rotational delay of 5 ms

driver. This means that if we measure the sdisl value for a partic-

ular processor, device driver, and disk drive, we can calculate the

value for any other disk drive that uses the same processor and

device driver. For example, both Figures I and 2 show that the
hp driver on a VAX 8650 requires about 735 microseconds to han-

dle the search-complete interrupt and start another read. This is
because both Figures I and 2 flatten out at a distance of 3 sectors,

and the time per sector is 245 microseconds from Table l. Given
the first four numbers in Table I for any other disk drive on this
system, one can calculate the number of sectors corresponding to
735 microseconds.

6. Additional Driver Measurements

Another empirical test that we use to verify what is happening in
the sdist measurements is to modify the disk driver to keep a

counter of what the actual sector distances are. We have modified
the hp driver to keep the following counts, for each disk:

l. For every disk operation, how many times the disk is
already positioned on the correct cylinder.

2. If the disk is already on the correct cylinder, we maintain a

set of counters for each sector distance.

The flrst counter indicates how often the míndisl and maxdist
values are actually used. The second set of counters allows us to
build a histogram of the sector distances.

These counters were enabled on the VAX 8650 while doing the

sequential read of the 8 Mbyte file from the previous section. The
results of the first counter show that 980/o of the time the disk is
already positioned on the correct cylinder and only 2o/o of the time
is a search command to a new cylinder required. We estimated

earlier that it required a minimum of t 8 cylinders on either the
Eagle disk or the 9720 disk to store an 8 Mbyte file. The actual

counter showed that 20 searches had to be executed to move to
another cylinder.

The second set of counters shows that 980/o of the time the
desired sector is 14 sectors away from the current position. The

desired sector is 15 sectors away lo/o of the time, and the

Heuristics þr Disk Drive Positioning in 4.3BSD 265

remaining l7o of the time the distance is other than 14 or 15. This
correlates with the values in Figure I and our discussion in the
previous section.

7. Selection of mindist and maxdist

The tests in Sections 5 and 6, however, are for a special case: the
sequential reading of a large file with no other system activity.
Section 6 showed that the value of mindist is insignificant 99o/o of
the time. The value of maxdist only determines whether the
driver starts the read 14 sectors away from the desired location, or
whether it relinquishes the controller. To provide fast reading,
maxdist should be greater than or equal to 15, allowing the disk
that just completed the read to start another read. Setting
maxdist to less than 14 allows another disk to either issue a search
or start a read or write. If another disk is ready to start a read or
write, it will probably tie up the controller so that the next block
will be missed.

What should drive the selection of mindist and maxdist is the
distribution of the sector distances for a typical load. This distri-
bution was measured on both the VAX-I t/785 and the VAX g650

by enabling the counters described in the previous section for
15 hours during a typical work day. The 785 usually had around
55 users and the most frequent commands were the shell, ls, vi,
more, and troff. The 8650 was used by 30 programmers for pro-
gram development and testing. The most frequent commands
were /s, vi, make, and the multiple steps of the C compiler. There
were four Eagle disks on the 785 and two 9720 disks on the 8650.
Since there is no "typical" disk usage in a multiuser environment,
three different file systems were monitored.

The first frle system we show is an Eagle disk that is the pri-
mary user file system on the 785. This is where the home direc-
tories for all users are located and where most users keep the files
they edit. User file systems are characterized by many small files.
The frrst counters show that 30.4o/o of the time the disk is already
on the correct cylinder, while 69.60/o of the time it is not. Figure 3

shows the histogram of the sector distances when the disk is
already positioned on the correct cylinder. The top axis shows the

266 W. Richard Srevens

21.9 36.6

cumulative percent

67.9

2500

2000

l 500

1000

500

0

0 4 8 t2 162024283236404448
distance in sectors

Figure 3

cumulative percent, up to and including that distance in sectors.

For example, 21.9o/o of all distances are between 0 and 9

(inclusive); 36.60/o of all distances are between 0 and 14 (inclusive).
The peak around 14 is probably caused by the reading of blocks

sequentially from files. The slight increase at 30 is for reads that
are separated by two 8 Kbyte file system blocks. The increase at

46 is for blocks that are a complete revolution away. This hap-
pens when a read or write completes, and the next request on the
queue is for the next contiguous sector, somewhere on the current
cylinder. But by the time the driver has processed the interrupt
for the operation that just completed, the desired sector has just
passed by. This is an example where the driver should not issue

the read or write, as it would tie up the controller for about
16 milliseconds before the data transfer can even begin. In this
amount of time another disk can, for example, do a track-to-track
seek, skip over I sectors, and then read 16 sectors.

Figure 4 is for the root file system on the 785. Additionally,
this disk contains three other frle system partitions: /usr,
/usr/local, and a swap partition. This is a heavily used disk drive.
Most executable files are read from its different partitions, /bin,

23,251samples

Heuristics for Disk Drive Positioning in 4.3BSD 267

cumulative percent

35.4 70.9

0 4 I t2 1620242832364044 48
distance in sectors

Figure 4

/usr/bin, /usr/ucb, and /usr/local/bin. The root partition also con-
tains the /etc directory, which contains frequently accessed frles.
The swap partition is not used heavily, as the system has enough
memory (24 Mbytes) to prevent most paging and swapping. Only
26.00/o of the requests found the disk already positioned on the
correct cylinder. This low value is probably because there are four
different partitions in use on the disk. The distribution of these
requests for the different sector distances is given below.

The final histogram we show (Figure 5) is for a 9720 disk that
only contains the /tmp frle system for the 8650. This file system is
characterized by the writing and then reading of temporary files.
For 48.50/o of the requests the disk was already positioned on the
correct cylinder. For these cases the histogram ofthe sector dis-
tances is given below.

Having some actual histograms of the sector distances, we can
now make reasonable choices for the mindist and maxdisl values.
We choose a mindist value of 2 for the 8650 and 4 for the 785.
We want to make certain that the driver has enough time to issue
the next read or write command, before that sector has gone by.

91,517 samples

268 W. Richard Srevens

cumulative percent

17.031.5

l 500

1000

500

0

distance in sectors

Figure 5

We choose a larger value on the slower system (the 785), since the
same sequence of instructions has to be executed on both systems.

For both the 785 and the 8650 we choose a maxdist value of
16. From the three histograms above, this guarantees that we

immediately read or write the blocks that cause the histograms to
peak between distances of 9 and 15. In all three histograms, dis-
tances ofless than 16 sectors account for about one-third ofthe
cases when the disk is already positioned on the correct cylinder.
To account for a higher percentage of the cases, maxdist must be

at leasf 32. But for the Eagle this ties up the controller for up to
l0 milliseconds, which is time that can be spent servicing another
disk.

8. Summary

There are two factors that a system manager has control over that
affect the throughput of a disk controller such as the hp controller
used for the tests described in this paper:

26,723 samples

0 4 8 1216202428323640444852 56606468

Heuristics for Disk Drive Positioning in 4.3BSD 269

l. The values of the three paramefers mindíst, maxdíst, and
sdist.

2. The spacing that results from the rotational delay between
sequential blocks of a file.

We can provide the following recommendations for users of either
the 4.3BSD or the 4.3BSD Tahoe systems:

l. With the 4.3BSD release (not the Tahoe release) one should
frx the driver bugs having to do with the incorrect setting of
the sc_doseek flag and the "il' statement that compares the
distance to the desired sector against míndist and maxdist.

2. Measure the sdist parameter for the processor being used.
This is critical to good performance. This measurement
also verifies the rotational delay between sequential blocks
in a frle. If the rotational delay is too large, use the tunefs
command to reduce it. The spacing shown by these meas-
urements should correspond with the value calculated by
Equation 2.

3. Choose reasonable values for mindist and maxdist as
described in Section 7. Be sure to maintain the relation-
ships of Inequality l.

270 w. Richard Stevens

Appendix A:
The Original Tuning Method

The following is the Usenet posting from September 1988 on how

to tune the dI, d2, and d3 parameters. The text is by Tom Ferrin
of the Computer Graphics Laboratory, UCSF; the posting was by

Keith Bostic of CSRG, UCB.

Subject: How to tune dI, d2, d3 params in /etc/disktab
Index: etc/disktab 4.3BSD-tahoe

For those of you that are interested in maximizing the perfor-

mance of your disks, here is an empirical procedure developed by

Tom Ferrin (tef@cgl.ucsf.edu) to tune the drive dependent param-

eters for disk controllers that have search capabilities. CSRG

would be interested in getting experimental results for other drives

in /etc/disktab and also in hearing of refinements to this pro-

cedure.

Here is the procedure to empirically determine the correct

drive-dependent parameters for "HP" type disks. This technique

improved both read and write times for an NEC 2362 drive by

more than 2x! Since the "doubleeagle" params were used as a

starting point, throughput to that drive could probably be

improved considerably as well since the physical characteristics of
the two drives are very similar. The throughput is now nearly

IMB/sec on writes (995 KB/s to be exact) and 842 KB/s on reads.

Here is the method:

0. format the drive and build the badblock table.

l. set d3 (sdist) to something large, say 20.

2. set dl (mindisl) to 0.

3. set dz (maxdisl) to #sectors/track - I (63 for the NEC).

4. write out these parameters using disklabel.

5. newfs a file system and mount it.

This essentially disables the "search" capability of the driver
so than whenever the drive is positioned on the proper cylinder
the driver immediately issues a data xfer command. This will

Heuristics for Disk Drive Positioning in 4'3BSD 27 I

minimize the clata transfer time at the expense of tying up the
controller for a longer period (possibly for a complete revolution
[-l7ms]). Now use Mike's write_9192 program (was in
-karels/tests on the distribution tape) to write a 8MB frle out to the
file system.

Optimize maxdist as follows:

6. use the read_8192 program to determine the real time
required to read the data file. (Do a-6 runs to make sure
there are no abnormalities on a particular run.)

7. reduce maxdist (d2) bV t0 in disktab, write it out with
disklabel, and do step #6 again.

The real time required to read the file should remain relatively
constant until maxdisl gets too small, then the time will suddenly
jump up as you begin missing revs on the xfer. Decrease the step
size from l0 to 5 and iterate again, finally choosing a value a a lit-
tle larger than the "cut off' value. (It is much better to be conser-
vative.)

Optimize mindist by increasing it upwards from 0 using a step
size of I or 2, again using read_8192 as the benchmark. You will
see that time required to read the flle will initially be small, but
then will start creeping upwards as the driver begins issuing
"search" commands when it could be starting a read directly.
Back off I or 2 sectors from the point where the file read time first
starting increasing. (Being conservative is less critical here.)

mindist and maxdist determine the window (measured in sec-
tors) from which the driver determines to whether to begin a dafa
xfer immediately or to do a "search" command first (possibly free-
ing the controller for a data xfer on another drive). Values of 2
and l5 worked best for mindist and maxdist on a NEC D2362,
using an Emulex SC7003 controller on a VAX 8650.

Lastly optimize sdist in the same way you optimized maxdist.
A value of S is reasonable (far different than the 15 originally
found in disktab). Again it is better to err on the conservative
side, since being too liberal causes you to miss a rev, while being
too conservative just ties up the controller longer while the data
xfer is queued up and the controller is waiting for the heads to get
over the proper sector.

272 W. Richard Srevens

A final note: bus I/O architecture and CPU speed play a factor
in all of this, since how fast it takes the processor to freld a device
interrupt and how fast the code in the driver executes affect tim-
ing. Ideally someone should use the same drive and controller
setup on a slow CPU (e.g. VAX 750) and see how different the
numbers are.

Heurßticsþr Dísk Drive Positíoning in 4.3BSD 273

References

M. J. Bach, The Design of the UNIX Operating System, Prentice Hall
(1e86).

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The
Design and Implementation of the 4.3BSD (INIX Operating System,

Addison-Wesley (I 989).

fsubmitted June 2, 1989; revised July 21, 1989; rccepted July 27, 19891

274 tW. Richard Stevens

